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Abstract

The medicinal plant Digitalis purpurea produces cardiac glycosides that are useful in the

pharmaceutical industry. These bioactive compounds are in high demand due to ethnobo-

tany’s application to therapeutic procedures. Recent studies have investigated the role of

integrative analysis of multi-omics data in understanding cellular metabolic status through

systems metabolic engineering approach, as well as its application to genetically engineer-

ing metabolic pathways. In spite of numerous omics experiments, most molecular mecha-

nisms involved in metabolic pathways biosynthesis in D. purpurea remain unclear. Using R

Package Weighted Gene Co-expression Network Analysis, co-expression analysis was per-

formed on the transcriptome and metabolome data. As a result of our study, we identified

transcription factors, transcriptional regulators, protein kinases, transporters, non-coding

RNAs, and hub genes that are involved in the production of secondary metabolites. Since

jasmonates are involved in the biosynthesis of cardiac glycosides, the candidate genes for

Scarecrow-Like Protein 14 (SCL14), Delta24-sterol reductase (DWF1), HYDRA1 (HYD1),

and Jasmonate-ZIM domain3 (JAZ3) were validated under methyl jasmonate treatment

(MeJA, 100 μM). Despite early induction of JAZ3, which affected downstream genes, it was

dramatically suppressed after 48 hours. SCL14, which targets DWF1, and HYD1, which

induces cholesterol and cardiac glycoside biosynthesis, were both promoted. The correla-

tion between key genes and main metabolites and validation of expression patterns provide

a unique insight into the biosynthesis mechanisms of cardiac glycosides in D. purpurea.

Introduction

The human has implemented medical plants for therapeutic purposes or disease prevention

with the purpose of surviving since ancient times [1–4]. Most of the industries, specifically

the pharmaceutical industry, implement secondary metabolites [5]. According to the estima-

tions, 25% of prescribed drugs in industrialized nations contain natural plant products [6].

Inkwood research website reported that the plant-derivative drug turnover was $26,621

million in 2017; also, it is estimated to be $53,850 million by 2026 [7]. Due to the lack of

accurate information regarding the molecular mechanisms and gene networks involved in the
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regulation of metabolic pathways in most of the medicinal plants, researchers discover the pro-

posed biological pathways-involved target genes through integrative omics data such as com-

parative co-expression analysis [8, 9]. Despite the clinical and chemical significance of the

above-mentioned plants, there is not a comprehensive study on metabolite biosynthesis; there-

fore, characterization of key genes involved in secondary metabolites synthesis could be infor-

mative and practical to improve the yield of valuable metabolites.

Specifically, secondary metabolites are produced in certain plant species. The extraction

and refining of these products within specialized cells is difficult at certain stages of the plant

life cycle under specific conditions and in small amounts [10, 11]. Key genes that affect the

whole network and increase the secondary metabolites amounts and production pathways [9]

could be detected using systems biology approaches [12, 13]. Therefore, the integrative omics

approach is an efficient biological analysis of systems [12, 13] that leads to a better understand-

ing of transcriptome and metabolome interactions, as well as valuable secondary metabolites-

related gene networks [9, 14, 15]. The gene networks key genes could be detected through vari-

ous functional genomics studies, such as Quantitative Trait Locus (QTL), Genome-Wide

Association Studies (GWAS), forward and reverse mutagenesis screens, targeted mutagenesis

approaches, and omics techniques [11, 13]. Using the co-expression network analysis, Tahma-

sebi et al. (2018) identified important modules associated with the secondary metabolism in

Echinacea purpurea [14]. The co-expression analysis is widely applied to the biosynthesis of

secondary metabolites [16–19], stem lodging resistance regulation in Brassica napus [20], iden-

tification of critical modules and candidate genes of drought resistance in Triticum aestivum
[21], regulation of flower and fruit development in Fragaria vesca [22], and identification of

genes involved in resistance responses to powdery mildew in Hordeum vulgare L. var. nudum
[23].

Biological networking is considered as an appropriate approach to detect the metabolic

pathways and resources involved in the production of secondary metabolites [10, 24]. Accord-

ing to the investigations on various organisms, genes with similar functional roles tend to be

co-expressed [24]. In most of the cases, including non-model organisms, the co-expression

analysis is a straightforward approach to predict the gene functions [24, 25]. Weighted Gene

Co-expression Network Analysis (WGCNA) is frequently applied to detect modules with simi-

lar expression profiles, which can be included in similar biological processes or pathways [24,

26, 27]. In other words, the functionally-related genes tend to be co-expressed [22, 24] and the

mentioned method is a powerful tool to identify the correlation between gene expression pro-

files and phenotypes, as well as new metabolic pathways in plants [27]. Current study applied

the co-expression analysis to identify hub genes with secondary metabolites biosynthesis,

including the biosynthesis of dioscin in Dioscorea nipponica [28], monoterpenoids, fatty acid

derivatives, isoflavonoids, and anthocyanins biosynthesis in Echinacea purpurea [14], tanshi-

none biosynthesis in Salvia miltiorrhiza [16], terpenoid biosynthesis pathways in Matricaria
recutita and Chamaemelum nobile [17], as well as flavonoid metabolism regulation in Camellia
sinensis [19].

Digitalis purpurea (L.) (Foxglove, Common Foxglove, and Purple Foxglove) is a medicinal

and ornamental plant [6, 29] that produces valuable bioactive metabolites, such as cardiac

glycosides (acetyldigitoxin, digitoxin, digoxin, gitaloxigenin, gitaloxin, gitoxin, purpurea gly-

coside A, purpurea glycoside B, and strospeside), flavonoids (cyaniding and digicitrin), anthra-

quinones, saponins (digitonin) and phenylethanoid glycosides (calceolarioside, cornoside,

forsythiaside, plantainoside, plantamajoside, and sceptroside) [6, 29]. Purpurea glycoside A

(glucodigitoxin) and purpurea glycoside B are the principal glycosides in the fresh leaves,

which are converted into digitoxin and gitoxin respectively, which normally predominate in

the dried leaf [30]. Gitoxin plays an important role in treating breast cancer [6].
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Evatromonoside, is precursor of digitoxigenin bis-digitoxoside while digitoxigenin bis-digi-

toxoside is precursor of digitoxin which has been used as cardiac drug [31].

Digitoxin as an in-use medication has anti-HSV (herpes simplex virus type) activity which

actively inhibits HSV-1 replication [6]. In addition, it suppresses hypersecretion of IL-8 from

cultured CF (cystic fibrosis) lung epithelial cells [6]. It is worth noting, digitoxin could induce

apoptosis in tumor cells [6, 29]. Therefore, digitoxin could be a novel drug class antiviral

mechanism and a candidate drug for suppressing IL-8-dependent lung inflammation in CF

and potential anticancer drugs [6, 29]. The pharmacological activity of the glycosidal extract of

D. heywoodii is related to gitoxin derivatives (digitalinum verum and strospeside) [32].

Generally, cardiac glycosides are efficiently applied to treatments for heart diseases and can-

cers [6, 29]; moreover, most of these compounds biosynthesis-involved gene functions are

unknown. To achieve a better understanding of specific molecular mechanisms of secondary

metabolism-related genes of this medicinal plant, the correlation between transcriptome and

metabolome was studied using WGCNA. In addition, the major modules and hub genes were

identified. Eventually, other novel agents correlated with the biosynthesis of secondary metab-

olites, such as transcription factors (TFs), transcriptional regulators (TRs), protein kinases

(PKs), transporters, and mRNA-like non-coding RNAs (mlncRNAs) were identified through

the functional analysis. To confirm the integrative data analysis, the candidate genes were vali-

dated after methyl jasmonate (MeJA) treatment.

Materials and methods

Data collection and preprocessing

Fig 1 represents the data collection and preprocessing steps (Fig 1). The normalized RNA-Seq

data of eight different tissues of D. purpurea, including mature flower, immature flower, sepals

mature flower, sepals immature flower, immature leaf, young leaf, mature leaf petiole, and

young leaf petiole, were retrieved from the Medicinal Plant Genomics Resource database

(http://medicinalplantgenomics.msu.edu/) [33]. In addition, metabolomic information of

major metabolites, such as digitoxigenin bis-digitoxoside (C35H54O10), digitoxin (C41H64O13),

gitoxin (C41H64O14), glucodigitoxin (C47H74O18), and strospeside (C30H46O9), within the tis-

sues, which were in accordance with transcriptome, was retrieved from the Plant/Eukaryotic

and Microbial Systems Resource [34] (S1 Table). According to this database, liquid chroma-

tography/time-of-flight/mass spectrometry (LC/TOF/MS) method was applied to achieve the

metabolome profiles. First, the transcript expression level and the quantity of secondary

metabolites within eight plant tissues of transcriptomic and metabolomic data were classified

correspondently according to a comparative analysis using R Package WGCNA. Transcripts

with low expression values observed in the transcriptomic data were also filtered out using the

genefilter package based on the variance filtering through varFilter function.

Gene co-expression network construction

Gene co-expression networks were achieved through the WGCNA package in R space [35].

After transcripts filtration with low expression; the expression filtered matrix was included in

the WGCNA workflow. The scale-free topology criterion was implemented to determine the

soft threshold power, which is defined as the similarity relationships between gene pairs by cal-

culating the unsigned Pearson’s correlation matrix [36]. The network was constructed using a

step-by-step network construction method, which was on the basis of adjacency matrix con-

struction and its consequent turning into the topological overlap matrix (TOM) that it was

applied with the purpose of describing the interconnection among genes and finally calling the

hierarchical clustering function [36]. Next, modules with a minimum module size of 30 were
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identified, and then, those with similar expression profiles were merged through the Dynamic

Tree Cut method with a CutHeight of 0.25 [35]. Finally, the eigengene values of the modules

were calculated to evaluate the module-trait (secondary metabolites) relationships and detect

the most significant association of the modules to the secondary metabolites [36]. To quantify

the associations of individual genes with traits of interest (digitoxigenin bis-digitoxoside), the

correlation between individual genes and the trait (digitoxigenin bis-digitoxoside) was defined

as Gene Significance (GS) [37]. In addition, a quantitative measure of module membership

(MM) and gene expression profile were defined with the purpose of quantifying how close a

gene is to a given module [35]. Generally, if GS and MM were highly correlated, it would

imply that genes were the highly important elements for the modules and were most signifi-

cantly associated with the trait [37, 38]. Finally, genes with a high significance for digitoxigenin

bis-digitoxoside and high MM in chocolate3 module were identified.

Eigengene network visualization through WGCNA functions

A plot summary of the eigengene network was generated according to the plotEigengeneNet-

works convenient function [35]. The trait (digitoxigenin bis-digitoxoside) was added to eigen-

genes with the purpose of understanding how the trait fit into the eigengene network. In fact, a

sample trait, such as digitoxigenin bis-digitoxoside, could be incorporated as an additional

node of the eigengene network [35]. The adjacency between the sample trait and an eigengene

Fig 1. Flowchart of gene co-expression network analysis in D. purpurea. Data collection and analysis towards downstream analyses are shown.

https://doi.org/10.1371/journal.pone.0277293.g001
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sometimes could be considered as the eigengene significance [35]. Therefore, we evaluated the

relationship between each module and digitoxigenin bis-digitoxoside by correlating the eigen-

genes for each module to digitoxigenin bis-digitoxoside and consequently, the eigengene den-

drogram and heatmap identified groups of correlated eigengenes called meta-modules [35].

Module-module relationship, which is also called meta-module, is a group of correlated eigen-

genes with the correlation of eigengenes of at least 0.5 [35, 37]. Meta-modules are defined as

tight clusters of modules [35, 37] and groups of highly correlated eigengenes [39].

Functional annotation and enrichment analysis

To convert the transcript sequences to the orthologues, BLASTX with E-value� 10−5 was

applied against the Arabidopsis Information Resource (TAIR). The functional enrichment

analysis of modules was performed using Database for Annotation, Visualization and Inte-

grated Discovery (DAVID) [40] for categories of Biological Process (BP), Molecular Function

(MF), and Cellular Component (CC). Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis was also carried out in the web-based DAVID [40]. P-value<
0.01 was considered to be significant; moreover, the identification and classification of TFs,

TRs, and PKs were carried out through applying the transcript sequences to BLASTX search

against the iTAK database [41]. To identify transporters, BLASTX was carried out on tran-

script sequences against the transporter classification database (TCDB) with E-value� 10−20

[42]. Wu et al. (2012) identified 2660 mlncRNAs candidates, which were considered as an

emerging class of regulators, using a computational mlncRNA identification pipeline in D.

purpurea [43]. After the creation of the mlncRNAs-derived local database through CLC Geno-

mics Workbench 11.0, the searching procedure was carried out for all of the transcripts in the

significant major modules using BLASTN with a cut-off E-value� 10−5 to uncover important

mlncRNAs.

Identification of hub genes

The most efficient genes of the selected modules were detected through the computational

analysis of the connectivity between nodes. Using the CytoHubba plugin of Cytoscape software

with Maximal Clique Centrality (MCC) function, the edge count-based identification of the

top 20 hub genes was carried out in each selected module.

Plant materials and growth conditions

Two-year-old D. purpurea were purchased from the Sepahan flower & ornamental plants

international market (Isfahan, Iran). The plants that were in the flowering phase were placed

under a 16-h light: 8-h dark cycle at 25˚C for two weeks to be compatible with the new condi-

tions in the glasshouse (S1 Fig).

Stress conditions

The adopted plants were sprayed and watered with the solution of 100 μM MeJA (plus 0.1%

Tween-20) in 0.1% ethanol. The control plants also were sprayed and watered with 0.1%

Tween-20 in 0.1% ethanol. All the pots were covered with the plastics. The leaf samples were

collected at 3, 6, 24, and 48 hours after treatment (S1 Fig). The collected leaves were immedi-

ately frozen in liquid nitrogen and stored at −80˚C until used for RNA extraction.
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RNA extraction, DNase treatment, and cDNA synthesis

Total RNA was extracted from leaf samples using the Column RNA Isolation Kit (DENAzist

Asia, Mashhad Iran) according to the manufacturer’s instructions. The quantity and concen-

tration of RNA was measured using a NanoDrop ND 1000 Spectrophotometer (Thermo Fisher

Scientific, Wilmington, DE, USA). The integrity and quality of RNA was checked by visual

observation of 28S and 18S rRNA bands on a 1% agarose gel. Prior to use, RNA samples were

stored at −80˚C. DNase treatment of RNA was carried out using the RNase-free DNase kit

(Thermo Fisher Scientific, Waltham, Massachusetts, USA) according to the manufacturer’s

instructions. The quality and quantity of treated RNA were rechecked by NanoDrop and aga-

rose gel respectively. Then, 1 μg of DNase-treated RNA was used for first-strand cDNA synthe-

sis using SinaClon BioScience kit (Karaj, Iran) according to the manufacturer’s instructions.

The cDNA samples were stored at −20˚C prior to use.

Candidate genes

Based on integrative data analysis, four following genes were candidates for the validation. Jas-
monate-ZIM domain3 (JAZ3) was identified in the coral3 module that showed a high positive

correlation and significant P-value with glucodigitoxin and strospeside (S2 Table). JAZ3 was

chosen to know whether it responds to MeJA induction or not. The JAZ family genes are key

repressors in the JA signal transduction pathway. Scarecrow-Like Protein 14 (SCL14) is a hub

gene in the blue2 module and interacts with TGA II TFs including TGACG sequence-specific

binding protein 2 (TGA2), Ocs-element-binding factor 5 (TGA5), and TGACG motif-binding

factor 6 (TGA6) that affects the transcription of stress-responsive genes. It was associated with

the secondary metabolites of digitoxigenin bis-digitoxoside and gitoxin (S2 Table). Del-
ta24-sterol reductase (DWF1) is SCL14 downstream gene that is involved in the steroid biosyn-

thesis (S2 Fig). This enzyme was identified in the coral3 module that showed a high positive

correlation and significant P-value with glucodigitoxin and strospeside (S2 Table). HYDRA1
(HYD1) was identified in the darkorange2 module, which significantly was associated with

digitoxigenin bis-digitoxoside and was involved in the process of steroid biosynthesis (S2 Fig

and S2 Table). In fact, HYD1 converts 4α-methylcholesta-8,24-dien-3β-ol to 4α-methylchol-

est-7,24-dien-3β-ol and DWF1 converts desmosterol to cholesterol (precursor of cardiac glyco-

sides) in the steroid biosynthesis pathway. The steroid biosynthesis pathway is one of the

putative biosynthetic pathways of plant cardiac glycosides.

Primer design

Primers were designed using Allele ID 7 and Vector NTI 11 software for the reference and can-

didate genes (Table 1). The primers were designed based on the aligned nucleotide file. In this

project to be more precise, we quantified the final expressions based on the means of reference

gene of actin and other four genes.

Table 1. Primer sequences used in the study.

Gene Forward Reverse Accession number Ta (˚C) PCR product (bp)

DWF1 CTTCTCACTCTTGCGACCTT GGATTCCAGCCACACACT AT3G19820 55 156

SCL14 CGCTGTTCCACTTCTCCGCCAT CCTGCCACTGCTTGTATGTCTCT AT1G07530 61 172

HYD1 GAACCCTCATTTCCTTGCCGAAGT CCCAAAGACACGCCAAACTGAAGA AT1G20050 55 195

JAZ3 GTCGGTGTGCGTGTATGA ATGGATGCTGGAACTGGC AT4G34990 62 123

Actin GTCTCTCACAATTTCCTTCTCAG GCTCTCCCACACGCTATT AT2G37620 55 126

https://doi.org/10.1371/journal.pone.0277293.t001
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RT-qPCR to validation of candidate genes

First, primer specificity was confirmed by PCR and sequence analysis. To minimize pipetting

error, the cDNA samples were diluted 1:20 by using nuclease-free water, and 5 μL cDNA was

used for RT-qPCR. Relative RT-qPCR was performed in a 20 μL volume containing 5 μL

cDNA (diluted), 10 μL RealQ Plus 2x Master Mix Green (Sinuhebiotech, Shiraz, Iran), 0.7 μL

of 10 μM primers (10 μM). The amplification reactions were carried out in a Line-gene K ther-

mal cycler (Bioer, China) under the following conditions: 15 s at 95˚C, 45 cycles of 94˚C for 15

s, Ta temperature for 15 s, and 72˚C for 20 s. After 45 cycles, the specificity of the amplifica-

tions was tested by melting curve analysis by heating from 50 to 95˚C. All amplification reac-

tions were repeated two times under identical conditions and included a negative control and

3 standard samples.

RT-qPCR data analysis

The relative expression of candidate genes was calculated based on the threshold cycle (CT)

method. The CT for each sample was calculated using the Line-gene K software. When repli-

cate PCRs are run on the same sample, it is more appropriate to average CT data before per-

forming the 2─ΔΔCT calculation. The actin gene was used as the reference gene for data

normalization. The determined mean CT values for the candidate and internal reference gene

were used in equation 2─ΔΔCT = (CT, candidate genes ─ CT, housekeeping genes) Time x─ (CT, candidate

genes ─ CT, housekeeping genes) Time x [44]. Time x represents the expression of the candidate

genes at any time point in control and treated plants. The fold change ratios of the genes were

normalized to internal control genes and were calculated relative to the expression at any time

in control plants.

Statistical analysis

Analysis of variance followed by Duncan’s multiple range test was performed using MINITAB

(Minitab, Inc., Pennsylvania, USA). In all cases, differences were regarded to be statistically

significant at P-value� 0.05 level. All experiments were performed in triplicate, analyzed

using the GraphPad Prism software (GraphPad Software, USA).

Results and discussion

Co-expression network analysis

D. purpurea is a medicinal plant that produces various cardiac and steroidal glycosides [6, 29].

The secondary metabolite biosynthesis pathways have not been sufficiently investigated so far;

therefore, it would be very useful to find the secondary metabolite synthesis-involved hub

genes in the context of metabolic engineering. Among 32341 unigenes derived from eight

mentioned samples, 16185 filtered unigenes were merged with five major metabolites (S1

Table). Systems biology and integrative multi-omics studies provided an opportunity to study

the important aspects of metabolic processes and complexities of the transcriptome and

metabolome in non-model plants [14]. Combining the transcriptome with metabolome data

could lead to an accurate network control of the biosynthesis of secondary metabolites. The

WGCNA package was applied to find different modules of co-expressed genes and the correla-

tion of the secondary metabolites with hub genes in each module [14].

Using WGCNA algorithms, the adjacency matrix was substituted with the weighted adja-

cency matrix by raising the correlations to the power of 16, which was selected through the

scale-free topology criterion [35, 36]. The scale-free topology model was not improved after

the power increase. At this power, the high mean number of connections was maintained;

PLOS ONE A systems biology approach—Gene networks related to metabolite biosynthesis in Digitalis purpurea

PLOS ONE | https://doi.org/10.1371/journal.pone.0277293 March 9, 2023 7 / 35

https://doi.org/10.1371/journal.pone.0277293


moreover [36], the scale-free topology fit index reached to 0.9 at the mentioned power, which

was selected to produce a hierarchical clustering tree (Fig 2).

The highly interconnected genes with similar expression profiles were clustered to a module

based on TOM-based dissimilarity matrix [35, 36]. Therefore, the module network dendro-

gram was constructed through clustering Module Eigengene (ME) distances (Fig 3). First, 180

modules were identified, and then, 34 distinct modules were generated in different colors

through dynamic tree cut and merged dynamic (Figs 3 and 4).

Correlated modules with the secondary metabolites

Results showed that 34 modules were related to five major secondary metabolites based on the

Pearson correlation coefficient and P-value. Higher correlation, significant P-value, with sec-

ondary metabolites profiles, were observed for seven modules including coral3, lightpink4,

chocolate3, blue2, coral4, darkorange2, and lightsteelblue modules (Fig 5 and S2 Table).

The coral3 module showed a high positive correlation with strospeside and glucodigitoxin

(Fig 5 and S2 Table); also, it was involved in the processes of terpenoid backbone biosynthesis,

Fig 2. Selection of an appropriate soft threshold power of β. Left; the scale-free fit index of power (β) was estimated to be 16 based on the threshold limit

of 0.9. Right; the mean connectivity versus soft-thresholding power.

https://doi.org/10.1371/journal.pone.0277293.g002

Fig 3. Clustering of 180 modules. The horizontal red line shows the height cut of 0.25, which corresponds to the correlation of 0.75, to merging the

modules.

https://doi.org/10.1371/journal.pone.0277293.g003
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steroid biosynthesis, carotenoid biosynthesis, diterpenoid biosynthesis, flavonoid biosynthesis,

flavone and flavonol biosynthesis, sesquiterpenoid, and triterpenoid biosynthesis (S3 Table).

The darkorange2 and lightsteelblue modules were significantly associated with digitoxigenin

bis-digitoxoside (Fig 5 and S2 Table) and involved steroid biosynthesis-related genes (S3

Table). The lightpink4 module significantly associated with glucodigitoxin (Fig 5 and S2

Table) was involved in steroid biosynthesis (S3 Table), and the chocolate3 module with high

positive correlation and high significant level with digitoxigenin bis-digitoxoside (Fig 5 and S2

Table), was involved in terpenoid backbone biosynthesis (S2 Fig and S3 Table). It was found

that the blue2 and coral4 modules were correlated with digitoxigenin bis-digitoxoside and

gitoxin (Fig 5 and S2 Table). S3 Table represents data of some genes in selected modules

involved in the process of secondary metabolites biosynthesis (S3 Table).

The MM and GS were calculated in order to investigate the correlations between individual

genes and metabolites. As it could be observed in Fig 6, the strongest connectivity interaction

is between chocolate3 module and digitoxigenin bis-digitoxoside (Fig 6). The chocolate3 mod-

ule showed the most significant correlation between MM and GS (r = 0.5, p = 3.1e-06) (Fig 6).

The high correlation between GS and MM indicated the considerable role of the modules key

genes in the underlying biological functions of secondary metabolites synthesis. Functional

annotation and enrichment analysis of chocolate3 indicated that three transcripts including

Plastid Terminal Oxidase (AT4G22260, IM), Isopentenyl Phosphate Kinase (AT1G26640, IPK),

and Polypeptide 2 (AT2G29090, ABAH2) were involved in terpenoid metabolic (GO:0006721)

and lipid biosynthetic processes (GO:0008610) (Fig 6).

The Module Eigengene adjacency was represented by hierarchical clustering and heatmap

(Figs 7 and 8). A Module Eigengene summarizes the gene expression profile of each module. A

dendrogram of the eigengenes and metabolites and a heatmap of their relationships were pro-

vided to evaluate the relationship between each module and digitoxigenin bis-digitoxoside

Fig 4. Clustering of genes and modules. The cluster dendrogram at the top of the plot shows co-expressed genes. The branches and color bands at the bottom

of the plot represent the assigned module.

https://doi.org/10.1371/journal.pone.0277293.g004

PLOS ONE A systems biology approach—Gene networks related to metabolite biosynthesis in Digitalis purpurea

PLOS ONE | https://doi.org/10.1371/journal.pone.0277293 March 9, 2023 9 / 35

https://doi.org/10.1371/journal.pone.0277293.g004
https://doi.org/10.1371/journal.pone.0277293


(Figs 7 and 8). The dendrogram and heatmap indicated that chocolate3 module and digitoxi-

genin bis-digitoxoside are highly related (Figs 7 and 8). Conversely, the royalblue2 and tan2

modules are highly related, this meta-module is inversely correlated with digitoxigenin bis-

digitoxoside (Figs 7 and 8). Squares of red color along the diagonal are the meta-modules.

Fig 5. Correlation of modules and secondary metabolites. Module Eigengenes (MEs) and secondary metabolites are

respectively represented by each row and column. Each cell contains the corresponding correlation at the top and P-
value at the bottom. The positive correlation of the module with secondary metabolites and the negative correlation are

respectively shown in red and green. The white spectrum indicates the inexistence of modules and secondary

metabolites correlations.

https://doi.org/10.1371/journal.pone.0277293.g005
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Eigengenes were represented by I, J and etc.; for example, EJ denotes the eigengene (module)

of the Jth module [39] (Fig 8).

Gene ontology (GO) and KEGG pathway analysis. To conduct the functional analysis of

D. purpurea transcriptome, all unigenes of the candidate modules were selected to search

against the TAIR database using BLASTX with E-value� 10−5. Among the 1760 unigenes,

only 1250 were protein-coding. Then, the functional annotation and enrichment analyses

were carried out (Figs 9 and 10).

All of the above-mentioned modules’ annotated unigenes were searched against the

DAVID database to predict their functions. Using GO analysis, unigenes were classified into

three distinct categories of BP, MF, and CC. Considering the BP category, GO term with the

most genes was oxidation-reduction process (GO:0055114) (Fig 9). Jasmonic acid (JA) biosyn-

thetic process (GO:0009695) is a key GO term shown in the GO analysis (Fig 9). JAs are recog-

nized as signals in the plant stress responses, development processes, biosynthesis, and proper

accumulation of secondary metabolites [45, 46]. In fact, they lead to a variety of biological

responses in plants, such as defense responses to attacks by herbivorous insects or necro-

trophic pathogens, biological responses to the injuries, increased production of secondary

metabolites, male sterility, sex-determination of plants, and growth inhibition [47]. Moreover,

JAs are associated with oxylipin biosynthetic process (GO:0031408), which constitute a family

of oxylipins with the capability of inducing the expression of genes that code for enzymes cata-

lyzing the formation of various secondary metabolites [48] (Fig 9). In addition, secondary

Fig 6. The scatterplot of Gene Significance (GS) for digitoxigenin bis-digitoxoside vs. Module Membership (MM) in chocolate3. The high

significant correlation between GS and MM for Digitoxigenin bis-digitoxoside in the chocolate3 module.

https://doi.org/10.1371/journal.pone.0277293.g006
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metabolites act as defense molecules [46, 48]; therefore, the biosynthesis and proper accumula-

tion of secondary metabolites lead to the plants defensive responses such as response to

wounding (GO:0009611) (Fig 9). Also, they form defense proteins, such as proteinase inhibi-

tors (PINs), in wounded tomato leaves with JA signaling pathways [45].

Fig 7. Eigengene dendrogram of the modules and digitoxigenin bis-digitoxoside. A hierarchical clustering

dendrogram of eigengenes. The dissimilarity of EI and EJ is shown by 1- cor (EI; EJ).

https://doi.org/10.1371/journal.pone.0277293.g007
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Fig 8. The heatmap plot of adjacencies in the eigengene network, including digitoxigenin bis-digitoxoside. Each

row and column in the heatmap corresponds to one Module Eigengene (labeled by color) and or Digitoxigenin bis-

digitoxoside. Low and high adjacencies (negative and positive correlations) are shown in blue and red. The connection

strength (adjacency) between eigengenes I and J are defined as A I J = (1 + cor (EI; EJ))/2.

https://doi.org/10.1371/journal.pone.0277293.g008

Fig 9. The gene ontology analysis of candidate modules. Gene ontology analysis of candidate modules classified into three functional categories

including Biological Process, Molecular Function, and, Cellular Component.

https://doi.org/10.1371/journal.pone.0277293.g009
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A number of secondary metabolites including nicotine, anthocyanins, glucosinolates, and

terpenoid indole alkaloids (TIAs) are synthesized from proteinogenic amino acids [45]. There-

fore, GO terms, such as aromatic amino acid family biosynthetic process (GO:0009073) and

cellular amino acid biosynthetic process (GO:0008652) are associated with the biosynthesis of

secondary metabolites [45] (Fig 9). Aromatic amino acid (AAA) family biosynthetic process

(GO:0009073) is formed as a result of specific chemical reactions and pathways (Fig 9). It is

noteworthy that AAAs include L-phenylalanine, L-tyrosine, and L-tryptophan involved in the

protein synthesis [49, 50]. In addition, they are precursors for a wide range of secondary

metabolites, various pigment compounds, and plant hormones, such as auxin and salicylate

[49, 50]. In fact, AAA biosynthesis and degradation are considered as starting points for a

large variety of secondary metabolites [50]. For example, tryptophan is a precursor for the syn-

thesis of auxins, phytoalexins, glucosinolates, and alkaloids [49, 50]. Tyrosine is a direct pre-

cursor of coumarate in the phenylpropanoid pathway, as well as the synthesis of tyramine [49,

50] and meta-tyrosine, which is a non-proteogenic amino acid [50]. Tyrosine catabolism also

leads to the synthesis of isoquinoline alkaloids, while phenylalanine is a precursor for a class of

Fig 10. The KEGG analysis of candidate modules. KEGG analysis of candidate modules is performed by the DAVID

database.

https://doi.org/10.1371/journal.pone.0277293.g010

PLOS ONE A systems biology approach—Gene networks related to metabolite biosynthesis in Digitalis purpurea

PLOS ONE | https://doi.org/10.1371/journal.pone.0277293 March 9, 2023 14 / 35

https://doi.org/10.1371/journal.pone.0277293.g010
https://doi.org/10.1371/journal.pone.0277293


sulfur-containing secondary metabolites, which is called phenylalanine glucosinolates, and

volatile compounds including phenylpropanoids, benzenoids, phenylpropenes, and nitroge-

nous [49, 50]. The conversion of phenylalanine to cinnamate leads to its further metabolism to

p-coumaroyl CoA [50]. It is involved in the stress-related mediating responses [50].

Auxin transport (GO:0060918), response to auxin (GO:0009733), and auxin-activated sig-

naling pathway (GO:0009734) are considered as important GO terms (Fig 9). Tryptophan is a

precursor to the family of auxin hormones [49, 50]. Indole-3-acetic acid (IAA) is the most

abundant auxin required for almost all of the major developmental processes in plants includ-

ing embryogenesis, seedling growth, root elongation, vascular patterning, gravitropism, and

flower development [50]. Chorismate biosynthetic process (GO:0009423) is associated with

AAA biosynthesis (Fig 9). In plants, chorismate is a precursor of AAA and a wide range of aro-

matic secondary metabolites [49, 50]. In addition, it is an initial compound for the biosynthesis

of folates, such as tetrahydrofolate or vitamin B9, pigments, and isochorismate pathway to

salicylate [49, 50].

Considering MF category, the most abundant of targets are enriched for ATPase activity to

ATPase activity coupled to transmembrane movement of substances (GO:0042626) and trans-

ferase activity of transferring hexosyl groups (GO:0016758) (Fig 9). The former (GO:0042626)

is associated with the ABC transporter mechanism; also, their mechanism is driven by ATP

hydrolysis in order to act as the exporters and importers [51, 52] (Fig 9). It should be noted

regarding the CC category that the most frequent targets are enriched for chloroplast

(GO:0009507), plasma membrane (GO:0005886), and integral component of membrane

(GO:0016021) (Fig 9). Most secondary metabolites stored in the vacuole are secreted to the

apoplast [52]; moreover, secondary metabolites are produced in different subcellular compart-

ments. Results showed that the biosynthetic pathway of secondary metabolites is consistent

with the transport system; for example, terpenoids are transported by the G-type ABC trans-

porter [52]. These transporters are localized in most plant cell membranes and classified as

possibly vacuolar [51] (Fig 9). Therefore, the category of CC respectively includes 45, 48, 135,

and 225 transcripts in vacuole (GO:0005773), vacuolar membrane (GO:0005774), membrane

(GO:0016020), and plasma membrane (GO:0005886) (Fig 9).

The KEGG pathway enrichment analysis of candidate modules were conducted with the

purpose of detecting the significant pathways. Results showed that there were five molecular

pathways with P-value� 0.01 detected using DAVID database [40] (Fig 10). Among these

molecular pathways, the number of genes involved in metabolic pathways (ath01100), sec-

ondary metabolites biosynthesis (ath01110), antibiotics biosynthesis (ath01130), phenylala-

nine, tyrosine and tryptophan biosynthesis (ath00400), and arginine and proline metabolism

(ath00330) were respectively determined to be 132, 80, 40, 11, and nine (Fig 10). The most

important pathway was the secondary metabolites biosynthesis (ath01110) (Fig 10) in which

genes were involved in terpenoid backbone biosynthesis (ath00900), sesquiterpenoid and tri-

terpenoid (ath00909), steroid biosynthesis (ath00100), carotenoid biosynthesis (ath00906),

diterpenoid biosynthesis (ath00904), flavonoid biosynthesis (ath00941), as well as flavone,

and flavonol biosynthesis (ath00944) (S3 Table). The putative biosynthetic pathway of plant

cardiac glycosides roughly comprised the biosynthesis of terpenoid backbone, steroid, and

cardenolide [43] (S2 Fig). As an example, Deoxy-D-xylulose-5-phosphate synthase
(AT4G15560, DXS1), Geranyl diphosphate synthase 1 (AT2G34630, GPS1), Delta14—sterol
reductase (AT3G52940, FK), and DWF1 genes were involved in terpenoid backbone and ste-

roid biosynthesis, respectively and in pairs (S2 Fig and S3 Table). All of the above-mentioned

genes were identified in coral3 module that was associated with strospeside and glucodigi-

toxin (S2 Table). HYD1 and Sugar-Dependent 1 (AT5G04040, SDP1) were identified in the

darkorange2 and lightsteelblue modules, respectively, which significantly were associated
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with digitoxigenin bis-digitoxoside and were involved in the process of steroid biosynthesis

(S2 Fig and S2 and S3 Tables).

Identification of TFs. TFs are key elements of plant metabolic engineering and regulatory

proteins that improve the production of secondary metabolites [48, 53, 54]. Moreover, they

regulate enzyme expression through integrating internal and external signals [53]. For exam-

ple, a number of TF families including Apetal2/ethylene responsive factor (AP2/ERF), WRKY,

basic helix-loop-helix (bHLH), basic leucine zipper (bZIP), MYB, and NAM, ATAF and CUC

(NAC) are involved in biotic and abiotic stress responses through mediating biosynthesis and

accumulation of secondary metabolites [55]. In the current study, TFs within candidate mod-

ules were identified and classified using iTAK database [41]. According to the observations, a

total number of 89 TF-encoding genes belong to 30 families, including bHLH, MYB, bZIP,

Cys2/His2-type (C2H2), AP2/ERF-ERF, C2C2-GATA, WRKY, GRAS, and others (S4 Table).

In addition, C2H2 TF was identified in the six candidate modules (S4 Table). C2H2 TF (mtfA)

regulates mycotoxin sterigmatocystin production and other secondary metabolism gene clus-

ters, such as genes responsible for the synthesis of terrequinone and penicillin in Aspergillus
nidulans [56, 57]. C2H2 Zinc-Finger family in drought, heat, and also salt responses in Populus
trichocarpa [58].

Most of TF families, such as C2H2, AP2/ERF-ERF, and bHLH, contain gibberellic acid-

mediated signaling pathway [14]; also, they are correlated with darkorange2, coral3, and light-

pink4 modules (S4 Table). bHLH TFs can regulate the biosynthesis of the secondary metabo-

lites including flavonoid, glucosinolates, isoquinoline alkaloid, nicotine alkaloid, diterpenoid

phytoalexins, saponins, and anthocyanin [45, 48, 55]. The overexpression of bHLH TFs of Tri-
terpene Saponin Biosynthesis Activating Regulator1 (TSAR1) or Triterpene Saponin Biosynthesis
Activating Regulator2 (TSAR2) in Medicago truncatula increases the transcript levels of known

triterpene saponin biosynthetic genes, as well as accumulation of triterpene saponins [55, 59].

It is noteworthy that bHLH and bZIP TF families regulate diterpenoid phytoalexins biosynthe-

sis in Oryza sativa, which defend against the invasions of the blast pathogen [55]. The AP2/

ERF-ERF and WRKY TF families act as regulatory proteins of Catharanthus terpenoid indole

alkaloids and terpene biosynthesis [60]. In addition, JA-stimulated artemisinin biosynthesis

within Artemisia annua is mediated by two AP2/ERF-type TFs, and AaERF1 and AaERF2, as

the overexpression of mentioned factors increases artemisinin accumulation in transgenic A.

annua [61]. AP2/ERF TF family acts as a key regulator in the plant developments and stress

responses [61]. The NAC TF family is involved in the anthocyanin accumulation within Arabi-
dopsis thaliana and fruit crops [62, 63]. There was only one NAC TF observed in the darkor-

ange2 module (S4 Table). NAC and bZIP TFs play vital roles in response to drought stress in

O. sativa [64]. PtrNAC72 in Poncirus trifoliata regulates putrescine biosynthesis [55], while

ANACO32 acts as a negative regulator of anthocyanin biosynthesis in A. thaliana [55].

HbNAC1 is involved in latex biosynthesis and drought tolerance in Hevea brasiliensis [55]. Sec-

ondary metabolites, such as glucosinolates, flavonoids, Hydroxycinnamic acid amides

(HCAAs), and proanthocynanins are also mediated by MYB proteins [55].

In the current study, GRAS, Teosinte branched 1, Cycloidea, Proliferating cell factors

(TCP), and Trihelix families were identified as the hub genes. GRAS proteins play a key regula-

tory role in the plant development, abiotic stress, and phytochrome signaling [14] that are

present in the blue2 and coral3 modules (S4 Table). GRAS TF family is the regulator of GA3

signaling and biosynthesis [14]; also, it interacts with DWF1 (1.3.1.72) that is involved in the

biosynthesis of steroids (ath00100). TCPs belong to the plant-specific bHLH TF family and are

considered as key regulators of diverse developmental processes [65]. In A. thaliana, mTCP3
expression induces the biosynthesis and accumulation of proanthocyanidins within endothe-

lium and the outer seed coat layers; moreover, it activates many enzymatic and regulatory

PLOS ONE A systems biology approach—Gene networks related to metabolite biosynthesis in Digitalis purpurea

PLOS ONE | https://doi.org/10.1371/journal.pone.0277293 March 9, 2023 16 / 35

https://doi.org/10.1371/journal.pone.0277293


genes involved in the flavonoid biosynthesis [65]. TCPs are also involved in the biosynthesis of

plant hormones, such as brassinosteroids and jasmonic acids [65]. Trihelix transcription fac-

tors (TTFs), known as GT factors, are photoresponsive proteins that regulate environment-

responsive secondary metabolisms [66]. PatGT-1 acts as a negative regulator in the production

of patchoulol through repressing genes in the pathway in Pogostemon cablin [66].

The coral3 module involves the maximum member of bZIP, GRAS, and MYB TF families

(S4 Table). It is noteworthy that bZIP TF (AabZIP1) is involved in ABA signaling to regulate

artemisinin biosynthesis in A. annua [67]. In addition, ELONGATED HYPOCOTYL (HY5),

which is considered as a bZIP TF, plays a crucial role in the light-mediated transcriptional reg-

ulation of terpene synthase. For example, AtTPS03 is involved in terpenoid biosynthesis in A.

thaliana [68]. MYB, MYB-related, and forkhead-associated (FHA) TF families were involved

in terpenoids and polyketides metabolisms in Clinopodium chinense [69]. MYB TFs are crucial

for the terpenoid backbone biosynthesis [69].

Identification of TRs. As it was observed for TFs, the TRs can regulate the gene expres-

sion at the transcriptional level; moreover, their identification was carried out through iTAK

database [41]. A total number of 26 TR-encoding genes from 11 families, such as mitochon-

drial transcription termination factors (mTERF), Auxin/indole-3-acetic acid (AUX/IAA), and

GCN5-Related N-Acetyltransferases family (GNAT), was identified (S5 Table). Thirteen TRs

were contained in coral3 module (S5 Table). In the current study, the most common TRs were

AUX/IAA and mTERF (S5 Table). AUX/IAA family members were identified as short-lived

nuclear proteins [70, 71], which could act as hub factors and regulate the gene expression in

auxin signaling transduction [71]. According to an investigation carried out by Poutrain et al.

(2011) on Catharanthus roseus, it was found that auxin negatively regulated the biosynthesis of

monoterpenoid indole alkaloids (MIAs) and CrIAA1 availability through a feedback mecha-

nism [70]. In Solanum lycopersicum cv MicroTom, the positive regulation of mycorrhization

and strigolactone biosynthesis was carried out by Sl-IAA27 through regulating the expression

level of NODULATION SIGNALING PATHWAY1 (NSP1) [72]. In fact, AUX/IAA proteins are

known as transcriptional repressors that mediate diverse physiological and developmental pro-

cesses in plants; moreover, they are involved in the process of responding to stress [71, 73].

The mTERFs are key regulators of organellar gene expression (OGE) in mitochondria and

chloroplasts, which can be implicated in all organellar gene expression steps ranging from the

regulation of transcription to tRNAs maturation and regulation of translation [74]. In addi-

tion, mTERF proteins play a vital role in abiotic stress acclimation including excess light,

UV-B exposure, heat, or altered salinity [74].

Identification of PKs. PKs add a phosphate group to certain amino acids of proteins.

These phosphorylated proteins lead to the mechanisms of signal transduction that could

improve the production of secondary metabolites [9]. In fact, PKs are identified as essential

regulators of plant growth and development, including developmental patterning, hormone

signaling, stress responses, and disease resistance [75–78]. In the seven modules, five families

of PKs, including Receptor-like kinase-Pellel (RLK-Pelle), Cyclin-dependent kinases (CMGC),

Calcium- and calmodulin-regulated kinase (CAMK), Sterility (STE), and Tyrosine kinase-like

(TKL) PKs, were identified. It was also found that RLK-Pelle was involved in all selected mod-

ules (S6 Table). RLK-Pelle protein, which was considered as the largest family of PKs, played a

key role in developmental processes of meristem proliferation regulation, organ specification,

reproduction, and hormone signal transduction [79]. Also, it could act in the signaling net-

works that involved abiotic and biotic environmental stimuli [79]. Cowpea RLK-Pelle group

allocated in the plasma membrane led us to achieve an understanding of the extracellular

ligands and their role in activating the downstream pathways [80]. Moreover, it acted as a

transmembrane protein with extracellular receptor domains and intracellular kinase domains
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[80]. C2H2 TFs were associated with the promoter of the RLK-Pelle group. A number of

C2H2 members were involved in the process of pathogen defense [80]. RLK-Pelle was recog-

nized as the largest kinase group in the grapevine [81]. More than half of RLK-Pelle members

were down-regulated in most of the tissues during the development, which indicated that they

may have negative regulatory functions [81]. Several grapevine RLK-Pelle families were highly

co-expressed, which suggested their possible interactions in the process of plant stress response

signaling [81].

CAMK PKs were identified in the coral3 and lightsteelblue modules with four encoding

genes (S6 Table). The grapevine CAMK (CAMK_CAMKL-CHK1) and TKL (TKL-Pl-4) pro-

teins were up-regulated in response to stresses that caused dehydration, such as salt, PEG,

and drought [81]. TKL PK was observed in coral3 module (S6 Table). The TKL family was

found to be involved in the processes of growth, development, and stress response [82].

CMGC was also identified in the coral3 and darkorange2 modules with four encoding genes

(S6 Table). According to the estimations, CMGC would localize the nucleus and cytoplasm.

Moreover, it was down-regulated in response to salt, PEG, and drought treatments, while

up-regulated in response to heat stress in the grapevine and cowpea [80, 81]. Many non-RLK

groups, including CAMK, CMGC, STE, and TKL could positively regulate the plant growth

[81].

Identification of transporters. Transporters are molecules essential for plant develop-

ment that are involved in the plant transport system [83, 84]. In metabolic engineering, achiev-

ing a deep understanding of transport mechanisms and subcellular distribution of

biosynthesized phytochemicals is crucial for the successful metabolic engineering of medicinal

plants [85]. Using the TCDB database, 84 transporter families were identified (S7 Table). The

ATP-binding cassette (ABC) transporter, Nitrate-peptide transporter (NRT), Multidrug and

toxic compound extrusion (MATE), and Purine permease (PUP) are considered as transport-

ers involved in the movement of secondary metabolites [52]. Secondary metabolites are trans-

ported in the intercellular, intracellular, and intratissue fashion [85]. An ABC family of C-type

transporters is presumed in the vacuolar transport of anthocyanins [85]. NRTs transport

nitrates and peptides, while MATE transporters act as proton antiporters [52]. In addition, a

number of plant MATE transporters are involved in xenobiotic efflux, Fe translocation, Alu-

minium detoxification, and hormone signaling [52]. MATE transporters are involved in the

vacuolar transporter for flavonoids and anthocyanin vacuolar transportation [85]. Most

metabolites are transported through membranes, such as the carbohydrate transport in which

the SWEET transporters lead to the nectar secretion, plant-microbe interaction, and embryo

development [86]. Four transporters of the Sweet, PQ-loop, Saliva, and MtN3 family were

identified in the candidate modules (S7 Table). In Petunia axillaris, PaSWEET1 would supply

sugar as energy for flowering and volatile biosynthesis [86]. The ABC proteins act as transport-

ers of a diverse set of substrates including plant hormones, secondary metabolites, and lipid

monomers [86]. We identified six transporters of the ABC superfamily (S7 Table). The men-

tioned proteins were localized in most plant cell membranes [51] and played a vital role in the

process of plant development and defense mechanisms [84, 86]. G-type transporters ABC fam-

ily was involved in the volatile release and formation of cutin, wax, and suberin [52, 86]. Terpe-

noids were transported by the G-type ABC transporters [52]. According to the findings,

Nicotiana plumbaginifolia pleiotropic drug resistance1 (NpPDR1) was a G-type ABC trans-

porter involved in the resistance to fungal and oomycete pathogens through sclareol transmis-

sion to the plant surface [52]. N. tabacum pleiotropic drug resistance1 (NtPDR1), which is a

diterpene transporter, was also another G-type ABC transporter involved in the plant defense

procedure through transporting various anti-fungal diterpenes, such as sclareol, manool, cem-

brene, and eucalyptol [52].
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In our analysis, 27 transporters from the Mechanosensitive Calcium Channel (MCA) family

were found (S7 Table). MCA1 and MCA2, mechanosensitive calcium channels in Arabidopsis,
were involved in a cold-induced increase in [Ca2+]cyt and regulation of cold tolerance through

a pathway other than the C-repeat binding factor/dehydration-responsive element binding-

dependent (CBF/DREB1-dependent) pathway [87]. The Drug/Metabolite Transporter (DMT)

superfamily with nine transporters, The Eukaryotic Nuclear Pore Complex (E-NPC) family

with eight transporters, The Multidrug/Oligosaccharide-lipid/Polysaccharide (MOP) Flippase

superfamily with seven transporters, The Domain of Unknown Function 3339 (DUF3339)

family, The Major Facilitator Superfamily (MFS), The Amino Acid/Auxin Permease (AAAP)

superfamily, The ATP-binding Cassette (YOP1) family and The H+- or Na+-translocating F-

type, as well as V-type and A-type ATPase (F-ATPase) superfamily with six transporters, were

the most identified and investigated transporters (S7 Table).

Identification of mlncRNAs. The mlncRNAs are considered as a subset of long noncod-

ing RNAs (lncRNAs) and a new group of regulatory elements [88], which can be spliced, capped

and polyadenylated [43]. In plants, mlncRNAs have regulatory roles in phosphate-starvation

response, gender specific expression, nodulation, development, and response to hormones; also,

they can affect cellular activity through specific sequences and RNA-folding structures [89]. A

number of mlncRNAs play crucial roles in the organ development and defense responses

through producing microRNAs; moreover, they have regulatory roles in plants through gener-

ating siRNAs [43]. It was found that the majority of D. purpurea mlncRNAs were species-spe-

cific and a considerable number of them showed tissue specific expression and involvement in

plant development, cold and dehydration stress responses, and secondary metabolism [43].

Wu et al. (2012) confirmed that a number of mlncRNAs showed sense or antisense homol-

ogy with protein-coding genes involved in secondary metabolism in D. purpurea [43]. For

example, the 3’ UTR of D. purpurea 4-Hydroxy-3-methylbut-2-en-1-yl diphosphate synthase
(HDS) contained a 90 bp region with 87% identities to mlncR8. HDS was involved in the terpe-

noid backbone biosynthesis. In addition, the 5’ UTR of D. purpurea Solanesyl diphosphate
synthase (SPS) contained a 102 bp region that was highly complementary to mlncR31. SPS was

involved in the biosynthesis of ubiquinone and plastoquinone [43]. In Digitalis nervosa, Salimi

et al. (2018) showed that the expression levels of Δ5–3β-hydroxysteroid dehydrogenase (a key

gene in cardenolides biosynthesis, 3β-HSD), mlncRNA23, mlncRNA28, and mlncRNA30

across different tissues under normal conditions within leaves and roots were respectively high

and low [88]. It indicated the adjacent relationship between 3β-HSD and three mlncRNAs

through an unknown mechanism. Also, it revealed that the possible accumulation of mentioned

transcripts in the aerial parts of plants was associated with secondary metabolites biosynthesis

site [88]. Due to the fact that the expression levels of three mlncRNAs and 3β-HSD under stress

conditions are similar and decreased, mlncRNAs are more possibly stress-responsive [88].

In the current study, four mlncRNAs were detected for coral3 module including JO461863

(mlncR13), JO460006 (mlncR6), JO466327, and JO462746 (S8 Table). Moreover, this module

is associated with the secondary metabolites of glucodigitoxin and strospeside (S2 Table). The

expression levels of mlncR6 were also higher in leaves and roots [43]. A region with significant

similarity to the CDS of SNF1-related protein kinase (SnRK, JO461197) was included in

mlncR6; also, expression of this gene was positively correlated with mlncR6 in cold and dehy-

dration stresses [43].

Identification of hub genes

Hub genes have regulatory roles and impact on the downstream pathways [12]. They are

involved in basic processes, including the protein synthesis and secondary metabolite
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biosynthesis. The hub gene SCL14 was identified in the blue2 module, which was associated

with the secondary metabolites of digitoxigenin bis-digitoxoside and gitoxin (S2 Table). This

gene encodes a member of TFs GRAS family (Fig 11A and S9 Table). It is a TF of the scare-

crow-like protein subfamily and interacts with TGA II TF that affects the transcription of

stress-responsive genes. GRAS proteins are involved in gibberellic acid (GA) signaling, phyto-

chrome A signal transduction detoxification, biotic, and abiotic stress-related response pro-

cess, and development [90, 91]. This TF interacts with DWF1, which is involved in the

biosynthesis of steroid (ath00100) and converts substances (S2 Fig). This enzyme was observed

in coral3 module and showed a high positive correlation and significant P-value with glucodi-

gitoxin and strospeside (S2 Table).

The hub gene ATP-binding cassette G21 (AT3G25620, ABCG21) is related to the secondary

metabolites of digitoxigenin bis-digitoxoside and gitoxin in the blue2 module (Fig 11A and S2

and S9 Tables). The hub gene ATP-binding cassette G22 (AT5G06530, ABCG22) is related to

the secondary metabolites of digitoxigenin bis-digitoxoside in the lightsteelblue module (Fig

11G and S2 and S9 Tables). The G-type ABC transporters are involved in the terpenoids trans-

portation [52]. Another hub gene is BIGPETAL TF (AT1G59640, BPE), which controls the

petal size and was identified in the blue2 module related to the secondary metabolites of digi-

toxigenin bis-digitoxoside and gitoxin (Fig 11A and S2 and S9 Tables). Furthermore, TCP5
(AT5G60970) is a hub gene and encodes a TF within lightsteelblue module, which showed a

correlation with digitoxigenin bis-digitoxoside (Fig 11G and S2 and S9 Tables). MYB81

Fig 11. A total number of 140 hub genes in seven modules. The top 20 hub genes in each selected module, including blue2 (A), chocolate3 (B), coral3

(C), coral4 (D), darkorange2 (E), lightpink4 (F), and lightsteelblue (G) modules. Nodes represent genes in the network and red nodes indicate the hub

genes. The gray line connecting two nodes indicates their connection.

https://doi.org/10.1371/journal.pone.0277293.g011
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(AT2G26960) is a hub gene and observed in chocolate3 module that was significantly associ-

ated with digitoxigenin bis-digitoxoside. The hub gene Trihelix transcription factor GT-2
(AT1G76890, GT-2), which encoded a TF, was identified in the blue2 module that was associ-

ated with digitoxigenin bis-digitoxoside and gitoxin (Fig 11A and S2 and S9 Tables).

One of the key genes that produced the secondary metabolites of the above-mentioned

medicinal plant within the lightsteelblue module was UDP-glycosyltransferase 85A7
(AT1G22340, UGT85A7). This hub gene was related to the secondary metabolite biosynthesis

of digitoxigenin bis-digitoxoside and cardenolides [43] (Fig 11G and S2 and S9 Tables).

Among the hub genes that carry sugar compounds, SWEET15 (AT5G13170) was identified in

the lightsteelblue module, which was associated with digitoxigenin bis-digitoxoside (Fig 11G

and S2 and S9 Tables). There is also another hub gene that acts as PKs, such as ATAXIA-Telan-
giectasia Mutated (AT3G48190, ATM). It was observed in the darkorange2 module signifi-

cantly associated with digitoxigenin bis-digitoxoside (Fig 11E and S2 and S9 Tables). The hub

gene Cysteine-rich receptor-like protein kinase 8 (AT4G23160, CRK8) belongs to RLK-Pelle

family, which was identified in the blue2 module that was associated with the secondary

metabolites of digitoxigenin bis-digitoxoside and gitoxin (Fig 11A and S2 and S9 Tables).

The hub gene IPK plays a vital role in terpenoid backbone biosynthesis (ath00900). It was iden-

tified in chocolate3 module which was significantly related to digitoxigenin bis-digitoxoside

(Orthology: K06981) (Fig 11B and S1 Fig and S2 and S9 Tables). These hub genes were identi-

fied as promising candidates that improved the production of secondary metabolites. As it

could be observed in the networks, several hub genes had the highest degree of connectivity

among all 140 identified hub genes (Fig 11A–11G and S9 Table).

Fig 12 represents the interactions of hub proteins through STRING database and showed

the minimum required interaction score on the highest confidence (0.900) (Fig 12 and S10

Table). According to the GO, their activities in response to stimulus (GO:0050896), cellular

macromolecule metabolic process (GO:0044260), metabolic process (GO:0008152), and cellu-

lar process (GO:0009987) are respectively shown in red, blue, green, and yellow (Fig 12). The

Fig 12. The protein-protein interactions of hub proteins. Response to the stimulus (GO:0050896), cellular

macromolecule metabolic process (GO:0044260), metabolic process (GO:0008152), and cellular process (GO:0009987)

are respectively shown in red, blue, green, and yellow.

https://doi.org/10.1371/journal.pone.0277293.g012
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interaction between nodes represented in Fig12 and related scores are provided in S10 Table

(Fig 12 and S10 Table). Annotations of each node are also illustrated in (S11 Table).

Validation of candidate genes

To investigate the induction effect of MeJA on JAZ3, SCL14, DWF1, and HYD1 expression pat-

terns, biennial plants were treated with 100 μM MeJA at the mentioned time points (Fig 13).

In this study, JAZ3 was chosen as a candidate gene to know whether it responds to MeJA

induction or not. Jasmonates are the best recognized key signal transducers that stimulate the

Fig 13. The relative expression of candidate genes. The expression pattern of JAZ3, SCL14, DWF1, and HYD1 was evaluated under 100 μM MeJA

treatment in Digitalis purpurea L. X axis represents the fold change of the expression value. Y axis represents time points. Vertical bars indicate ± SE of

the mean (n = 3). The different letters on columns represent the significant difference given by Duncan’s multiple range tests (P-value� 0.05). There

were no significant differences between equal letters (P-value� 0.05). Although the expression of JAZ3 is early induced, a significant suppression is

observed after 48 h. Other key genes particularly SCL14, targeting DWF1, and HYD1, inducing cholesterol biosynthesis and cardiac glycoside content,

showed a significant increase in the expression.

https://doi.org/10.1371/journal.pone.0277293.g013
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overproduction of secondary metabolites [92]. Pérez-Alonso et al. (2014) evaluated the elici-

tors including MeJA, induced production of cardenolide in D. purpurea L. [93]. They showed

that digoxin and digitoxin contents were increased by 80 and 100 μM MeJA respectively [93].

Rad et al. (2022) evaluated the induction of secondary metabolites in D. purpurea by applying

polyamines and MeJA in suspension cultures [94]. El-Sayed et al. (2019) confirmed that the

highest Digoxin production was obtained by using malt extract autolysate medium supple-

mented by MeJA [95].

Response of JAZ3 to exogenous MeJA. Although JAZ3 showed no the significant expres-

sion at 3 h after MeJA treatment, it was significantly induced after 6 h and reached to the high-

est expression after 24 h, and decreased after 48 h (Fig 13A). This indicated that JAZ3 was

responsive to MeJA induction. The JAZ family are key transcriptional repressors in the JA sig-

nal transduction pathways [96–98]. Under normal conditions, JA content is maintained at a

relatively low level, in which the JAZ repressor interacts with MYC2. This interaction inhibits

downstream JA signaling responses including fertility process, root growth, senescence prog-

ress, secondary metabolite accumulation, and defense pathways. Large amounts of accumu-

lated JA perceived by coronatine-insensitive 1(COI1) and JAZ proteins are degraded via the

SCFCOI1 (Skp/Cullin/F-box) complex and leading to the activation of JA responsive genes and

TFs (MYC2, MYC3, MYC4, MYB75, and others). In fact, COI1 binds the JA conjugate JA-iso-
leucine (JA-Ile) and this interaction enables the SCFCOI complex to recognize JAZ proteins

[96–98]. It is worth noting that, accumulation of JAs decreased after stress, and the expression

of JA biosynthesis genes increased [99]. In the JA biosynthesis pathway, linolenic acid as the

substrate for the biosynthesis of JA, convert to 12-oxo-phytodienoic acid (OPDA) by lipoxy-

genase (LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC). Then, OPDA is

reduced by 12-oxo-phytodienoic acid reductase (OPR), to generate JA [45]. It seems that the

increased expression of JAZ3 at 6 h and 24 h after MeJA treatment is because of degradation of

JAZ proteins and reduction of JA content (Fig 13A). Han and Luthe (2022) investigated the

effect of response to Fall Armyworm (FAW) feeding on the accumulation of JA in caterpillar-

resistant maize [99]. They showed the accumulation of JA continued until 1 h and then

decreased at 6 h and 12 h. Moreover, JA biosynthesis genes in response to FAW feeding and

exogenous application of MeJA were increased at 6 h in maize inbred lineTx601 and at 12 h in

maize inbred line Mp708 [99].

Based on the following research, it is possible that the decrease in JAZ3 expression 48 h

after MeJA treatment will increase the secondary metabolites. Shi et al. (2016) found that over-

expression of SmJAZ3 in hairy roots produced lower levels of tanshinone whereas down-regu-

lation of SmJAZs enhanced tanshione production [100]. Ju et al. (2019) discovered that the

transcript abundance of JAZ3 was rapidly up-regulated by MeJA treatment at 3 h, 6 h, and 12

h and was slowly and mildly up-regulated by ABA treatment at 24 h and finally the JAZ3 was

rapidly and completely degraded by MeJA treatment in bread wheat and Arabidopsis [101].

Shoji et al. (2008) showed that jasmonate-induced up-regulation of nicotine biosynthesis is

mediated by tobacco COI1 and JAZ repressors [102].

Li et al. (2021) confirmed that expression level of SmJAZ3 was increased at 0.5 h and

decreased at 1 h then increased from 2 h until reached to the highest level at 12 h after 100 μM

MeJA elicitation in S. miltiorrhiza [103]. Han and Luthe (2022) showed the exogenous applica-

tion of 0.01% MeJA was affected on the expression of ZmJAZ3 as the highest level of expression

was observed at 6 h after treatment in caterpillar-resistant maize [99]. In response to the exoge-

nous application of MeJA, the highest expression of ZmLOX, ZmAOS, and ZmOPR2 as JA bio-

synthesis, genes were observed at 6 h in maize inbred line Tx601 and the highest expression of

ZmLOX, and ZmOPR2 were detected at 12 h but the highest expression of ZmAOS was seen at

6 h in maize inbred line Mp708 [99].
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According to GO analysis, JA biosynthetic (GO:0009695) and oxylipin biosynthetic

(GO:0031408) processes are recognized as signals in response to the stresses and biosynthesis,

and accumulation of secondary metabolites like TIAs, ginsenoside, taxol, MIAs, and artemisi-

nin which are produce via biosynthesis of terpenoids and steroids pathway [45, 46, 48] that are

according to our results as shown in Fig 9. In fact, it seems that the induced expression of JAZ3
from 6 h to 24 h after MeJA elicitation is the cause of decrease in the accumulation of JAs and

degradation of JAZ proteins at these point times (Fig 13A).

Response of SCL14 to exogenous MeJA. Based on our results, the expression of SCL14
encoding a GRAS TF was induced at 3 h and reached to the highest level at 6 h after 100 μM

MeJA treatment and then decreased (Fig 13B). This gene is critical for indirect defense [104].

This gene is an additional component in the regulation and activation of some detoxification

genes that are putatively involved in the detoxification of xenobiotics [105]. In fact, SCL14,

TGA2, TGA5, and TGA6 are involved in the detoxification by inducing the expression of a

subset of the genes. For example, the scl14, tga2, tga5, and tga6 mutants in Arabidopsis were

more susceptible to toxic doses of isonicotinic acid and 2,4,6-triiodobenzoic acid [105]. These

genes control the majority of cis-jasmone-induced genes and cis-jasmone-induced defense

[104]. In addition, MYC TFs as activators of the JA responsive signals, and TGA TFs as well-

known players in the SA responsive signals and in detoxifying mechanisms but altogether,

both of them mediate the responses to xenobiotics and their combined action is required for

the complete activation of the responses [106]. Moreover, cis-acting element of activation

sequence-1 (as-1) in the promoters of defense- and stress-related genes is mainly activated by

the TGA II TF under auxin- and SA-mediated stimuli [105, 106]. SCL14 bind to the promoters

containing (as-1)–like cis-elements too [106, 107]. Finally, under JA induction, MYC2 binds

to the G-boxes and stringently requires the presence of TGA TFs at the as-1-like cis-acting ele-

ment [108]. It seems that high expression of SCL14 under MeJA treatment (Fig 13B) is because

of degradation of JAZ3, and activation of MYC TFs (including MYC2, MYC3, and MYC4)

and JA responsive genes. In addition, high expression of SCL14 under MeJA treatment could

be associated with the requirement for the presence of TGA TFs at the as-1-like element for

MYC2 [108].

According to GO and KEGG pathway analysis, transport auxin (GO:0060918), auxin

responsive genes (GO:0009733), and auxin-activated signaling pathways (GO:0009734) are

considered as important GO terms (Fig 9) because of the activation of as-1 cis–acting element

by the TGA II TFs responsive to auxin and SA mediated stimuli. Chorismate biosynthetic pro-

cess (GO:0009423) (Fig 9) is associated with aromatic amino acid family biosynthetic process

(GO:0009073) and phenylalanine, tyrosine, and tryptophan biosynthesis (ath00400) (Fig 10).

In plants, chorismate is a precursor of AAA and an initial compound for isochorismate path-

way to SA [49, 50]. In addition, AAAs are precursors for a wide range of secondary metabo-

lites, various pigment compounds, and plant hormones, such as auxin and SA [49, 50]. Thus,

high expression of SCL14 can be related to the interaction with TGA TFs that are well-known

players in the SA responsive signals (Fig 13B). SCL14 interacts with DWF1 which is involved

in the biosynthesis of steroids (ath00100) including cholesterol that is a precursor of cardiac

glycosides. In fact, in this pathway cholesterol is converted into the C21 steroid and cardiac

glycoside via a series of enzyme catalytic reactions [109]. SCL14 was associated with biosynthe-

sis of the secondary metabolites of digitoxigenin bis-digitoxoside and gitoxin (S2 Table) and

DWF1 showed a high positive and significant correlation with glucodigitoxin and strospeside

biosynthesis (S2 Table). It seems that the induced expression of SCL14 under MeJA treatment

(Fig 14) promotes the expression of DWF1 (Fig 14), therefore enhances cholesterol biosynthe-

sis as precursor of cardiac glycosides.
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Response of DWF1 to exogenous MeJA. The expression of DWF1 increased after all time

points as the highest expression was observed at 24 h (Fig 13C). This gene is downstream of

SCL14 TF, therefore it targets DWF1 (Fig 13C). It seems that high expression of SCL14 and

DWF1 are associated with each other under MeJA treatment (Fig 14) and enhance cholesterol

biosynthesis. Razdan et al. (2017) showed that the expression of WsDWF1 increased at 6 h, 12

h, 24 h, 48 h, and 72 h after 0.1 mM MeJA treatment in Withania somnifera as the highest

expression was observed at 48 h [110]. They confirmed that the highest withanolides accumu-

lation was detected at 48 h [110]. Upadhyay et al. (2014) observed the DWF1 accumulation at

5 h and decreased at 12 h under MeJA treatment in Asparagus racemosus [111]. Ciura et al.

(2017) discovered that 100 μM MeJA treatment enhances the production of diosgenin in fenu-

greek (Trigonella foenum-graecum) tissues [112].

Wang et al. (2012) presented that overexpression of wild-type and mutant BjHMGS1
(3-hydroxy-3-methylglutaryl-CoA synthase 1) in Arabidopsis, up-regulates the genes involved

in sterol biosynthesis like DWF1 [113]. DWF1 is located downstream of HMGS1. HMGS1
enhanced seed germination and sterol content, stress tolerance, reduced hydrogen peroxide

(H2O2)–induced cell death, and increased resistance to Botrytis cinerea [113]. This study indi-

cated that overexpression of upstream genes induces expression of downstream genes and

enhanced secondary metabolite content. Mehmandoust Rad et al. (2020) showed that the

application of polyamines and MeJA in D. purpurea had significant effects on the expression

of 1-Deoxy-d-Xylulose 5-phosphate Reductoisomerase (DXR) and contents of cardenolide and

digitoxin and enhanced the expression of DXR and contents of cardenolide and digitoxin

[114]. Thus, it is possible that by increasing the expression of DWF1 under MeJA treatment, it

increases the expression of the downstream genes like 3β-HSD and increases the amount

of cardiac glycosides. The expression of 3β-HSD was increased under MeJA treatment and

Fig 14. The comparative relative expression of the candidate genes under 100 μM MeJA treatment in Digitalis purpurea L.

Here, the expression pattern of JAZ3, SCL14, DWF1, and HYD1 is compared. X axis represents the fold change of the expression

of candidate genes. Y axis represents time points. Vertical bars indicate ± SE of the mean (n = 3). The different letters on

columns represent the significant difference given by Duncan’s multiple range tests (P-value� 0.05). There were no significant

differences between equal letters (P-value� 0.05). The interesting point is that the expression of HYD1, involved in the

biosynthesis of cholesterol and subsequently the cardiac glycosides, shows a stable increase after 48 h. In contrast, other genes

are suppressing and JAZ3, inducing the downstream genes, shows a significant suppression.

https://doi.org/10.1371/journal.pone.0277293.g014
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pregnenolone was converted into progesterone [115]. In steroidal sapogenin biosynthesis

pathway, HYD1 converts 4α-methylcholesta-8,24-dien-3β-ol to 4α-methylcholest-7,24-dien-

3β-ol and DWF1 converts desmosterol to cholesterol [112].

Response of HYD1 to exogenous MeJA. The expression of HYD1 increased and showed

the highest expression at 48 h after treatment (Fig 13D). Two genes, DWF1 and HYD1 are

involved in the steroid biosynthesis pathway. It seems that high expression of DWF1 and

HYD1 are associated with each other under MeJA treatment (Fig 14) so that enhances choles-

terol biosynthesis. HYD1 was associated with digitoxigenin bis-digitoxoside. Zhang et al.

(2017) performed transcriptome analysis in leaves, roots, adventitious roots, and calli of Peri-
ploca sepium and identified higher expression of HYD1. Many genes like HYD1 were signifi-

cantly up-regulated in adventitious roots and calli but DWF1 was significantly down-regulated

in leaves [109]. Ciura et al. (2018) found that the highest diosgenin content was observed after

treatment with 100 μM MeJA in T. foenum-graecum and the expression of the genes coding

HYD1 and DWF1 was elevated [116]. Thus, it is possible that by increasing the expression

of HYD1 under MeJA treatment, it increases the expression of the downstream genes and

increases the amount of cardiac glycosides.

According to GO and KEGG pathway analysis, endoplasmic reticulum membrane

(GO:0005789) and integral component of membrane (GO:0016021) GO terms are associated

with localization of DWF1 [117]. The secondary metabolite biosynthesis (ath01110) (Fig 10) is

related to the genes of HYD1 and DWF1 that are involved in the steroid biosynthesis pathway

resulting in the formation of precursors of cardiac glycosides [109].

Key genes and other genes effective on the cardiac glycosides production

In this study, WGCNA analysis has been used to identify key genes and pathways associated

with biosynthesis of secondary metabolites in D. purpurea based on a systemic view and inte-

gration of metabolomics and transcriptomics data. Based on a systemic view, upstream genes

were chosen as candidate genes. DWF1 and HYD1 were involved in the process of steroid bio-

synthesis to produce precursors of cardiac glycosides (cholesterol). DWF1 is downstream of

SCL14. In this study, the expression of SCL14, DWF1, and HYD1 increased at all-time points.

It seems that increasing the expression of these genes increases cholesterol as a precursor and

the amount of cardiac glycosides is likely to increase. Cholesterol is the starting point of carde-

nolide formation in Digitalis spp. [31]. The expression of 3β-HSD was increased at 1 h under

0.1 mM MeJA in D. nervosa [115]. P5βR and P5βR2 were increased at 4 h and 8 h and

decreased at 24 h and 48 h under 100 μM MeJA treatment in D. purpurea [118]. In cardenolide

biosynthesis first, sterols transform to pregnenolone then, this pregnene is converted by 3β-
HSD into progesterone [118]. Progesterone converts to 5β-pregnan-3,20-dione by Progester-
one 5β-reductase (P5βR) [118]. In this pathway, P5βR2 catalyzes the 5β-reduction of the Δ4

double bond of several steroids [118]. Ordinal hydroxylations at C14 and C21 and lactone ring

formation at C17 lead to aglycone digitoxigenin [118]. Finally, digitoxigenin bis-digitoxoside

converts to digitoxin, which is a lipid soluble cardiac glycoside and precursor of glucodigitoxin

and gitoxin [31, 119, 120]. Munkert et al. (2014) showed that MeJA treatment enhanced the

transcription of 3β-HSDs (EcHSD2 and EcHSD3) and the accumulation of erysimoside and

helveticoside in Erysimum crepidifolium [121].

Finally, an increase in the expression of upstream genes has been observed under MeJA

treatment, and the amount of cardiac glycosides also increases [114]. Increasing the expression

of SCL14 as a hub gene, affects the whole network and induces the expression of DWF1 and

HYD1. Thus an increase in the expression of candidate genes from WGCNA analysis under

methyl jasmonate treatment was expected and confirmed bioinformatic results.
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Conclusions

Cardiac glycosides are mainly generated through the members of Digitalis genus. In this

study, for the first time, an attempt has been made to identify key genes and pathways asso-

ciated with biosynthesis of secondary metabolites based on a systemic view and combina-

tion of transcriptome and metabolome data in D. purpurea. Based on the systems biology

insight, the candidate genes could be effective in enhancing the production of secondary

metabolites. MeJA treatment enhanced transcription of JAZ3, HYD1, SCL14, and DWF1.

DWF1 showed a high positive correlation with glucodigitoxin and strospeside and HYD1
was associated with digitoxigenin bis-digitoxoside. Based on WGCNA, SCL14 was a hub

gene affecting on whole metabolite network under MeJA treatment. The key genes of DWF1
and HYD1 induce amount of precursors of cardiac glycosides. It is recommended that

future research be carried out on the manipulation of metabolic pathways and metabolic

engineering of the introduced genes to increase the production of valuable metabolites in D.

purpurea.
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(DOCX)

S2 Table. The correlation and P-value of candidate modules associated with the secondary

metabolites.

(DOCX)

S3 Table. Some genes in selected modules with central roles in biosynthesis of secondary

metabolites.

(DOCX)

S4 Table. Transcription factors involved in the modules related to the production of sec-

ondary metabolites.

(DOCX)

PLOS ONE A systems biology approach—Gene networks related to metabolite biosynthesis in Digitalis purpurea

PLOS ONE | https://doi.org/10.1371/journal.pone.0277293 March 9, 2023 27 / 35

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s003
http://metnetweb.gdcb.iastate.edu/PMR/
http://metnetweb.gdcb.iastate.edu/PMR/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s006
https://doi.org/10.1371/journal.pone.0277293


S5 Table. Transcriptional regulators in the modules related to secondary metabolite pro-

duction.

(DOCX)

S6 Table. Protein kinases involved to the biosynthesis of secondary metabolites.

(DOCX)

S7 Table. Protein transporters. List of protein transporters in modules related to secondary

metabolite production.

(DOCX)

S8 Table. The key mlncRNAs identified in the coral3 module.

(DOCX)

S9 Table. The top 140 hub genes. The top 20 hub genes in the networks of each selected mod-

ule, ranked by the MCC method.

(DOCX)

S10 Table. Protein-protein interactions of hub proteins.

(DOCX)

S11 Table. Annotation of hub protein interactions. Annotation of each node in protein-pro-

tein interactions of hub proteins.

(DOCX)

Acknowledgments

The authors would like to thank the Institute of Biotechnology for supporting this research

and the Bioinformatics Research Group in the College of Agriculture (Shiraz University). We

thank Doctor Ruhollah Naderi (Shiraz University) for kindly supplying seeds of barley. We

thank Doctor Farzaneh Aram (Shiraz University) for her help in performing the RT-qPCR

experiments.

Author Contributions

Conceptualization: Ali Moghadam, Ahmad Tahmasebi.

Data curation: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Formal analysis: Fatemeh Amiri, Ali Moghadam, Ahmad Tahmasebi.

Funding acquisition: Ali Moghadam, Ahmad Tahmasebi.

Investigation: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Methodology: Fatemeh Amiri, Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Project administration: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Resources: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Software: Fatemeh Amiri, Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Supervision: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Validation: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Visualization: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

Writing – original draft: Fatemeh Amiri.

PLOS ONE A systems biology approach—Gene networks related to metabolite biosynthesis in Digitalis purpurea

PLOS ONE | https://doi.org/10.1371/journal.pone.0277293 March 9, 2023 28 / 35

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0277293.s013
https://doi.org/10.1371/journal.pone.0277293


Writing – review & editing: Ali Moghadam, Ahmad Tahmasebi, Ali Niazi.

References
1. Mahabir D, Gulliford MC. Use of medicinal plants for diabetes in Trinidad and Tobago. Revista Pana-

mericana de Salud Pública. 1997; 1:174–9. https://doi.org/10.1590/s1020-49891997000300002

PMID: 9128111

2. Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future. Science. 2016;

353(6305):1232–6. https://doi.org/10.1126/science.aad2062 PMID: 27634523

3. Kumar A, Jnanesha A. Cultivation, Utilization and Role of Medicinal Plants in Tradition Medicine in

Deccan Eco-climate. International Journal on Agricultural Sciences. 2017; 8(1):98–103.

4. Tamboli FA, More HN, Khairmode SS, Patil DR, Tambare PD, Shinde AJ, et al. Importance Of Medici-

nal Plants And Herbs As An Immunity Booster For Pandemic COVID-19. Tropical Journal of Pharma-

ceutical and Life Sciences (TJPLS Journal). 2021; 8(1):01–9.

5. Vaishnav P, Demain AL. Unexpected applications of secondary metabolites. Biotechnology Advances.

2011; 29(2):223–9. https://doi.org/10.1016/j.biotechadv.2010.11.006 PMID: 21130862

6. Kreis W. The foxgloves (Digitalis) revisited. Planta Medica. 2017; 83(12/13):962–76. https://doi.org/

10.1055/s-0043-111240 PMID: 28561136

7. Amarnani S. Inkwood Research (Global Botanical & Plant Derivative Drug Market Forecast 2018–

2026). https://inkwoodresearch.com/reports/botanical-and-plant-derivative-drug-market/.

8. Sharma V, Sarkar IN. Bioinformatics opportunities for identification and study of medicinal plants.

Briefings in bioinformatics. 2013; 14(2):238–50. https://doi.org/10.1093/bib/bbs021 PMID: 22589384

9. Bolhassani M, Niazi A, Tahmasebi A, Moghadam A. Identification of key genes associated with sec-

ondary metabolites biosynthesis by system network analysis in Valeriana officinalis. Journal of plant

research. 2021; 134(3):625–39. https://doi.org/10.1007/s10265-021-01277-5 PMID: 33829347

10. Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A. A global co-expression net-

work approach for connecting genes to specialized metabolic pathways in plants. The Plant Cell.

2017; 29(5):944–59. https://doi.org/10.1105/tpc.17.00009 PMID: 28408660

11. Garagounis C, Delkis N, Papadopoulou KK. Unraveling the roles of plant specialized metabolites:

Using synthetic biology to design molecular biosensors. New Phytologist. 2021; 231(4):1338–52.

https://doi.org/10.1111/nph.17470 PMID: 33997999

12. Pazhamala LT, Kudapa H, Weckwerth W, Millar AH, Varshney RK. Systems biology for crop improve-

ment. The Plant Genome. 2021(Early View):e20098. https://doi.org/10.1002/tpg2.20098 PMID:

33949787

13. Rani SG, Kumari H, Pati P, Naaz S, Prasad T, Kumari R, et al. Recent approaches of systems biology

and omics in plant research. Journal of Current Opinion in Crop Science. 2021; 2(2):288–305.

14. Tahmasebi A, Aram F, Pakniyat H, Niazi A, Tavakol E, Ebrahimie E. Global Analysis of Gene Expres-

sion and Identification of Modules in Echinacea purpurea Using Systems Biology Approach. Journal of

Cell and Molecular Research. 2018; 10(1):18–26. https://doi.org/10.22067/JCMR.V10I1.67357

15. Higashi Y, Saito K. Network analysis for gene discovery in plant-specialized metabolism. Plant, cell &

environment. 2013; 36(9):1597–606. https://doi.org/10.1111/pce.12069 PMID: 23336321

16. Chang Y, Wang M, Li J, Lu S. Transcriptomic analysis reveals potential genes involved in tanshinone

biosynthesis in Salvia miltiorrhiza. Scientific reports. 2019; 9(1):1–12. https://doi.org/10.1038/s41598-

019-51535-9 PMID: 31624328

17. Tai Y, Ling C, Wang C, Wang H, Su L, Yang L, et al. Analysis of terpenoid biosynthesis pathways in

German chamomile (Matricaria recutita) and Roman chamomile (Chamaemelum nobile) based on co-

expression networks. Genomics. 2020; 112(2):1055–64. https://doi.org/10.1016/j.ygeno.2019.10.023

PMID: 31706023

18. Yuan Y, Zhang B, Tang X, Zhang J, Lin J. Comparative transcriptome analysis of different Dendrobium

species reveals active ingredients-related genes and pathways. International journal of molecular sci-

ences. 2020; 21(3):861. https://doi.org/10.3390/ijms21030861 PMID: 32013237

19. Zhu J, Xu Q, Zhao S, Xia X, Yan X, An Y, et al. Comprehensive co-expression analysis provides novel

insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant

Science. 2020; 290:110306. https://doi.org/10.1016/j.plantsci.2019.110306 PMID: 31779914

20. Li H, Cheng X, Zhang L, Hu J, Zhang F, Chen B, et al. An Integration of Genome-Wide Association

Study and Gene Co-expression Network Analysis Identifies Candidate Genes of Stem Lodging-

Related Traits in Brassica napus. Frontiers in Plant Science. 2018; 9(796). https://doi.org/10.3389/

fpls.2018.00796 PMID: 29946333

PLOS ONE A systems biology approach—Gene networks related to metabolite biosynthesis in Digitalis purpurea

PLOS ONE | https://doi.org/10.1371/journal.pone.0277293 March 9, 2023 29 / 35

https://doi.org/10.1590/s1020-49891997000300002
http://www.ncbi.nlm.nih.gov/pubmed/9128111
https://doi.org/10.1126/science.aad2062
http://www.ncbi.nlm.nih.gov/pubmed/27634523
https://doi.org/10.1016/j.biotechadv.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/21130862
https://doi.org/10.1055/s-0043-111240
https://doi.org/10.1055/s-0043-111240
http://www.ncbi.nlm.nih.gov/pubmed/28561136
https://inkwoodresearch.com/reports/botanical-and-plant-derivative-drug-market/
https://doi.org/10.1093/bib/bbs021
http://www.ncbi.nlm.nih.gov/pubmed/22589384
https://doi.org/10.1007/s10265-021-01277-5
http://www.ncbi.nlm.nih.gov/pubmed/33829347
https://doi.org/10.1105/tpc.17.00009
http://www.ncbi.nlm.nih.gov/pubmed/28408660
https://doi.org/10.1111/nph.17470
http://www.ncbi.nlm.nih.gov/pubmed/33997999
https://doi.org/10.1002/tpg2.20098
http://www.ncbi.nlm.nih.gov/pubmed/33949787
https://doi.org/10.22067/JCMR.V10I1.67357
https://doi.org/10.1111/pce.12069
http://www.ncbi.nlm.nih.gov/pubmed/23336321
https://doi.org/10.1038/s41598-019-51535-9
https://doi.org/10.1038/s41598-019-51535-9
http://www.ncbi.nlm.nih.gov/pubmed/31624328
https://doi.org/10.1016/j.ygeno.2019.10.023
http://www.ncbi.nlm.nih.gov/pubmed/31706023
https://doi.org/10.3390/ijms21030861
http://www.ncbi.nlm.nih.gov/pubmed/32013237
https://doi.org/10.1016/j.plantsci.2019.110306
http://www.ncbi.nlm.nih.gov/pubmed/31779914
https://doi.org/10.3389/fpls.2018.00796
https://doi.org/10.3389/fpls.2018.00796
http://www.ncbi.nlm.nih.gov/pubmed/29946333
https://doi.org/10.1371/journal.pone.0277293


21. Lv L, Zhang W, Sun L, Zhao A, Zhang Y, Wang L, et al. Gene co-expression network analysis to iden-

tify critical modules and candidate genes of drought-resistance in wheat. PloS one. 2020; 15(8):

e0236186. https://doi.org/10.1371/journal.pone.0236186 PMID: 32866164

22. Shahan R, Zawora C, Wight H, Sittmann J, Wang W, Mount SM, et al. Consensus Co-

expression Network Analysis Identifies Key Regulators of Flower and Fruit Development in Wild

Strawberry. Plant physiology. 2018; 178(1):202–16. https://doi.org/10.1104/pp.18.00086 PMID:

29991484

23. Yuan H, Zeng X, Yang Q, Xu Q, Wang Y, Jabu D, et al. Gene co-expression network analysis com-

bined with metabonomics reveals the resistance responses to powdery mildew in Tibetan hulless bar-

ley. Scientific reports. 2018; 8(1):14928. https://doi.org/10.1038/s41598-018-33113-7 PMID:

30297768

24. Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, et al. Co-expression tools for

plant biology: opportunities for hypothesis generation and caveats. Plant, cell & environment. 2009; 32

(12):1633–51. https://doi.org/10.1111/j.1365-3040.2009.02040.x PMID: 19712066

25. Degli Esposti D, Almunia C, Guery M-A, Koenig N, Armengaud J, Chaumot A, et al. Co-expression net-

work analysis identifies gonad-and embryo-associated protein modules in the sentinel species Gam-

marus fossarum. Scientific reports. 2019; 9(1):1–10. https://doi.org/10.1038/s41598-019-44203-5

PMID: 31133674

26. Guo K, Zou W, Feng Y, Zhang M, Zhang J, Tu F, et al. An integrated genomic and metabolomic frame-

work for cell wall biology in rice. BMC genomics. 2014; 15(1):1–14. https://doi.org/10.1186/1471-2164-

15-596 PMID: 25023612

27. Fuller T, Langfelder P, Presson A, Horvath S. Review of weighted gene co-expression network analy-

sis. Handbook of Statistical Bioinformatics: Springer; 2011. p. 369–88.

28. Sun W, Wang B, Yang J, Wang W, Liu A, Leng L, et al. Weighted gene co-expression network analysis

of the dioscin rich medicinal plant Dioscorea nipponica. Frontiers in plant science. 2017; 8:789. https://

doi.org/10.3389/fpls.2017.00789 PMID: 28638386

29. Zahid H, Rizwani GH. Digitalis purpurea L.: A Concise Drug Review with Probable Clinical Uses. Ham-

dard Medicus. 2016; 59(2):25–32.

30. Joost A, Kurowski V, Kaiser A, Radke P. Intoxication by Digitalis purpurea in suicidal intention-a case

report. Medicina Interna. 2010; 4:77–81.

31. Kreis W, Hensel A, Stuhlemmer U. Cardenolide Biosynthesis in Foxglove1. Planta medica. 1998; 64

(06):491–9. https://doi.org/10.1055/s-2006-957500
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