
RESEARCH ARTICLE

Isotope systematics of subfossil, historical,

and modern Nautilus macromphalus from

New Caledonia

Benjamin J. LinzmeierID
1*, Andrew D. Jacobson2, Bradley B. Sageman2, Matthew

T. Hurtgen2, Meagan E. Ankney3, Andrew L. Masterson2, Neil H. Landman4

1 Department of Earth Sciences, University of South Alabama, Mobile, Alabama, United States of America,

2 Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, United States of

America, 3 Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, Wisconsin,

United States of America, 4 Division of Paleontology, American Museum of Natural History, New York, New

York, United States of America

* blinzmeier@southalabama.edu

Abstract

Cephalopod carbonate geochemistry underpins studies ranging from Phanerozoic, global-

scale change to outcrop-scale paleoecological reconstructions. Interpreting these data

hinges on assumed similarity to model organisms, such as Nautilus, and generalization

from other molluscan biomineralization processes. Aquarium rearing and capture of wild

Nautilus suggest shell carbonate precipitates quickly (35 μm/day) in oxygen isotope equilib-

rium with seawater. Other components of Nautilus shell chemistry are less well-studied but

have potential to serve as proxies for paleobiology and paleoceanography. To calibrate the

geochemical response of cephalopod δ15Norg, δ13Corg, δ13Ccarb, δ18Ocarb, and δ44/40Cacarb

to modern anthropogenic environmental change, we analyzed modern, historical, and sub-

fossil Nautilus macromphalus from New Caledonia. Samples span initial human habitation,

colonialization, and industrial pCO2 increase. This sampling strategy is advantageous

because it avoids the shock response that can affect geochemical change in aquarium

experiments. Given the range of living depths and more complex ecology of Nautilus, how-

ever, some anthropogenic signals, such as ocean acidification, may not have propagated to

their living depths. Our data suggest some environmental changes are more easily pre-

served than others given variability in cephalopod average living depth. Calculation of the

percent respired carbon incorporated into the shell using δ13Corg, δ13Ccarb, and Suess-effect

corrected δ13CDIC suggests an increase in the last 130 years that may have been caused by

increasing carbon dioxide concentration or decreasing oxygen concentration at the depths

these individuals inhabited. This pattern is consistent with increasing atmospheric CO2 and/

or eutrophication offshore of New Caledonia. We find that δ44/40Ca remains stable across

the last 130 years. The subfossil shell from a cenote may exhibit early δ44/40Ca diagenesis.

Questions remain about the proportion of dietary vs ambient seawater calcium incorporation

into the Nautilus shell. Values of δ15N do not indicate trophic level change in the last 130

years, and the subfossil shell may show diagenetic alteration of δ15N toward lower values.
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Future work using historical collections of Sepia and Spirula may provide additional calibra-

tion of fossil cephalopod geochemistry.

Introduction

The geochemistry of cephalopod mollusks has been used to quantify paleoclimate [1,2] and

investigate paleobiology [3–9] throughout their long fossil record [10]. Modern Nautilus is a

model organism for the isotope geochemistry of extinct cephalopods, including the ammo-

noids and nautiloids, because it is the only remaining externally shelled cephalopod (Fig 1).

Nautilus are forereef scavengers that cross hundreds of meters of water depth within individual

days while continuously growing shell. Extensive work has been done to quantify the systemat-

ics of light stable isotopes (δ13C and δ18O) in Nautilus shell carbonate. Aquarium rearing

experiments suggest Nautilus shells precipitate in δ18O equilibrium with seawater [11,12]. Car-

bon isotope values (δ13Cshell) suggest both metabolic and dissolved inorganic carbon (DIC)

sources [11] similar to that for other mollusks [13]. Analyses of δ15N from shell organic matter,

also known as conchiolin, show trophic change associated with hatching and maturity [14].

The carbon isotope value of conchiolin, like organic matter in other mollusk shells, likely

reflects the δ13C of respired carbon [13,15,16].

Other isotope systems, particularly metal isotopes, have received less investigation. The cal-

cium isotope value (δ44/40Ca) of Nautilus shell has only recently been measured from a handful

of modern shells [20,21] and may reflect changing Nautilus fractionation factor (Δ44/40Cashell-

SW [22], changing δ44/40Ca value of seawater [23], or dietary change [20,21].

Fig 1. Overview of Nautilus m. shell (ROM 48997) with annotation of major shell structures, and growth

direction. Nautilus shells grow in a spiral and septa are secreted to allow for the maintenance of neutral buoyancy

during growth through the removal of liquid from the chambers [17]. Shells comprise two major structural forms of

aragonite, the inner nacreous layer and outer spherulitic prismatic layer [18,19].

https://doi.org/10.1371/journal.pone.0277666.g001
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Proxies respond to anthropogenic forcings of environmental change. Some of these shifts

are particularly dramatic and likely to impact Nautilus, including the rise of coastal ‘dead

zones’ [24], overfishing [25], and acidification [26]. For most organisms, these environmental

changes are unfolding on a generational timescale, so phenotypic plasticity and ecosystem

feedbacks may allow for faster adaptation, potentially mitigating the worst possible effects [27–

30]; however, it is difficult to assess deep-time analogs for change on timescales of 100’s to

10,000’s of years due to the time-averaged and punctuated nature of the fossil record [31,32].

Careful, high precision analyses of proxies across modern to historical samples provide an

opportunity to calibrate the geochemical changes expected in fossil archives and provide

insight into variations expected to be preserved within fossil assemblages during abrupt cli-

mate events.

Here, we use museum collections to test for hypothesized anthropogenic forcings (e.g. tem-

perature change, ocean acidification, trophic change) and diagenetic vulnerability present in a

suite of analyses (Sr/Ca, Mg/Ca, δ13Corg, δ15Norg, δ13Ccarb, δ18Ocarb, and δ44/40Cacarb) of N.

macromphalus from New Caledonia (Fig 2). Samples range in age from modern to subfossil

and span indigenous settlement [33], European colonization, and industrial ocean acidifica-

tion and warming (Fig 3). We hypothesize abrupt changes in ecologically sensitive proxies

(e.g. δ18Ocarb, δ15Norg) are stepwise due to ecological restructuring, while gradual changes are

forced due to continuous industrial environmental effects. These data highlight the utility of

museum collections and the subfossil record for better quantifying past environmental change

to predict biological resiliency in the face of anthropogenic pressures.

Materials and methods

Ethics statement

All specimens of N. macromphalus (Mollusca: Cephalopoda) used in this study were collected

for morphological study of Nautilus and deposited at various museums (American Museum of

Natural History, Field Museum of Natural History, Royal Ontario Museum). The methods of

Fig 2. Map showing the sample collection location and major currents surrounding New Caledonia. A) World map showing the location of New Caledonia

in the Southwestern Pacific Ocean. B) Local map showing New Caledonia and the surrounding islands with a star indicating the location of the cenote. Water

shallower than 1000 m is in light blue and approximates the habitat of N. macromphalus. around New Caledonia. All cenote specimens are from the star

location of Lifou, Loyalty Islands [34]. All other specimens were collected near the large island and are recent museum specimens. Reliable accounts of the live

collection of N. macromphalus are mostly known from areas close to New Caledonia, and the species is thought to have a geographic range restricted to that

region [35]. Local currents are overlain for reference [36].

https://doi.org/10.1371/journal.pone.0277666.g002
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capture and sacrifice of Nautilus before the 2000’s specimens are unknown, but all specimens

were collected before local protected status was granted in 2008. The two individuals collected

in 2002 and 2004 were captured in a baited trap by Dr. Royal H. Mapes, sacrificed, and kept

for a morphological study.

Nautilus macromphalus samples

N. macromphalus is endemic to New Caledonia and the Loyalty Islands and can be distin-

guished by the prominent, open umbilicus with inward sloping walls ([38], Fig 1). Individual

Nautilus likely grow to maturity over 2.5 to 6 years, although considerable uncertainty remains

in their total lifespan [39]. The oldest samples used in this study are AMNH 112600 and

AMNH 112595. These samples were recovered from a cenote on Lifou (Fig 2) and date to 6455

±30 (AMNH 112600) and 6895 ±30 (AMNH 112595) years before present using radiocarbon

[34]. Multiple fragments from near the aperture of this shell were powdered to provide ade-

quate material for analyses. The second oldest sample is from the Field Museum of Natural

Fig 3. Timeline for sample ages, pCO2, and human settlement of New Caledonia. Red vertical bars represent the

age of specimens used in this study with the museum repositories noted (American Museum of Natural History—

AMNH, Field Museum of Natural History—FMNH, and Royal Ontario Museum—ROM). Yellow vertical bar

represents indigenous settlement as demonstrated by landscape change observed in lacustrine sediments ~3000 BCE

[33]. French invasion occurred in the mid-1800’s. The comparative record of pCO2 change showing industrial

increases is from Law Dome, East Antarctica [37].

https://doi.org/10.1371/journal.pone.0277666.g003

PLOS ONE Isotope systematics of Nautilus macromphalus

PLOS ONE | https://doi.org/10.1371/journal.pone.0277666 December 28, 2022 4 / 21

https://doi.org/10.1371/journal.pone.0277666.g003
https://doi.org/10.1371/journal.pone.0277666


History in Chicago (FM 41) and was part of the original collection purchased from Wards Sci-

entific to start the collection after the World’s Columbian Exposition in 1893. A single 2 cm2

chip from near the aperture was removed for analysis. Three samples from the Royal Ontario

Museum (ROM 60177, 48997, and 49000) were collected in 1975, 1977, and 1978 respectively.

Small chips of approximately 2 cm2 were removed from the aperture. The most recent samples,

housed at the American Museum of Natural History (AMNH 105621, AMNH 123397), were

collected in 2002 and 2004, respectively. One sample, AMNH 105621, was previously studied

for δ18Ocarb variability by secondary ion mass spectrometry [12]. For this sample, powder was

drilled from a chip that was embedded in epoxy.

Organic matter δ13C and δ15N

Processing of carbonate to extract organic matter was done in the Sedimentary Geochemistry

Laboratory at Northwestern University. Powdered shell was reacted with room temperature 1

N HCl overnight. Smaller amounts of recent shells with abundant organic matter were reacted

with smaller volumes of HCl necessary for complete dissolution and then dried down to isolate

the organic matter. The subfossil shells from the cenote required ~1–2 g of shell for the analy-

ses presented here. Organic matter was collected from solution using ashed glass filters. Either

organic matter or organic matter plus filters were loaded into tin capsules and combusted at

980 ˚C on a Costech 4010 Elemental Analyzer, coupled to a ThermoFinnigan Delta V Plus

mass spectrometer via a ConFlo IV interface in the Stable Isotope Laboratory at Northwestern

University. Long term precision of δ13C and δ15N analyses (±0.4‰ and ±0.6‰, 2σSD) was

assessed by comparison with isotope standards IU acetanilide (δ13C = -29.52±0.02‰, δ15N =

+1.18‰) and IU urea (δ13C = -8.02±0.05‰, δ15N = +20.17±0.06‰) supplied by Indiana Uni-

versity [40]. This method of measurement does not distinguish between carbonate-bound

organic matter (intracrystalline) and non-carbonate bound organic matter (intercrystalline)

but produces average δ13C and δ15N values for all organic matter isolated from the Nautilus
shell.

Carbonate δ13C and δ18O

Analyses of carbonate powder were conducted in the Stable Isotope Laboratory at Northwest-

ern University using a Thermo Gasbench II coupled with continuous flow of He carrier gas to

a Thermo Delta V IRMS. Values were standardized to the Vienna Pee Dee Belemnite (VPDB)

scale using NBS-18 (National Bureau of Standards, δ18O = -23.2 ‰, δ13C = -5.01 ‰, VPDB)

and an in-house carbonate standard, Carrara Lago Marble (CLM δ18O = -3.66 ‰, δ13C = 2.31

‰, VPDB). The CLM standard has been calibrated alongside NBS-19 and IAEA-603. A two-

point calibration using CLM and NBS-18 was employed for the analyses presented here. Ana-

lytical uncertainties (2σSD) for these analyses are ±0.2‰ for δ18Ocarb and ±0.1‰ for δ13Ccarb.

Elemental analysis

Approximately 50 mg of powdered shell was placed in acid-washed HDPE test tubes and dis-

solved in ~10 mL of 5 wt% HNO3. The mixtures were agitated on a rocker table for ~24 hours,

centrifuged, and then filtered through 0.45 μm syringe filters. Solutions were diluted with 5 wt

% HNO3 to ensure elemental concentrations were within calibration ranges of standards

(assuming near-to-pure calcium carbonate). Measurements were done using a Thermo Scien-

tific iCAP 6500 ICP-OES using Argon carrier gas and a Cetac U-6000AT+ Ultrasonic Neb-

ulizer in the Aqueous Geochemistry Laboratory at Northwestern University. Repeated

measurements of NIST SRM 1643f were used to both monitor instrument stability and con-

firm data quality for Ca, Mg, Mn, Na, and Sr. Three replicates of 3mL of solution were
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averaged for standards, blanks, and samples. Instrument drift was monitored using a standard,

sample, standard bracketing technique with no more than 15 samples analyzed between stan-

dards. Standard measurements suggest an instrumental precision of ±5% (RSD, relative stan-

dard deviation) for each element (Ca ~0.5 ppm, Mg ~0.1 ppb, Mn ~0.1 ppb, Na ~6 ppb, and Sr

~5 ppb).

Carbonate δ44/40Ca

Calcium isotope values were measured in the Radiogenic Isotope Laboratory at Northwestern

University using an optimized 43Ca-42Ca double spike method implemented on a Thermo-

Fisher Triton Multi-Collector Thermal Ionization Mass Spectrometer (TIMS) [41]. Sample

solutions containing 50 μg of Ca were weighed into acid-cleaned Teflon vials, spiked, and

equilibrated. Solutions were dried down overnight at 90˚C. Residues were then dissolved in

0.5 mL of 1.55N HCl, and Ca was separated from other elements by passing solutions through

Teflon columns filled with Bio-Rad AG MP-50 cation exchange resin. Solutions were dried

down once more and subsequently treated with two drops of 35 wt% H2O2 to oxidize organic

compounds and finally two drops of 16N HNO3 to convert Ca to nitrate form. Samples were

then dissolved in 0.4 μL of 8N HNO3 and split into 4 beads. One bead was loaded onto a single

degassed tantalum filament assembly, between ~0.5 mm wide parafilm dams, and subse-

quently dried at 3.5 amperes after adding 0.5 μL of 10 wt% H3PO4.

A stable, 20V 40Ca ion beam was obtained after a 0.5 hr warm-up sequence. Measurement

of 40Ca/42Ca, 43Ca/42Ca, and 43Ca/44Ca ratios was accomplished using a three-hop collector

cup configuration. Sample (SMP) 44Ca/40Ca ratios are reported in delta notation relative to

OSIL seawater (SW), where δ44/40CaSMP = [(44Ca/40Ca)SMP / (44Ca/40Ca)SW− 1] x 1000. Analy-

ses of the OSIL SW standard yielded a reproducibility of ±0.04‰ (2σSD) during the analytical

sessions including these samples. Analyses of NIST 915b produced an average δ44/40Ca value

of -1.14‰ ± 0.07‰ (2σSD) during the duration of the study. All stable isotope and elemental

data are available in the S1 Data and are published in the EarthChem Library (https://doi.org/

10.26022/IEDA/112707).

Difference estimates

The difference estimates between smaller subsets of data are based on a Monte Carlo approach.

We add a random error term to each analysis assuming the instrumental precision describes

two standard deviations of a normal distribution for expected variability around our measured

values. We then calculate the difference between groups for this new dataset and repeat this

operation 1,000,000 times. Error estimates are reported as the 5th to 95th percentiles of the dif-

ferences between the groups from the Monte Carlo method.

Results

Carbonate trace elements

Recent samples show no discernible temporal trends in either Mg/Ca or Sr/Ca ratios and dis-

play similar variation to the subfossil specimens (Fig 4). Material from subfossil cenote speci-

mens has higher Sr/Ca (3.0 mmol/mol) and lower Mg/Ca (0.5 mmol/mol) than most historical

samples (Fig 4).

Carbonate isotopes

The cenote specimens fall within the range of δ18O and δ13C of shell carbonate measured for

modern specimens (Fig 5). No change in δ44/40Ca is apparent in these samples less than 120
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Fig 4. Crossplots of Sr/Ca and Mg/Ca ratios vs isotope values measured on shell carbonate. Error bars are 2 standard deviation instrumental precision for

isotope values and the 5% RSD propagated to the elemental ratios. A) δ44/40Ca vs Mg/Ca, B) δ44/40Ca vs Sr/Ca, C) δ13Cshell vs Mg/Ca, D) δ13Cshell vs Sr/Ca, E)

δ18Oshell vs Mg/Ca, F) δ18Oshell vs Mg/Ca, G) δ15N vs Mg/Ca, H) δ15N vs Sr/Ca, I) δ13Corg vs Mg/Ca, and J) δ13Corg vs Sr/Ca. The cenote and historical samples

distinctly differ along Mg/Ca, Sr/Ca, δ15N, δ13Corg, and δ44/40Ca axes.

https://doi.org/10.1371/journal.pone.0277666.g004
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years old; however, the subfossil cenote specimens are 0.12‰ lower (0.11 to 0.15‰) than mod-

ern samples (Fig 6A). For samples collected in the last 120 years, δ13Cshell decreases by 2.09‰

(2.03 to 2.15‰) toward the present (Fig 6B), while δ18Oshell increases by 0.32‰ (0.45–0.20‰)

(Fig 6C).

Organic matter isotopes

Samples spanning the last 130 years show no temporal trends in either δ13Corg or δ15Norg (Figs

6D, 6E and 7). Subfossil cenote specimens have lower δ13Corg and δ15Norg by 6.06‰ (6.25 to

5.87‰) and 1.74‰ (2.03 to 1.45‰), respectively. Recent samples also consistently have lower

C/N (<3) compared to subfossil specimens (>4, Fig 7B).

Discussion

Diagenesis

Elemental ratios. Elemental ratios of biogenic carbonates are vulnerable to diagenetic

alteration. Increases in Sr/Ca from 2 mmol/mol to 5 mmol/mol have been correlated with

microstructural diagenetic alteration of fossil cephalopod shell and correspond to change in
87Sr/86Sr, δ18Ocarb, and δ13Ccarb. The cenote samples do not appear to be outliers in either Sr/

Ca or Mg/Ca compared to modern samples, however. This suggests that diagenetic alteration

of Sr/Ca and Mg/Ca is not detectable in the cenote samples.

Organic matter isotopes. Although organic matter within mollusk shells has been

reported for multiple fossil specimens, pristine preservation is rare [42–45]. During dissolution

of these shells for isolation of organic matter, it is apparent that cenote specimens have

Fig 5. Crossplot of carbon and oxygen isotope values measured on shell carbonate. Error bars are 2 standard

deviation instrumental precision.

https://doi.org/10.1371/journal.pone.0277666.g005
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considerably less organic matter than modern specimens, but the effects on the isotope com-

position of residual organic matter is important to explore. Degradation of organic matter

within shells generally removes more labile organic matter (e.g. amino acids, glycoproteins,

sugars) and preserves refractory organic matter, although the exact effect on δ13Corg and

δ15Norg values is unknown. Two sources of organic matter in the shell, carbonate-bound

organic matter (intracrystalline) and non-carbonate bound organic matter (intercrystalline),

likely behave differently during diagenesis due to the differing volumes and connectedness of

the organic matter for microbial degradation. Some authors have noted much lower δ15N (1–

4‰) in significantly older fossil nautiloids (Cymatoceras sakalavus, Albian ~113 to 100 Ma)

and have suggested these low δ15N values reflect diagenetic alteration [14]. Sedimentary

organic matter degradation drives δ15N toward lower values while C/N increases [46]. We see

a similar pattern between the recent and subfossil specimens (Fig 7B) and therefore suggest

that the δ15N of the cenote specimens is altered and does not reflect a primary trophic level sig-

nature. The δ13Corg values in these samples are also lower than the more recent specimens (Fig

7A). Diagenetic alteration of δ13Corg in mollusks also likely drives isotope values lower due to a

loss of the hydrophilic fraction of organic matter and potentially transformation to hydropho-

bic organic matter. The transformation involves preferentially losing 13C by not reincorporat-

ing it in hydrophobic organic matter.

Carbonate isotopes. Diagenetic alteration of light stable isotopes is of particular interest

for constraining the fidelity of paleoclimatological records [47–49]. The subfossil specimens

from the cenote show signs that shell nacre recrystallized [34], and higher Sr/Ca in these shells

is consistent with addition of either strontianite [47] or authigenic aragonite (Fig 4B). The lack

of clear δ13C or δ18O outliers is notable and suggests that any recrystallization did not incorpo-

rate large volumes of additional diagenetic carbonate. Shell δ44/40Ca may have been altered

toward lower values, as has been observed in Cretaceous mollusks from Antarctica [22], where

Fig 6. Stable isotope values through time. Error bars are 2 standard deviation instrumental precision. A) Shell δ44/

40Ca through time. B) The δ13C of shell carbonate through time. C) The δ18O of shell carbonate through time. D) The

δ15N of shell organic matter though time. E) The δ13C of shell organic matter through time.

https://doi.org/10.1371/journal.pone.0277666.g006

Fig 7. Isotope values of organic matter and the C/N ratio of the organic matter. Error bars are 2 standard deviation instrumental precision. A) δ13Corg vs

δ15Norg, B) C/N vs δ15Norg.

https://doi.org/10.1371/journal.pone.0277666.g007
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trends toward higher Sr/Ca (5 up to 12 mmol/mol) correlate with lower δ44/40Ca values (from

-1.5 to -2‰). This could point to the addition of small domains of authigenic aragonite or

strontianite, but the variation observed in the Sr/Ca in the most recent N. macromphalus (Fig

4) suggests that the pattern may not be consistent with diagenesis.

If any diagenesis occurred, it happened at low temperatures (~28˚C), ambient pressures,

and within the last 7000 years [34] given the location of the cenote and previously published

radiocarbon ages. Carbonate recrystallization/precipitation was likely tied to microbial degra-

dation of organic matter causing variable carbonate saturation state within or near shells

[50,51]. Future work contrasting these diagenetic pathways with higher temperature hydro-

thermal experiments [52,53] may help provide a more detailed ‘taphonomic chronometer’ for

use in deep time [54].

Fig 8. Crossplots of isotope values measured in shell organic matter vs shell carbonate. Error bars are 2 standard

deviation instrumental precision. A) δ13Corg vs δ13Cshell, B) δ15N vs δ13Cshell, C) δ13Corg vs δ18Oshell, D) δ15N vs

δ18Oshell, E) δ13Corg vs δ44/40Ca, and F) δ15N vs δ44/40Ca.

https://doi.org/10.1371/journal.pone.0277666.g008
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Isotope and elemental interpretation

Elemental ratios. The elemental ratios of Nautilus shells potentially reflect taxonomic or

geographic differences rather than temperatures, as has been observed in bivalve mollusks. We

observe a wide range of Sr/Ca and Mg/Ca across these samples with no clear trend towards

modern samples. This variation within modern specimens suggests that more work on Mg/Ca

and Sr/Ca variation within Nautilus is needed to understand the limits of intraspecific varia-

tion and potential thresholds for identification of diagenetic alteration.

Organic matter isotopes. Modern and historical shells suggest slight variation in prey

preference or availability for the individuals measured (Fig 7A). In other work on Nautilus,
δ15Norg changes with hatching and early growth and variation of ~1–2‰ within and between

individuals has been observed [14]. Similar individual–to–individual and within individual

variability may be linked to differing prey choice [55,56] and is likely to be present in Nautilus
given neurological complexity [57]. There are no strong trends through time in the recent

δ13Corg or δ15Norg (Figs 6D, 6E and 7A) that would suggest major trophic changes for these N.

macromphalus in the last ~120 years. Future work using compound specific δ15Norg analysis of

amino acids within samples like these could support trophic level stability.

Calcium isotopes. Previous studies have proposed that δ44/40Ca can indicate trophic level

for vertebrates in modern and ancient terrestrial and marine ecosystems [58,59]. Ingestion of

hard tissue material and subsequent use of calcium from that source in biomineralization is

likely necessary to cause a δ44/40Ca trophic level effect [60]. It is possible that the difference

measured between the oldest N. macromphalus and the more recent samples (Figs 6A and 8F)

reflects changing composition of scavenged prey, including crustaceans and fish [61], perhaps

due to ecosystem changes coupled to fishing pressures [62,63]. Shifting dietary composition

causing different δ44/40Ca is an unlikely explanation, however, because no strong correlation

with either δ15Norg or δ13Corg is observed, and moreover, recent individuals show measurable

differences in both isotope systems indicative of differing diets (Fig 8F [55]). In addition, com-

paring δ44/40Ca to average δ15N and trophic level across other modern Nautilus, Sepia, and

Spirula suggests a lack of trophic response in cephalopods [21].

The calcium isotope composition of mollusk material may vary with the calcium isotope

composition of seawater (δ44/40CaSW) or changes in the fractionation between seawater and

precipitated shell (Δ44/40CaSW-Shell) [22]. Bivalve mollusks derive ~80% or more of their shell

calcium from seawater sources [64] and can make use of only water sources for 100% of cal-

cium in shell precipitation [65]. While shifts in local-scale Ca cycling dynamics are possible

[23], changes in the isotopic composition of the global ocean unlikely explain the observed var-

iations, given the long residence time of Ca in seawater. Evidence from the geologic record,

however, suggests that Δ44/40CaSW-Shell is sensitive to seawater carbonate state. Culturing

experiments show that the pH of extrapallial fluid from Arctica islandica bivalves is at least par-

tially regulated during shell formation, but can vary with ambient pH [66]. If Nautilus similarly

regulates the pH and potentially the saturation state of extrapallial fluid during shell precipita-

tion, then variation in Δ44/40CaSW-Shell would be driven by mass-dependent isotope effects dur-

ing transport into the extrapallial fluid rather than with varying saturation state and

precipitation rate at the site of precipitation, as has been observed in inorganic systems. Tem-

perature may affect Δ44/40CaSW-Shell in bivalves [67], although temperature covaries with car-

bonate saturation state, which can be modulated by the ratio of photosynthesis to respiration

[68,69], and in general, the temperature sensitivity of Δ44/40CaSW-Shell for other carbonate pro-

ducers is low [20,70–73].

Seawater likely constitutes the largest source of calcium for the precipitation of N. macro-
mphalus shell [64,65], but complex precipitation and resorption of intermediate carbonate
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reservoirs could influence shell δ44/40Ca [74]. Uroliths represent one proposed intermediary

carbonate structure between seawater and shell precipitation [75]. These structures are amor-

phous calcium phosphate and have higher Sr contents than the shell wall [76]. The calcium

fractionation factor for this material is unknown, but may be close to -1‰, similar to peloidal

calcium phosphate [77,78].

Fixed Δ44/40CaSW-Shell in cephalopods (mostly for belemnites) is typically assumed in the

reconstruction of δ44/40CaSW change through time [21,79–81]. Recent evidence suggests that

Δ44/40CaSW-Shell for other types of carbonate producers varies with seawater saturation state

[22,82,83] in a way consistent with theoretical models for inorganic calcite formation [84,85].

Any variation of cephalopod Δ44/40CaSW-Shell may reflect additional controls, such as changes

in the transport of Ca into the extrapallial fluid (EPF). One possibility is that proportions of Ca

transported by selective intracellular calcium channels, non-selective intercellular pathways, or

active enzymatic transport (Ca2+-ATPase and carbonic anhydrase) can change. However,

under most conditions, selective intracellular calcium channels are thought to dominate trans-

portation of Ca into the EPF through high diffusive fluxes that are selective for Ca [86].

Another possibility is that any Ca isotope fractionation imparted by one or more of these

transport mechanisms varies with seawater saturation state. Future well-controlled aquarium

rearing experiments will be necessary to determine if Δ44/40CaSW-Shell changes with carbonate

saturation state or another environmental condition.

For anthropogenic ocean acidification to change Δ44/40Ca of these Nautilus, higher CO2

concentrations must propagate to their living depths, which in turn must remain relatively sta-

ble throughout the study interval. The observed change in δ13C of shell carbonate (Fig 6B) sug-

gests propagation of anthropogenic carbon into the habitat of the Nautilus but does not

guarantee a change in the concentration of CO2 necessary to cause acidification. Boron isotope

measurements from shallow water (7–8 m) coral suggests a decrease of ~0.15 pH near New

Caledonia since the 1890’s, but also indicate similar variations on decadal timescales [87].

Deeper waters, like those that the Nautilus inhabit, are generally expected to acidify more

slowly, although organic matter export can sometimes enhance acidification at depth depend-

ing on the interaction between deep water ventilation, organic matter export, and general

ocean circulation patterns [88,89]. Because the oceans are still in the early stages of acidifica-

tion, it is likely that the amount of pH change at these depths has not been sufficient to cause

detectable alteration in the δ44/40Ca of the studied Nautilus specimens.

Respired CO2. The proportion of respired carbon incorporated into the shells of mollusks

depends on changes in ambient O2:CO2 in surrounding waters [13,90] and the metabolic rate

[91]. Use of the proxy assumes that all carbon used for the precipitation of biogenic carbonates

derives from either seawater dissolved inorganic carbon (DIC) or respired CO2 derived from

food. The δ13C metabolic rate proxy has been explored using aquarium-reared cephalopods,

including Sepia pharaonis [92,93]. The proportion of respired carbon contributing to carbon-

ate precipitation can be calculated following a simple relationship outlined by [13,90]:

Cmetabolic ¼
d

13Cshell � εaragonite � d
13CDIC

d
13Cmetabolic � d

13CDIC

ð1Þ

Where δ13Cshell refers to the measured value for carbonate shell material. We assume δ13Cmeta-

bolic is equivalent to δ13Corg measured in the shell organic matter—given similar findings for

other mollusks [16]. The value of εaragonite is assumed to be 2.7‰, which is the value for inor-

ganic aragonite [94]. To constrain δ13CDIC, we use published estimates of δ13CDIC for prein-

dustrial (1.2‰, VPDB) and recent (1.0‰, VPDB) water near New Caledonia [95,96] at the

average N. macromphalus living depth of ~400 m [97]. This depth is chosen even though shell
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grows across a range of at least 400 m water depth [12] due to time averaging of bulk samples

like those used in this study [98]. We assume no ontogenetic change in δ13Ccarb biases our

results. All samples were from near at the aperture of the body chamber of large shells, and

most change in δ13Ccarb has been observed in the shell near to hatching rather than later in

ontogeny, as is observed in bivalves.

Calculations using these metrics show increasing amounts of respired carbon are being

incorporated into the shells of N. macromphalus during the last 130 years (Fig 9). The observed

increase (from ~8 to ~22%) likely reflects changing metabolic rates caused by transgenera-

tional acclimation to ocean acidification, as has been seen in Mya arenaria bivalves [91]. The

increase is much less than the observed metabolic carbon increase (27% to 61%) in the experi-

mentally reared bivalves over what is likely to be a much larger pH range (8.1 to 7.7 pH) [91].

Other experimentation with Arctica islandica bivalves has suggested that ontogenetic variation

in the amount of respired carbon incorporated into shells is minimal [99]. Because the Nauti-
lus live relatively deep, CO2 incorporation from the atmosphere is likely to be lower than that

experienced by shallower organisms. The decrease of pH at the living depths of these N. macro-
mphalus may be facilitated by dampened deep water oxygenation related to continued organic

matter export [88]. The observed increase in respired carbon could also be modulated by

changes in the ratio of dissolved oxygen to carbon dioxide through expanding oxygen mini-

mum zones offshore of New Caledonia due to increased agricultural intensity and nutrient-

rich runoff [100,101], dramatic changes to vegetation [102], increasing [CO2] due to

Fig 9. Crossplot of the calculated metabolic carbon contribution vs time. Note the increase in the amount of

metabolic carbon incorporated into the shell since the 1970’s.

https://doi.org/10.1371/journal.pone.0277666.g009
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anthropogenic injection into the atmosphere-ocean system [103], pressure from mining runoff

[104], or changing preferred habitat depths due to changing ecosystem composition from fish-

ing other organisms (Fig 3). It is also unlikely that the observed increase in metabolic carbon is

caused by ontogenetic change (e.g., because shells represent mature Nautilus and most

δ13Ccarb change occurs very early in ontogeny.

Future work

One of the primary challenges to clearly calibrating geochemical proxies in biogenic carbon-

ates is the ‘shock’ of changing environmental conditions during the experimental treatment of

individuals [105,106]. Although the magnitude of anthropogenic and natural environmental

change can be large, both are slow relative the generational timescale of organisms. This

means that the best calibrations for proxies preserved in biogenic carbonates may be found in

historical or spatially distributed samples that inhabited conditions across several generations

[29,105]. Studies in modern settings may benefit from cross-calibration with low-cost real-

time environmental logging [107]. Focus on mollusk shell is of particular merit due to wide

ranging methods for diagenetic assessment [47,48,53,108,109] and preservation of shell

organic matter [43,44]. Future work on these isotope systems in cephalopods and other mol-

lusks should leverage museum collections spanning collection time and geographic range to

avoid confounding factors of shock and to allow for adaptive responses. Further work on inter-

nally shelled mollusks (Sepia and Spirula) may be informative for interrogating belemnite

archives given newfound microstructural complexity [110,111].

Conclusions

Geochemical analyses of subfossil, historical, and modern N. macromphalus show the impor-

tance of calibrating geochemical signals across generations of organisms. The low temperature,

potential diagenetic alteration also points to the importance of robust diagenetic assessment of

samples from different environments. Our data suggest that there is intergenerational increase

in N. macromphalus metabolism near New Caledonia, which is likely caused by ocean acidifi-

cation. Future work using historical and modern marine mollusk shell material will be impor-

tant for calibrating geochemical proxies across events that can cause both selection and/or

phenotypic plasticity response.
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