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Abstract

Reductions in response control (greater reaction time variability and commission error rate)

are consistently observed in those diagnosed with attention-deficit/hyperactivity disorder

(ADHD). Previous research suggests these reductions arise from a dysregulation of large-

scale cortical networks. Here, we extended our understanding of this cortical-network/

response-control pathway important to the neurobiology of ADHD. First, we assessed how

dynamic changes in three resting-state EEG network properties thought to be relevant to

ADHD (phase-synchronization, modularity, oscillatory power) related with response control

during a simple perceptual decision-making task in 112 children/adolescents (aged 8–16)

with and without ADHD. Second, we tested whether these associations differed in males

and females who were matched in age, ADHD-status and ADHD- subtype. We found that

changes in oscillatory power (as opposed to phase-synchrony and modularity) are most

related with response control, and that this relationship is stronger in ADHD compared to

controls. Specifically, a tendency to dwell in an electrophysiological state characterized by

high alpha/beta power (8-12/13-30Hz) and low delta/theta power (1-3/4-7Hz) supported

response control, particularly in those with ADHD. Time in this state might reflect an

increased initiation of alpha-suppression mechanisms, recruited by those with ADHD to sup-

press processing unfavourable to response control. We also found marginally significant

evidence that this relationship is stronger in males compared to females, suggesting a dis-

tinct etiology for response control in the female presentation of ADHD.

1. Introduction

Reduced response control (higher reaction-time variability/commission error rate) is consis-

tently reported in those with attention-deficit/hyperactivity disorder (ADHD) across a wide

range of neuropsychological tasks, including those requiring relatively simple perceptual deci-

sions [1–4]. This task-invariant reduction in response control, particularly increased reaction-

time variability, is thought to be a core cognitive phenotype of the disorder, with moderate-to-

large meta-analytic effect sizes existing between ADHD and typically developing children
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(Hedge’s g = .76 across 319 studies) [5, 6]. Some theories posit that reduced response control

results from a dysregulation of large-scale cortical networks–functional networks in the cortex

that arise through transient changes in the coupling/decoupling of oscillatory neural activity

[7–11]. Indeed, in resting-state paradigms, dwell times in functional networks that are less

modular/more-integrated are associated with decreases in response control in both typically

developing participants and those with ADHD [8, 12]. Mechanistically, this network dysregu-

lation is thought to attenuate somatosensory processing, thereby limiting the capacity to accu-

mulate and process decision-relevant sensory information from the environment (referred to

as evidence accumulation) [4, 13, 14].

A leading candidate for the dysregulation that reduces response control is a lack of segrega-

tion (i.e., anticorrelated functional connectivity) between the default mode network (DMN)

with salience (SAL) and dorsal attention (DAN) networks [9, 15–17]. Termed ‘DMN interfer-

ence’, this reduced segregation is thought to arise from dysregulated phasic and low tonic

dopamine signaling, and is particularly prominent when examining network dynamics (i.e.,

how functional connectivity/network topology changes over time) [18–21]. While the precise

interactions that reduce response control are not yet clear (i.e., some evidence implicates dys-

regulated frontoparietal (FPN)–SAL interactions, as opposed to DMN interactions) [7], there

is ample evidence that a dysregulation of the canonical large-scale cortical networks reduces

response control, thus representing a putative biological pathway of a prominent cognitive

phenotype in ADHD that is relatively independent of subtype [6–10]. However, while dysregu-

lation in network topology appears most likely, other candidate mechanisms include reduced

overall network communication (indexed by phase synchronization) [22, 23] and altered sig-

naling within local subregions of the network (indexed by oscillatory power) [24, 25].

Here, we extend our understanding of this cortical-network/response-control pathway in

two important ways. First, we narrow in on the nature of dysregulation. We do so by observing

the dynamics of three distinct electrophysiological phenomena (network topology, phase syn-

chronization, and oscillatory power) present in cortical networks during a resting-state para-

digm in people with and without ADHD and asking to what extent these phenomena are

associated with measures of response-control. Second, we test whether this association differs

between males and females, and if so, whether this difference depends on ADHD status. There

has been a historical neglect of research into how the mechanisms underlying ADHD symp-

toms differ by sex [26] In some cases, these sex differences complicate prognosis during clini-

cal practice, as similar behaviours arise through distinct mechanisms, and therefore need to be

treated through distinct interventions [27]. With this in mind, we make use of a sample strati-

fied by sex such that females and males are equally represented.

1.1 Electrophysiological correlates of cortical network dysregulation

Electrophysiological networks are regulated by various dissociable neural mechanisms. Certain

mechanisms, mediated by neuromodulatory systems, regulate the transfer of information

between cortical regions by increasing/decreasing the synchrony of their activity (phase-syn-

chronization) [28–31]. Other mechanisms regulate network topology, creating functionally

specialized subsystems (indexed using modularity) [32, 33]. Still yet, certain mechanisms, pri-

marily mediated by oscillatory theta/alpha/beta-power, regulate functional network activity by

increasing local synchronous oscillations in task-irrelevant regions, which, through an infor-

mation-theoretic lens, directly suppresses task-irrelevant processing (oscillatory power) [34,

35].

Previous research investigating the cortical-network/response-control pathway in ADHD

has predominantly relied on fMRI, which is limited in its ability to dissociate these
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mechanisms due to its relatively poor temporal resolution and inability to directly measure

neural activity [7, 8, 11] However, they are readily distinguished using electroencephalogram

(EEG) by measuring: (1) the strength of phase-synchronization (phase-lag index [36]), (2) the

topology of the resultant networks (modularity [36, 37]), and (3) oscillatory power [38].

While each of these three candidate mechanisms appears to be disrupted in ADHD, we

hypothesized that network topology (indexed using modularity) would be most predictive of

response control, based on our suspicion that DMN-interference is the underlying disruption.

Moreover, we expected modularity to be more sensitive to measures of response control than

phase-synchrony and power, given: (1) previous source-localized EEG research investigating

this phenomenon in ADHD found network topology to be more sensitive than both global

phase-synchrony and power [39], and (2) research in typically developing children aged 9–12

found that task-related changes in the modularity of large-scale EEG networks (across theta,

alpha and beta bands during a sustained attention task) were associated with reaction-time

variability [40].

To test our hypothesis, we first examined how three measures of cortical activity (phase-

synchrony, modularity, and power) across the canonical EEG frequency-bands (delta, theta,

alpha, beta) dynamically changed during the resting-state. Then, for each of these three mea-

sures, we characterized the resultant dynamics as trajectories through a state-space using

Gaussian Hidden Markov Models (HMMs), similar to research by [21]. Crucially, this

approach allowed us to reduce our high-dimensional data into a simplified set of electrophysi-

ological profiles (states) without arbitrarily averaging across time-windows. Finally, for each of

our three measures, we examined whether the tendency to dwell in certain regions of these

state-spaces (i.e., exhibit more or less of one of the characteristic profiles identified by the

model) were associated with response control on a simple perceptual decision-making task. To

foreshadow results–we found that, contrary to our primary hypothesis, dynamic changes in

the power of large-scale cortical networks, as opposed to changes in their modularity or phase-

synchrony, were most associated with differences in response control.

1.2 Sex differences

We also extended our understanding of the cortical-network/response-control pathway by

testing whether it differed in males and females, which we hypothesized it would. In support of

this hypothesis, many of the biological systems mediating this relationship show differences in

males and females. For example, in 8–12-year-olds with an ADHD diagnosis, sex differences

exist in the strength of resting-state functional connectivity between medial prefrontal cortex

and the striatum (circuits crucial for perceptual decision-making) [41]. Second, typically-

developing children show sex differences in the dynamics of EEG resting-state cortical net-

works that are relevant to response control: males tend to spend more time in states with low

activation of regions overlapping with the dorsal attention network (DAN, examined using

simultaneous EEG-fMRI), which is anticorrelated with the DMN in typically developing chil-

dren and directly supports response control [42–44]. Finally, females and males differentially

respond to dopamine reuptake inhibitors (i.e., methylphenidate), which is known to regulate

cortical networks (by suppressing DMN activity) and increase response control [6, 45, 46].

Thus, converging evidence suggests the relationship between large-scale cortical network

dynamics and response control may depend on sex, which we investigate here. However, while

various sex differences in the systems mediating response control appear to exist, the specific

impact these differences may have on electrophysiology is unclear. This is especially true given

the electrophysiological mechanisms underlying response control are themselves poorly

understood, as discussed above. Because of this, we leave this hypothesis undirected.
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2. Materials and methods

Data from the Child Mind Institute’s Healthy Brain Network biobank (HBN) [47] were used

for analyses. The HBN is an open-source data set containing a wide array of neuroimaging,

cognitive and phenotype data that was collected from children with and without psychiatric

diagnoses for the purpose of biomarker discovery. In the current study, we made use of the

resting state EEG data, the performance data from a separate perceptual decision-making task,

and phenotype data from a subset of participants (selection criteria described below) that were

available at the time of writing (releases 1 to 6). Data access was approved by CMI/Healthy

Brain Network and the study was approved by the Research Ethics Board at Brock University.

All data were anonymized prior to us receiving them from the Healthy Brain Network.

2.1 Participants

We applied a set of stringent, pre-registered participant selection criteria to decrease the beha-

vioural heterogeneity of our sample and to highlight sex differences. First, all participants had

to: be between 8 and 18 years of age, have undergone EEG recording for the resting-state task,

and have completed at least 2 of the 3 contrast-change detection task blocks (24 trials per

block). For the control group, participants had to have no clinician diagnoses; for the ADHD

group, participants had to have a primary diagnosis of ADHD and no additional diagnoses.

After application of these selection criteria, females with ADHD were the least well-repre-

sented (N = 28). ADHD-males, control-males, and control-females were then selected to have

an equivalent sample size. When selecting ADHD-males, participants were matched on both

age (by year) and subtype. When selecting controls, participants were matched on age (by

year). While our selection criteria allowed for participants to be between 8 and 18 years of age,

the range of the resultant sample was 8.03 to 16.83 (see section 3.1 for sample characteristics).

To assess the behavioural heterogeneity of the sample, two-way ANOVAs were conducted

to examine whether self-reported internalizing and externalizing behaviours, ADHD-traits,

and anxiety (see section 2.3 for further details on self-reported tests), differed by sex, diagnosis,

or their interaction. Specifically, we analyzed standardized scores on three scales from the

Child Behaviour Checklist (Attention Problems, Externalizing, Internalizing) [48], two scales

from Conners 3rd Edition Self-Report (Hyperactivity/Impulsivity, Inattention) [49] and total

scores from the Screen for Child Anxiety Related Emotional Disorders (SCARED) [50].

2.2 Response control

To assess response control, we examined performance on the Healthy Brain Network Bio-

bank’s contrast-change detection task [47, 51]. In this task, participants were visually presented

with two overlaid ring-like patterns (one tilted 45˚ to the right, one tilted 45˚ to the left, other-

wise identical) that flickered at a constant rate. At the onset of each trial, the contrast of each

pattern (right and left) started at 50%, before one would gradually shift (over the course of

1000ms) to a contrast of 100%, while the other would gradually shift to a contrast of 0%. Partic-

ipants were instructed to press the right button with their right hand when they detected the

right pattern increasing in contrast, and the left button with their left hand when they detected

the left pattern increasing in contrast. This paradigm indexes the ability of participants to

encode sensory information, accumulate decision-relevant sensory information, and execute

motor responses appropriately. It is described extensively elsewhere [47, 51].

Trials with no responses were excluded from analysis. Three measures of response control

were taken: mean reaction-time (RT-Mean: mean response time across all correct trials), reac-

tion-time variability (RT-Variability: standard deviation of response times across all correct

trials), and task-performance (portion of completed trials with a correct response). To validate
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these output measures, we conducted two-way ANOVAs to examine whether they differed by

diagnosis (as expected), sex, or their interaction.

2.3 Questionnaires

2.3.1 Child Behaviour Checklist (CBCL). The CBCL assesses internalizing and external-

izing behaviours that children and adolescents have experienced in the previous six months

using 113 items on a 3-point likert scale (0 = Absent, 1 = Sometimes, 2 = Occurs often). Three

subscales were used: Attention Problems (8 items), Externalizing behaviours (34 items), and

Internalizing behaviours (33 items) [48]. These scales have high internal consistency, with the

mean Cronbach’s alpha at .90 [52].

2.3.2 Conners 3rd Edition Self-Report/Short Form (C 3-SR-S). C 3-SR-S was used to

assess the cognitive and behavioural symptomology of ADHD [49]. C3-SR-2 has 39 items (0–

3, not true at all/never to very much true/very frequently) measuring Inattention, Hyperactivity/

Impulsivity, Learning Problems, Defiance/Aggression, Family Relations as well as 2 validity

scales (Positive and Negative Impression. In this study, Hyperactivity/Impulsivity (5 items)

and Inattention scales (6 items) were used. These scales have high internal consistency, with

the mean Cronbach’s alpha at .90 [49].

2.3.3 Screen for Child Anxiety Related Emotional Disorders-Child (SCARED/C). Total

scores from SCARED were used to ensure anxiety (somatic/panic, general anxiety, separation

anxiety, social phobia, school phobia) did not differ between Males/Females and ADHD/Con-

trols [50]. SCARED is a 41 item checklist that uses a 3-point Likert-scale (0 = Not true/hardly

ever true, 1 = Somewhat true/sometimes true, 2 = True/often true). These scales also have high

internal consistency, with Cronbach’s alpha ranging from .74 to .93 [50].

2.4 Resting-state EEG

2.4.1 EEG recording and preprocessing. High-density (128-channel) EEG was recorded

using a Geodesic Hydrocel net at a sampling rate of 500 Hz during a resting-state paradigm.

This paradigm involved alternating between 20 second periods of eyes-open (EO) and 40 sec-

ond periods of eyes-closed (EC) rest (5 minutes total). EO and EC conditions both entered

analyses. Resting-state EEG data had been previously preprocessed using an automated pipe-

line developed by [53]. In brief, this pipeline involved: (1) removing a set of 17 electrodes sur-

rounding the chin and neck, (2) rejecting channels with variance > 3 SDs from the mean

across all other channels, (3) applying a high-pass filter (0.1 Hz) and notch filter (59–61 Hz),

and (4) correcting for ocular artifacts by regressing the eye channels from the scalp channels.

From there, we also removed the channels used for ocular correction (E8, E14, E21, E25), leav-

ing 107 scalp channels for analysis. A surface Laplacian spatial filter was then applied (recom-

mended when analyzing phase-synchronization; implemented in MATLAB using code

provided by [38].

2.4.2 EEG dynamics: Phase synchrony, modularity, and power. To characterize

dynamic changes in participants’ cortical network dynamics during the resting-state paradigm,

we calculated global measures (i.e., across all sensors) of frequency-band specific phase syn-

chrony, modularity, and power using a sliding time-window approach. First, EEG data were z-
scored, and bandpass finite impulse response filters were applied to the preprocessed data

(Delta = 1-3Hz, Theta = 4-7Hz, Alpha = 8-12Hz, Beta = 13-30Hz; transitions = +/–.2 times the

mean of each frequency-band). Filtering was done using the Signal Processing toolbox in

MATLAB R2021a [54]. The order of the filters was estimated using the kaiserord function

(passband ripple = 10%), filters were created using fir1, and filters were applied using filtfilt.
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To calculate phase-synchrony, the instantaneous phase of the filtered signals was estimated

using the Hilbert transform, and the sensor-by-sensor synchronization was calculated using

the phase-lag index (PLI) [55]. PLI indexes how asymmetrically a set of phase-differences

between signals i and j across a set of time-points are distributed; an asymmetric distribution

of phase differences is said to have stronger phase synchrony. By calculating the asymmetry of

the distribution, PLI attenuates zero-lag synchrony (and thus, presumably, synchrony that

occurs as a result of single-source volume conduction).

To calculate modularity, an adjacency matrix (Aij) was defined with our 107 EEG sensors as

nodes and the sensor-sensor PLI values as edges. Then, Louvain’s algorithm (implemented in

the Brain Connectivity toolbox) [36] was used to find the partition of this network into sets of

nodes that roughly maximized the modularity statistic:

Q ¼
1

v

X

ij

ðAij � eijÞ dðmi;mjÞ

Where δ is the Kronecker delta function (whose output is 1 when nodes i and j belong to the

same module,m, and 0 otherwise), eij is a null-model network with preserved connection

weight but random topology, and v is the total network connectivity (sum of the upper trian-

gular adjacency matrix). The average Q value across 100 runs of Louvain’s algorithm was

taken, and this process was repeated for all time-points and frequency-bands.

To calculate power, the real part of the Hilbert-transformed narrow-band signal taken previ-

ously to calculate phase was taken. This was squared to obtain an estimate of power, and the

mean value of power within each time window was calculated [38].

The length of the sliding windows (i.e., number of time-points used to calculate PLI) were

frequency-band specific, selected such that the temporal degrees of freedom (η) were matched

across frequencies [56]. η is calculated as: 2BwD, where Bw is the bandwidth (Hz), and D is the

length of the sliding window (seconds). The uncertainty (1/
p

η) was kept at .15, corresponding

to window lengths of: Delta = 11.11s, Theta = 7.40s, Alpha = 3.70s, Beta = 1.48s. To reduce

computational demands, connectivity was calculated in 1 second increments. This provided

each participant with a sequence of 300 observations (5 minutes of resting-state data), where

each observation is a four-dimensional vector with frequency-band specific values of either:

modularity, PLI, or power. All the above analyses were conducted in MATLAB R2021a [54].

2.4.3 Hidden Markov models (HMMs): Characterizing dynamic changes in EEG met-

rics. The sequences of observations provided by the above analyses can be thought of as tra-

jectories through a four-dimensional space (defined separately for one of: PLI, modularity, or

power across the four frequency-bands of interest: delta, theta, alpha, and beta). To character-

ize these trajectories, we first modeled them as Markovian processes emitted from unknown/

hidden ‘states’ (Gaussian Hidden Markov models; HMMs). These models assume that obser-

vations are emitted from one of nmultivariate Gaussian distributions (n specified a priori).
Each Gaussian is referred to as a state and is described in its entirety by a mean vector (μ;

denoting the mean of each dimension), a covariance matrix (∑; denoting the variance of each

dimension/covariance between dimensions) and an initial probability (across all states, initial

probabilities are captured in the vector π). Transitions between states are described by a transi-

tion probability matrix (P; denotes the probability of transitioning from state i at time t to state

j at time t + 1). Once states have been identified, observations can be classified into states using

maximum likelihood estimation, and the portion of time spent in each state can be calculated

(dwell-time). This modeling allowed us to reduce each participant’s set of 300*4 observations

into a set of n ‘dwell-times’ (dwell-time: the proportion of observations spent in state n).
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HMM analyses were conducted using the R package RcppHMM [57]. Observations

were z-score normalized and model parameters were randomly initialized using

initGHMM. Parameters were estimated using the Baum-Welch expectation maximization

algorithm (learnEM; convergence was reached when consecutive iterations differed by <

.005). A set of 10 random initializations were used, and the model with the highest log-

likelihood (i.e., that which explained the data the best) was taken as the final model. Fol-

lowing parameter estimation, sequences of observations were classified into states using

maximum likelihood estimation implemented via the Viterbi algorithm. Dwell-times were

then calculated for each state. All hidden Markov modeling was conducted in the pro-

gramming language R [58].

We present results with the number of states (n) set to 4. However, to assess the sensitivity

of our results to this free parameter, we explored analyses across a range of states (3 to 6; see

section 3.4).

2.4.4 Validation analyses: Testing for differences between EO and EC rest. To increase

our confidence that the resting-state EEG measures derived from the HMMs were indeed cap-

turing meaningful physiological processes, we tested whether they differed between eyes-open

rest (EO) and eyes-closed rest (EC). In fMRI, functional connectivity between default mode

and salience networks, which is associated with reduced response control, is known to differ

between EO and EC rest [8, 59]. Thus, we reasoned similar observations should be made here

prior to testing our hypotheses. As such, we tested whether the dwell-times of each state signif-

icantly differed between EO and EC rest using independent samples t-tests (or, when variances

were unequal, Welch’s t-tests).

2.4.5 Oscillatory dynamics, phenotype measures and sex differences. We tested

whether dwell-times within each state (which reflect a tendency to exhibit a particular

electrophysiological profile) differed between males/females and ADHD/Controls using two-

way ANOVAs. We then tested if they could predict our phenotype measures (self-report

ADHD-related behaviours, age) using ordinary least squares regression (OLS).

2.5 Primary hypothesis

Our primary hypothesis was that there would be a significant association between response

control and cortex-wide oscillatory dynamics. Specifically, we predicted that dwell time in a

less modular network topology would relate to reduced response control, particularly in those

with ADHD. To test this, we conducted OLS regression to predict response control from

dwell-times (narrowing in on the response control measures that specifically differed between

ADHD and controls). Please note that due to the structural multicollinearity that results from

the way dwell-times are defined (i.e., in a 2-state situation, a participant with a dwell-time of

.75 in state 1 necessarily has a dwell-time of .25 in state 2) there are 1 fewer degrees of freedom

in all models than one might otherwise expect given the number of states.

2.6 Secondary hypothesis

Our secondary hypothesis was that the relationship between response control and cortical net-

work dynamics would be significantly moderated by sex. To test this hypothesis, we first added

a dummy-coded variable to the OLS regression models used to test our primary hypotheses, to

avoid interpreting any main effects of sex as interactions (Males = 0, Females = 1). Then, to

test for moderating effects, we examined whether these models were significantly more predic-

tive following the inclusion of interaction terms (dwell-times multiplied by our sex-coded vari-

able). To do so, we used the F-test for the joint significance of a subset of variables, where the
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subset of variables were the interaction terms. This test is calculated as follows:

Fðp � q; n � p � 1Þ ¼
ðSSER � SSEFÞ=ðp � qÞ

MSEF

Where SSER is the sum-of-squared errors of the reduced model (i.e., the model with dwell-

times and diagnosis), SSEF is the sum-of-squared errors of the full model (i.e., with dwell-

times, diagnosis, and dwell-times*diagnosis interactions), MSEF is the mean-squared error of

the full model, p is the number of features in the full model, and q is the number of interaction

terms. The numerator of this test calculates the average reduction in squared error per interac-

tion term; the denominator normalizes this value by model performance.

3. Results

3.1 Sample characteristics

A total of 112 participants (28 ADHD-Females, 28 ADHD-Males, 28 Control-Males, 28 Con-

trol-Females), with an average age of 11.62 years old (SD = 2.42; Range = 8.03 to 16.83),

entered analysis. Of the 56 diagnosed with ADHD, 36 presented with the DSM-V Inattentive

subtype, 18 with the DSM-V Combined subtype, and 2 with the DSM-V Hyperactive/Impul-

sive subtype (all subtypes matched between males and females).

Means and standard deviations for age, self-reported ADHD behaviours, self-reported anxi-

ety levels, and response control (mean reaction-time, reaction-time variability, proportion of

trials with a correct response) are presented in Table 1, and p-values from the two-way ANO-

VAs (with sex and diagnosis as factors) are presented in Table 2. As shown in Table 2, signifi-

cant main effects of diagnosis were present on all but three measures: (1) age, which had been

matched during participant selection (p = .25), (2) self-reported anxiety, which was selected a
priori as a control measure (p = .45), and (3) self-reported hyperactivity/impulsivity (p = .07),

which may reflect our greater representation of ADHD-I, as opposed to ADHD-C/AHDH-HI

diagnoses. Notably, there were no significant sex differences or interactions between sex and

diagnosis on any of the measures examined (age, self-reported behaviours, response control).

Table 1. Descriptive statistics.

Female (N = 56) Male (N = 56)

ADHD (N = 28) No Diagnosis (N = 28) ADHD (N = 28) No Diagnosis (N = 28)

Age 11.74 (2.37) 11.67 (2.55) 12.03 (2.54) 11.04 (2.23)

CBCL- Attention problems 68.11 (12.73) 55.39 (8.66) 66.79 (11.22) 53.36 (4.72)

CBCL- Externalizing 58.32 (12.42) 47.54 (10.33) 56.68 (9.93) 44.57 (11.27)

CBCL- Internalizing 56.93 (12.81) 48.14 (10.12) 53.36 (8.65) 48.21 (9.31)

CSR- Hyperactivity/Impulsivity 62.04 (12.74) 54.82 (12.14) 55.89 (15.84) 57.25 (10.59)

CSR- Inattention 70.46 (16.18) 56.11 (13.96) 60.62 (19.14) 58.07 (12.55)

SCARED (Anxiety) 18.64 (11.73) 15.32 (9.91) 16.47 (13.1) 18.29 (13.06)

RT mean (seconds) 1.64 (0.19) 1.65 (0.19) 1.64 (0.27) 1.59 (0.35)

RT SD (seconds) 0.38 (0.15) 0.32 (0.09) 0.37 (0.08) 0.32 (0.10)

Task performance (proportion of correct responses) 0.72 (0.26) 0.86 (0.18) 0.76 (0.20) 0.82 (0.25)

Means are reported with standard deviation in brackets. Abbreviations are as follows: RT: reaction time, SD: standard deviation, CBCL: Child behaviour checklist, CSR:

Conner’s self report, SCARED: Screen for child anxiety related disorders.

https://doi.org/10.1371/journal.pone.0277382.t001
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3.2 Validation analyses

3.2.1 Response control. Across all participants, an average of 67.39 (SD = 10.07) trials

entered analyses. This did not significantly differ by ADHD-diagnosis or sex (p’s� .68).

Response control did in fact differ between those with and without an ADHD diagnosis: two-

way ANOVAs revealed a main effect of diagnosis on reaction-time variability (F(1, 109) =

6.90, p = .010; lower in controls compared to ADHD) and task performance (F(1, 109) = 8.38,

p = .005; higher in controls compared to ADHD), but not mean reaction-time (p = .77). Box-

plots illustrating these effects are presented in Fig 1. There were no main effects of sex, and no

interactions between sex and diagnosis, on any of our response control measures (see Table 2).

3.2.2 Hidden Markov modeling. The μ parameters (means of the multivariate Gaussians)

estimated for our three hidden Markov models (HMM-Modularity, HMM-PLI and

Table 2. Two-way ANOVA results.

p-values

Sex Diagnosis Sex * Diagnosis

Age 0.72 0.25 0.33

CBCL- Attention problems 0.38 8.2 x 1011 ** 0.79

CBCL- Externalizing 0.27 2.7 x 10–7 ** 0.75

CBCL- Internalizing 0.40 5.6 x 10–4 ** 0.38

CSR- Hyperactivity/Impulsivity 0.72 7.0 x 10–4 ** 0.15

CSR- Inattention 0.32 7.0 x 10–2 8.2 x 10–2 *
SCARED (Anxiety) 0.99 0.45 0.31

RT mean 0.99 0.77 0.81

RT SD 0.90 1.0 x 10–2 * 0.82

Task performance 0.71 4.7 x 10–3 * 0.54

* p < .05,

** p << .05.

Presented are results from the two-way ANOVAs comparing metrics of interest between males/females (sex) and

ADHD/controls (diagnosis). Abbreviations are as follows: RT: reaction time, SD: standard deviation, CBCL: Child

behaviour checklist, CSR: Conner’s self-report, SCARED: Screen for child anxiety related disorders.

https://doi.org/10.1371/journal.pone.0277382.t002

Fig 1. Response control differed between ADHD and controls. Boxplots showing differences in reaction-time variability and task performance in ADHD

and controls.

https://doi.org/10.1371/journal.pone.0277382.g001
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HMM-Power) are presented in Table 3 along with dwell-times. For validation, we examined

whether dwell-times in each state significantly differed between eyes-open (EO)and eyes-

closed (EC) rest using Welch’s unequal variances t-test. While dwell-times in the majority of

states identified by our HMM-Power model differed significantly between EO and EC rest (p-

values: S1: 6,0e-2, S2: 2.2e-16, S3: 2.0e-2, S4: 1.0e-9), dwell-times acquired from our

HMM-Modularity and HMM-PLI models did not (p’s > .30). Thus, the cortex-wide dynamics

captured by oscillatory power, as opposed to those captured by modularity or PLI, appear to

have the highest validity (as we previously defined in section 2.4.4). The dynamics captured by

the HMM-Power model (the proportion of participants in each state throughout the resting-

state period) are shown in Fig 2A, and the specific electrophysiological profiles captured by

each state are shown in Fig 2B.

To understand whether the states identified by each of these models (HMM-Modularity,

HMM-PLI, HMM-Power) were sensitive to individual differences in behaviour, we tested

whether dwell-times were able to predict age and our five self-report ADHD-related measures

(CBCL-Attention problems, CBCL-Externalizing, CBCL-Internalizing, C3SR-Inattention,

C3SR-Hyperactivity/Impulsivity). Using our HMM-Modularity model, dwell-times were

unable to predict any measures. Using our HMM-PLI model, dwell-times were able to predict

age (F(3, 108) = 3.72, R2 = .094, p = .014), but no other measures. Using our HMM-Power

model, dwell-times were able to predict age (F(3, 108) = 2.78, R2 = .071, p = .045), CBCL-At-

tention Problems (F(3, 108) = 2.79, R2 = .072, p = .044), and, at a marginally significant level,

CS3R-Inattention (F(3, 108) = 2.61, R2 = .068, p = .055). Thus, the dynamic changes in oscil-

latory power (as opposed to phase-synchrony or network modularity) not only appear to be

the most valid (best distinguish EO from EC rest) but have the greatest sensitivity to individual

differences in age and attention problems.

Inspection of the bivariate correlations that HMM-power dwell-times showed with age and

attention problems clarified the effects: age was negatively correlated with dwell-time in state 3

(r = -.25, p = .010), and inattention was positively correlated with dwell-time in state 1 (r = .22,

p = .019). Scatterplots for each effect are presented in Fig 3.

Table 3. Hidden Markov μ parameters.

HMM-μ Dwell-Time

Delta Theta Alpha Beta

Modularity State 1 -0.44 -0.26 -0.16 -0.17 .31 (.31)

State 2 -1.12 -1.10 -1.01 -0.97 .19 (.35)

State 3 0.45 0.36 0.34 .30 .39 (.34)

State 4 1.46 1.25 .92 1.05 .12 (.25)

PLI State 1 0.55 0.41 -0.26 0.01 .36 (.21)

State 2 -0.18 -0.12 1.44 0.07 .17 (.41)

State 3 -0.59 -0.43 -0.40 -0.22 .43 (.25)

State 4 1.99 1.33 0.07 1.70 .04 (.06)

Power State 1 1.50 1.25 0.35 0.83 .14 (.03)

State 2 -0.64 -0.39 0.61 0.13 .28 (.10)

State 3 0.31 0.26 -0.16 -0.13 .29 (.11)

State 4 -0.43 -0.49 -0.58 -0.40 .30 (.17)

Presented are the μ parameters that define each state for modularity, PLI and power, as well as the mean dwell-time in each state across participants (with the standard

deviation in brackets).

https://doi.org/10.1371/journal.pone.0277382.t003
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3.3 Hypothesis testing

3.3.1 Primary hypothesis. We focused our primary hypothesis on the two measures that

differed between ADHD and controls: reaction-time variability and task performance. We did

not find support for our primary hypothesis: dwell-times from our HMM-Modularity model

Fig 2. Cortex-wide dynamics identified by HMM-power model. (A) Portion of participants in each state at a given time-point throughout the resting

state paradigm. (B) μ coefficients from the HMM-power model, showing the specific electrophysiological profile of each state.

https://doi.org/10.1371/journal.pone.0277382.g002

Fig 3. Correlations between dwell-times and attention problems/age. Scatterplots showing bivariate correlations between dwell-times and attention

problems/age.

https://doi.org/10.1371/journal.pone.0277382.g003
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were unable to significantly predict either measure (RT-variability: F(3, 108) = .348, R2 = .009,

p = .790; Task-performance: F(3, 108) = 2.02, R2 = .051, p = .124). Similar null-findings were

observed for dwell-times from our HMM-PLI model (RT-variability: F(3, 108) = 1.58, R2 =

.042, p = .198; Task-performance: F(3, 108) = .467, R2 = .012, p = .705).

However, dwell-times from our HMM-Power model were supportive of our primary

hypothesis: they significantly predicted reaction-time variability (F(3, 108) = 3.64, R2 = .092, p
= .015) and task-performance (F(3, 108) = 3.68, R2 = .092, p = .014). These effects were more

prominent in those with ADHD compared to controls, for both RT-variability: (ADHD: F(3,

52) = 3.09, R2 = .151, p = .035; Controls: F(3, 52) = .69, R2 = .038, p =. 56), and task-perfor-

mance (ADHD: F(3, 52) = 2.57, R2 = .129, p = .064); Controls: F(3, 52) = .843, R2 = .046, p =

.48).

To better understand these significant effects, we examined the bivariate correlations

between dwell-times in each state of the HMM-Power model and reaction-time variability/

task-performance. Dwell-time in state 2 (characterized by relatively high Alpha/Beta and rela-

tively low Delta/Theta) was negatively correlated with reaction time variability (r = -.30, p =

.001) and positively correlated with task-performance (r = .22, p = .021); dwell-time in state 4

(characterized by relatively low power across all frequency-bands; hypo-activity), was posi-

tively correlated with reaction-time variability (r = .30, p = .002). Scatterplots for results across

all participants are presented in Fig 4; scatterplots comparing ADHD versus controls are pre-

sented in Fig 5.

3.3.2 Secondary hypotheses. We then tested our secondary hypothesis: that the relation-

ship between cortex-wide oscillatory dynamics and response control would be moderated by

Fig 4. Correlations between HMM-power dwell-times and RT-variability. Scatterplots showing bivariate correlations between dwell-times and RT-

variability.

https://doi.org/10.1371/journal.pone.0277382.g004

PLOS ONE Cortical network dynamics and response control in ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0277382 October 5, 2023 12 / 21

https://doi.org/10.1371/journal.pone.0277382.g004
https://doi.org/10.1371/journal.pone.0277382


sex. For the regression model using HMM-Power dwell-times to predict perceptual decision-

making abilities, we found a marginally significant moderating effect of sex for reaction-time

variability (p = .064). Close inspection of this effect revealed that dwell-time in state 2 was asso-

ciated with lower reaction-time variability in males (r = -.429, p< .001) compared to females

(r = -.091, p = .501; see Fig 6). Fisher’s r-to-z transform revealed this to be a marginally signifi-

cant difference (p = .059).

3.3.3 Exploratory analyses: ADHD and Sex. Using the same procedure (F-test for the

significance of a subset of variables), we then tested whether the inclusion of both sex and

ADHD interaction terms provided a significantly better fit to the model (Reduced model:

dwell-times, dummy-coded sex variable, dummy-coded ADHD variable; Full model: addi-

tional inclusion of multiplicative terms between: dwell-times and sex, dwell-times and ADHD,

and dwell-times, sex, and ADHD). This allowed us to assess whether the sex differences

observed in our secondary hypothesis were dependent on ADHD-status. This failed to reach

significance (p = .398), suggesting the effect of sex is not moderated by ADHD diagnosis

(rather, it is present in both ADHD and controls).

Then, in a more focused set of analyses with similar purpose, we directly tested the strength

of the result from our primary hypothesis–that dwell-times in states 2 and 4 were associated

with response control–in ADHD-males, ADHD-females, Control-males, and Control-females.

The strongest (and only significant) relationship between cortical dynamics (HMM-power

dwell-times in states 2 and 4) and response control existed in ADHD-males (RT-variability: F

Fig 5. Group differences in the correlation between HMM-power dwell-times and RT-variability. Scatterplots showing bivariate correlations between

dwell-times and RT-variability, for both controls and ADHD.

https://doi.org/10.1371/journal.pone.0277382.g005
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(2, 25) = 4.10, R2 = .247, p = .029). This was followed by very weak/non-significant relation-

ships in control-males (RT-variability: F(2, 25) = 1.30, R2 = .093, p = .291), ADHD-females (F
(2, 25) = .490, R2 = .034, p = .684), and Control-females (F(2, 25) = .148, R2 = .012, p = .863).

To summarize, our initial hypothesis test demonstrated that greater reaction-time variabil-

ity (lower response control) was associated with shorter dwell-times in state 2 (low delta/theta,

high alpha/beta) and longer dwell-times in state 4 (hypo-activity across frequency bands).

These exploratory analyses clarified the effect, demonstrating that the relationship is only pres-

ent in males with ADHD; not ADHD-females, control-females, or control-males.

3.4 Sensitivity analyses: Examining models with a variable number of states

Unsupervised clustering techniques in general, and hidden Markov models specifically,

require one to select the number of states/clusters a priori. To ensure that our results were not

too closely dependent on this somewhat arbitrary selection, we tested whether consistent

results were observed across a range of models with a varying number of states, as is best prac-

tice [56]. Specifically, we re-ran our validation analyses and hypothesis tests for HMM-Power

models created with 3, 5, and 6 states.

Each model passed our validation analysis: dwell-times significantly differed between EO

and EC-rest (see S1 Table). For hypothesis testing, marginally significant support for our pri-

mary hypothesis was found in the 5-state (RT-variability: p = .086; Task-performance: p =

.069) and 6-state models (RT-variability: p = .059; Task-performance: p = .045). No support

Fig 6. Sex differences in the correlation between HMM-power dwell-times and RT-variability. Scatterplots showing bivariate correlations between

dwell-times and RT-variability, for both males and females.

https://doi.org/10.1371/journal.pone.0277382.g006
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was found in the 3-state model. For our secondary hypothesis (moderating effect of sex), a

marginally significant effect was found in our 6-state model (p = .064), but not the 3 or 5 state

models.

In the 6-state model, the moderating effect of sex was in line with that observed in the

4-state model: dwell-time in state 4 (μ parameters: Delta = -.60, Theta = -.41, Alpha = .79, Beta

= .19) was correlated with reaction-time variability in males (r = -.45, p< .001), but not

females (r = -.049, p = .72). This was a significant difference (Fisher’s r-to-z transform: p =

.027).

Taken together, the 3-state model appeared to distinguish between EO and EC rest, yet this

information was unrelated to response control, age, and behavioural measures. The 5 and

6-state models provided marginal support for our primary hypothesis, and the 6-state model

provided significant and marginally significant support for both our primary and secondary

hypotheses (respectively) that was qualitatively similar to our 4-state model.

4. Discussion

In the current study, we first replicated previous findings by demonstrating that reaction-time

variability and commission error-rate on a simple perceptual decision-making task are signifi-

cantly higher in children and adolescents diagnosed with ADHD compared to age-matched

controls without ADHD [5, 6]. These findings provide further support for computational

models of reaction-time variability in ADHD implicating inefficient ‘evidence accumulation’

[4]. We then extended previous findings by investigating the specific neural mechanisms that

help explain this reduced response control. To do so, we examined whether dynamic changes

in three distinct electrophysiological phenomena (phase-synchrony, modularity, oscillatory

power) during the resting-state were associated with response control on a separate simple

perceptual decision-making task in both the children with and without ADHD. We took

phase-synchrony to index the amount of communication between neuronal populations [29,

55], modularity to index the extent to which this communication forms a network with a seg-

regated topology [60], and oscillatory power to index the local synchrony of neuronal popula-

tions within these networks [61]. Finally, we tested whether these mechanisms are similarly

dysregulated in males and females, with and without ADHD.

4.1 Electrophysiological mechanisms underlying differences in response

control

Overall, we found that dynamic changes in the power of cortical network dynamics, as opposed

to changes in their modularity or phase-synchrony, were most associated with differences in

response control. Results suggested that, in those with ADHD, response control (reaction-time

variability and task-performance) was supported by a neural state with relatively high alpha/

beta power and relatively low delta/theta power (state 2). Considering the extent to which this

state was moderated by condition (eyes open versus closed), it may primarily reflect an

increase in alpha power (the ‘Berger’ effect), and is hereafter referred to as the high-alpha state

[62–64].

In theory, increases in alpha power support information processing by suppressing task-

irrelevant stimuli [62]. Such accounts are grounded in information-theory: high alpha power

reflects increased dependence among a population of neurons, which necessarily reduces the

amount of information that can be carried in the population’s firing pattern (information

through desynchronization hypothesis) [34]. Increases and decreases in alpha power are pri-

marily modulated by the frontoparietal network (FPN; encompassing regions in dorsolateral

prefrontal and posterior parietal cortex), with subcortical support from the thalamus [65].
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Through this lens, our results suggest that the mechanisms used by the FPN to initiate a high

alpha-power state that suppresses irrelevant processing help to attenuate response control defi-

cits in those with ADHD. In controls, however, these mechanisms seem to have less bearing

on response control.

While implicating FPN function is speculative, it accounts for several lines of extant evi-

dence. First, mechanisms mediated by the FPN are thought to directly support evidence

accumulation, providing a plausible explanation for why their initiation might support

response control. In fMRI, FPN activation covaries with the presentation of decision-rele-

vant sensory information [35, 66]. Moreover, in diffusion-weighted MRI, fractional anisot-

ropy of the superior longitudinal fasciculus (large white matter tract connecting dorsolateral

prefrontal cortex with posterior parietal cortex) is associated with the rate of evidence accu-

mulation, as estimated from the centroparietal positivity (a component of the event-related

potential that exhibits all the classical properties of an evidence accumulator) [14, 67]. Sec-

ond, Cai et al. (2018) [7], who investigated the task-related dynamics in fMRI associated

with response control in ADHD, found that functional connectivity between the FPN and

salience network is associated with evidence accumulation (estimated using drift-diffusion

modeling).

Counterintuitively, dwell-times in the high-alpha state, which were most associated with

response control, did not significantly differ between ADHD and controls. Instead, the same

neural state benefitted response control to a greater extent in those with ADHD compared to

controls. Interestingly, this is similar to research by Duffy et al. (2021) [8], who found that inte-

gration (increased participation coefficient) between both the DMN and SAL, as well as DMN

and sensorimotor network, are associated with response control, yet do not differ between

ADHD and controls. One explanation as to why we observed this ‘mismatch’ in the current

study is that disruptive processing which needs to be suppressed in ADHD (through alpha gat-

ing mediated by the FPN, and thus dwell-time in the high-alpha state) is simply not present in

controls. If so, suppression of this processing would support response control in ADHD yet

have little benefit to controls. Such an interpretation suggests that these mechanisms are not

dysregulated in ADHD, per se, but that regulation of these mechanisms impacts response con-

trol differently in ADHD compared to controls.

Interestingly, we found that the dynamics associated with response control were distinct

from the dynamics associated with self-reported measures of inattention. Indeed, the associa-

tion between reaction-time variability and dwell-times in the high-alpha state and hypo-activa-

tion state were significant after controlling for CBCL-Inattention scores. This is similar to

fMRI research by Cai et al. (2018) [7], who found dissociable network dynamics underlying

reaction-time variability and inattention (SAL–FPN connectivity predicted reaction-time vari-

ability, while SAL–DMN connectivity predicted inattention). Our results, then, appear to pro-

vide converging evidence for this finding from a distinct modality.

4.2 Sex differences

Typically, females with ADHD present with distinct phenotypes compared to males with

ADHD: lower hyperactivity, externalizing behaviours, as well as greater intellectual difficulties,

depression and anxiety [68]. This complicates research investigating the neural mechanisms

that underlie ADHD-symptoms, as it is often unclear the extent to which sex differences

observed in neural activity are simply a result of phenotypic heterogeneity. To account for this,

we purposely created a homogenous sample, where males and females did not significantly dif-

fer by age, ADHD-relevant behaviours or anxiety. Controlling for behavioural differences in

this way increases our confidence that the observed sex differences in the brain are not a result
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of confounding differences in behaviour, but rather, reflect differences in the brain-behaviour

relationship.

Within this relatively homogenous sample, we observed that dwell-time in the high-alpha

state (reflecting regulation of oscillatory power by the FPN, putatively) supports response con-

trol in males, but has less of a bearing on response control in females (a marginally significant

difference). This would imply that females rely on alternative mechanisms for attenuating

response control deficits than males; mechanisms which were not captured in the current anal-

yses. It would also imply that previous research linking cortical-network activity with response

control in ADHD may be driven by an overrepresentation of males [8, 11, 19].

We expect these findings to inspire further research into the neural mechanisms that help

attenuate response control deficits in females. Some insight may be gleaned from research by

Murray et al. (2021) [69]: while males tend to dwell in states with integration between the

default mode and salience networks, females tend to dwell in states with integration between

the default mode and dorsal attention network (DAN). Interestingly, functional connectivity

between the DMN and SAL network is associated with reduced response control [8]. This

would implicate DMN-DAN integration as a potential compensatory mechanism evoked by

females.

5. Conclusions

In this study, we investigated the relationship between response control (reaction-time vari-

ability, task-performance) on a simple perceptual decision making task and resting-state corti-

cal network dynamics in those diagnosed with ADHD and a set of typically-developing

controls. We focused on a subset of network properties thought to be particularly relevant to

ADHD (phase-synchrony, modularity, oscillatory power) and tested whether differences in

these properties help explain differences in response control. Based on the consistent lack of

segregation between large-scale functional networks in ADHD (default-mode interference),

we hypothesized that exhibiting an electrophysiological profile with high modularity would be

associated with reductions in response control. Yet, contrary to this hypothesis, we found that

differences in response control were most associated with changes in oscillatory power. More-

over, this relationship was predominantly driven by males, and relatively weak in females.

Based on the characteristics of the observed EEG dynamics (high alpha, modulated by eyes-

open/eyes-closed status), we suggest that alpha-suppression mechanisms may help those with

ADHD–particularly males–attenuate processing that is disruptive to response control.

Supporting information

S1 Table. Validation of HMM-power models across a variable number of states.
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