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Abstract

Objectives

A well-known drawback to the implementation of Convolutional Neural Networks (CNNs) for

image-recognition is the intensive annotation effort for large enough training dataset, that

can become prohibitive in several applications. In this study we focus on applications in the

agricultural domain and we implement Deep Learning (DL) techniques for the automatic

generation of meaningful synthetic images of plant leaves, which can be used as a virtually

unlimited dataset to train or validate specialized CNN models or other image-recognition

algorithms.

Methods

Following an approach based on DL generative models, we introduce a Leaf-to-Leaf Trans-

lation (L2L) algorithm, able to produce collections of novel synthetic images in two steps:

first, a residual variational autoencoder architecture is used to generate novel synthetic leaf

skeletons geometry, starting from binarized skeletons obtained from real leaf images. Sec-

ond, a translation via Pix2pix framework based on conditional generator adversarial net-

works (cGANs) reproduces the color distribution of the leaf surface, by preserving the

underneath venation pattern and leaf shape.

Results

The L2L algorithm generates synthetic images of leaves with meaningful and realistic

appearance, indicating that it can significantly contribute to expand a small dataset of real

images. The performance was assessed qualitatively and quantitatively, by employing a DL

anomaly detection strategy which quantifies the anomaly degree of synthetic leaves with

respect to real samples. Finally, as an illustrative example, the proposed L2L algorithm was

used for generating a set of synthetic images of healthy end diseased cucumber leaves

aimed at training a CNN model for automatic detection of disease symptoms.

Conclusions

Generative DL approaches have the potential to be a new paradigm to provide low-cost

meaningful synthetic samples. Our focus was to dispose of synthetic leaves images for
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smart agriculture applications but, more in general, they can serve for all computer-aided

applications which require the representation of vegetation. The present L2L approach rep-

resents a step towards this goal, being able to generate synthetic samples with a relevant

qualitative and quantitative resemblance to real leaves.

Introduction

The ability to generate realistic synthetic images of leaves has been explored since time in the

field of computer graphics to create scenes with credible landscapes covered with plants, trees

or meadows for use in computer games, virtual reality and entertainment industry (e.g., see the

review in [1] by authors from Disney Research Studios) or in architectural rendering [2]. Cur-

rent interest has been expanding to quantitative applications related to advanced approaches

in botanics, plant breeding and agriculture, including morphometric analysis of plants or

organs, phenotyping, simulation of light distribution in canopies, biochemical and photosyn-

thesis modeling, growth analysis and response of plants to treatments, study of spraying

deposit on leaves (see [3] for a comprehensive review of these applications).

In literature, the methods developed for algorithmic generation of the geometry of digital

models of leaves can be regrouped in three approaches: i) rule–based; ii) model–based; iii)
image/point cloud–based. Methods of class i) rely on abstract mathematical procedures

encoded in a set of rules, with output depending on parameters assigned by the user. For

example, Peyrat et al [4] applied the so–called L–grammar [5] to create different instances of

leaf silhouettes and veins, simulating intra-class variability by random fluctuations of the

used parameters. This approach, solely based on a topological rules, was able to produce

thousands of different synthetic leaf images, yet completely uncorrelated to existing leaves.

Methods of class ii) consider models built upon biological hypotheses. The main idea is that

leaf veins and margins determine the characteristics of the leaf blade during the process of

leaf formation, which occurs on the basis of biochemical signals. In this context, Runions

et al [6] proposed a leaf venation model driven by the spatial interaction of auxin hormone

sources distributed over a surface -to become the leaf blade- and the formation of vein

patterns. Alsweis et al [7] regarded leaf tissue as a viscous, incompressible fluid whose 2D

expansion was determined by a spatially varying growth rate that reacted to auxin sources

embedded in the leaf blade. These biophysically–based models require a complex fine-tuning

of several parameters in order to produce realistic results, with limited flexibility in repro-

ducing synthetic leaves in different states of their life–cycle. Methods in class iii) aim at

reproducing the geometry of a specific plant/canopy from physical measurements or from

images. In this context, Quan et al [8] used a hand-held camera to capture images of a plant

from different viewpoints. Upon registration and processing of the acquired images, they

obtained a 3D point cloud from which an editable geometric model of single leaves was

extracted. Tang et al [9] defined key points on the leaf edge by user interaction on 2D images

and from them a triangular mesh of the leaf was constructed and finally shaped in 3D by

applying deformations driven by a mass-spring model of the leaf. Gèlard et al [10] developed

an algorithm to segment and label stereo-images of different leaves from sunflower plants.

Parametric surface modeling via NURBS representation was adopted to analytically describe

the leaf geometry, enabling to implement a flexible model to quantify plant growth from

automatic measure from sensors. Whilst able to generate accurate editable geometrical mod-

els of a specific plant, a major lack of these image/point cloud–based approaches is that they
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are not capable to produce large and varied collections of different leaves. Irrespective of the

type of approach used in the above classes, an interesting point is that leaf blade texture and

color were always rendered in a separate step by means of a color palette defined by the user

or generated according to a certain algorithm. Colorization can thus be considered as a sepa-

rate problem addressed once the leaf geometry is available, and is typically implemented via

an ad hoc third–party rendering software. Among the various approaches to obtain the color

map to be used, we cite here the color model based on convolution sums of divisor functions

proposed in [11], the shading model based on the PROSPECT model for light transmission

in leaves [12] of [13], the “virtual rice” leaves generated in [14] from a RGB–SPAD color

model and the Markov chain model of [10] in which environmental factors as air tempera-

ture and soil moisture were used as conditions to drive the probability to transfer from one

state (texture and color) to another of the Markov chain.

In this work we propose an approach, at the best of our knowledge not explored before

(see [15] for a state–of–the–art review), and radically different from those cited above. Our

aim is to introduce and implement Deep Learning (DL) techniques to automatically generate

collections of synthetic images of plant leaves. These virtually unlimited synthetic images are

then to be employed in our case study to enrich dataset of natural leaf images used for train-

ing Convolutional Neural Networks (CNN) dedicated to smart agriculture applications.

CNN models require indeed enormous amounts of annotated training images examples to

avoid overfitting phenomena. Yet in real world applications annotated data are very often

limited, especially for semantic segmentation tasks that typically require pixel-scale accuracy

in manual labeling of training images. Even standard image augmentation methods, usually

consisting in simple color and geometric transformations such as random rotations, transla-

tions, scaling or deformations of the original images, provide limited richness of the aug-

mented dataset. DL generative models represent attractive methods to produce large sets of

synthetic images (with corresponding labels), starting using from the information from a

limited set of natural (i.e., real), unlabeled images of the same domain. This approach has

recently emerged in medical imaging research, where data may be extremely scarce and diffi-

cult to obtain (e.g., see the recent review [16]). For our model we take inspiration from [17]

(and the research referenced therein), where the authors synthesized eye retina images.

Indeed, the fundus of the eye shares several characteristics with our problem: a fine network

of hierarchically organized blood vessels (as the leaf veins) superposed to a colored back-

ground (as the tissue of the leaf blade). Unlike to [17], in our problem the leaf blade has a spe-

cific shape that must be also meaningfully generated in the synthetic image. We call the

algorithm proposed hereby L2L, i.e. a Leaf-to-Leaf Translation approach to obtain synthetic

colorized leaf images. The L2L algorithm is organized in two steps described in the following

sections. First it uses a residual variational autoencoder architecture to generate novel

(unreal) leaf skeletons starting from binarized companion skeletons of real leaf images. Sec-

ond, it performs a translation via Pix2pix framework, which uses conditional generator

adversarial networks (cGANs) to reproduce the specific color distribution of the leaf blade,

preserving leaf shape and venation pattern. To evaluate the obtained results, we then present

both qualitative and quantitative evaluations of the degree of realism reached by the gener-

ated synthetic leaf images. For this, a DL-based anomaly detection strategy is used to evaluate

the distance (“anomaly”) between synthetic and real images. Eventually, as an illustrative

example of application of the proposed method, we detail the implementation of L2L algo-

rithm for generating a set of images aimed at training a CNN model for automatic detection

of disease symptoms in cucumber leaves.
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Materials and methods

Dataset

Fresh grapevine leaves from the greenhouses of the Department of Agricultural and Environ-

mental Sciences of University of Milano were collected and imaged via a QSi640 ws-Multispec-

tral camera (Atik Cameras, UK) equipped with a Kodak 4.2 Mp micro-lens image sensor and 8

pass–band filters operating from 430 to 740 nm. For the purpose of this experiment, leaves

were imaged singularly on a dark background, under controlled diffuse illumination condi-

tions. Images were acquired in the single spectral channels R, G, B bands (with pass-band fil-

ters centered at 685 nm, 530 nm, 430 nm, respectively) and in the near–infrared, NIR (filter

centered at 740 nm). NIR channel was included in this study as it is very commonly considered

in crop sensing [18, 19]. This is due to a very low absorbance of plant tissue in this band (no

photoactive pigments or other compounds absorb light significantly around these wave-

lengths), which enables accurate foreground segmentation of vegetation in field images, and at

leaf scale allows to obtain a homogeneous picture of the leaf blade surface structure. A set of

RGB images of the same leaves in standard CIE color space were also acquired for reference.

Camera parameters were set and image collection was performed via an in–house developed

acquisition software written in MATLAB. Reflectance calibration was carried out by including

in each image 3 reflectance references (Spectralon R = 0.02, R = 0.50 and R = 0.99; Labsphere,

USA). We obtained images of 80 leaves with a resolution of 2048×2048 pixels and 8 bit for

each channel. Preprocessing operations were performed on each image:

• removal of hot pixels: for each channel and for each pixel, we computed the difference

between the pixel value and its neighbors. If all these differences were greater than the 10%

of the average between the minimum and maximum of the pixel values, we replaced the

pixel with the average of its neighbors

• normalization along each channel: let m be the minimum value of the 2% reference probe

and M the maximum value of the 99% reference probe. Then we set p (p−m)/(M−m),

where p is the pixel value

• creation of a companion skeleton image, which comprises the profile of the leaf and the vein

pattern. This procedure was carried out using the NIR channel, since this presents a high

contrast between the leaf and background. First, the image was binarized using the Otsu

method, which chooses the threshold value that minimized the intraclass variance of the

thresholded black and white pixels. Then the Moore-Neighbor tracing algorithm was used to

detect the outer boundary of the leaf and the internal venation pattern

• automatic crop to center the leaf in the image and resizing at 256×256 resolution in for all

the channel acquisitions

Fig 1 shows a sample of images o the original images in the RGB and RGNIR spaces, the

normalized NIR channel and the corresponding companion skeleton. Before using the genera-

tive algorithms, we performed standard data augmentation by randomly flipping each image

horizontally and vertically, rotating by an angle randomly chosen in [−π/4, π/4] and finally

zooming with a random amount in the range [−20%, + 20%]. The dataset was thus increased

in this way from 80 to 240 samples.

Generative methods for L2L translation

The authors of [17, 20] generated artificial patterns of blood vessels along with corresponding

eye fundus images using a common strategy which divides the problem of the image
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generation into two sub–problems, each one addressed by a tailored DL architecture: first they

generate the blood vessel tree, then they color the eye fundus. We adopt this very approach,

first generating the leaf profile and veins and then coloring the leaf blade. Also in our experi-

ence this approach has turned out to be more effective than generating the synthetic image

altogether. We refer to S2 File. for a further discussion about the motivation of the present

two-step approach.

Skeleton generation. According to the above considerations, the generation of a realistic

leaf skeleton is the first step towards the final goal of our work. For this task, we use a convolu-

tory autoencoder architecture, that is, a network trained to reconstruct its input. An autoenco-

der (AE) is composed of two submodels: 1) an encoder Q that maps the training dataset to a

latent (hidden) representation z; 2) a decoder P that maps z to an output that aims to be a plau-

sible replica of the input. We have experimented that simple autoencoders cannot generate

realistic skeletons. For this reason, we use a more sophisticated architecture, called Residual

Variational Autoencoder (ResVAE, see Fig 2).

Fig 1. Sample of grapevine leaf from the dataset. A: RGB image; B: RGNIR image; C: normalized and cropped NIR image; D: companion skeleton. In

the skeleton binarized image, the white color identifies the leaf profile and veins, the black color identifies other parts of the leaf and the background.

https://doi.org/10.1371/journal.pone.0276972.g001

Fig 2. Illustration of the ResVAE architecture (training phase).

https://doi.org/10.1371/journal.pone.0276972.g002
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This learning framework has already been successfully applied to image recognition, object

detection, and image super-resolution (see, e.g., [21]). In the data generation framework, AEs

learn the projection of the initial data into a latent subspace, and then a sample of this subspace

is randomly extracted to build up a new instance of the initial data. Instead of learning such

projection, VAEs learn the probability distribution of the latent variables given the input x. As

a matter of fact, a variational autoencoder can be defined as an autoencoder whose training is

regularized to avoid overfitting and ensure that the latent space has good properties that enable

the generative process. To achieve this goal, instead of encoding an input as a single point,

VAEs encode it as a (Gaussian) distribution over the latent space, where p(z|x) represents the

probability of the latent variable z given the input x. The decoding part consists in sampling a

variable from p(z|x) and then providing a reconstruction x̂ of the initial data x. We associate to

this framework the following loss function

LVAEðx; x̂Þ ¼ LL2
ðx; x̂Þ þ bLKLðpðzjxÞ;N ð0; 1ÞÞ; ð1Þ

where the first term LL2
¼ jjx � x̂jj2 is the L2 norm of the reconstruction loss, and the second

term LKL ¼ KL½Nðmx; sxÞ;Nð0; 1Þ� is the Kullback–Leibler (KL) divergence [22–24] The KL

divergence enhances sparsity in neurons activation to improve the quality of the latent features

keeping the corresponding distribution close to the Gaussian distribution N ð0; 1Þ. The tun-

able regularization hyperparameter β is used to weigh the two contributions [25]. With respect

to VAEs, ResVAEs additionally employ residual blocks and connection skips. The idea beyond

residual blocks is the following [26]: normal layers try to directly learn an underlying mapping,

say h(x), while residual ones approximate a residual function r(x) = h(x) − x. Once the learning

is complete, r(x) is added to the input to retrieve the mapping: h(x) = r(x) + x. In our architec-

ture, residual blocks are concatenated to the decoder to increase the capacity of model [21].

The connection skips allow to back–propagate the gradients more efficiently giving the bottle-

neck more access to the simpler features extracted earlier in the encoder. The resulting

ResVAE compresses 256 × 256 leaf skeleton images to a low dimension latent vector of size 32

and then it reconstructs it to 256 × 256 images. We refer to Section A in S1 File. for specifica-

tions of the present ResVAE architecture and the relative training strategy.

Translation to colorized leaf image. We consider the colorization of the leaf out of an

existing skeleton as an image-to- image translation problem, which implies to learn a mapping

from the binary vessel map into another representation. Similarly to what observed in [17] for

retinal image generation, many leaf images can share a similar binary skeleton network due to

variations in color, texture, illumination. For this reason, learning the mapping is an ill-posed

problem and some uncertainty is present. We learn the mapping via a Pix2pix net, also known

as conditional GAN (cGAN), an unsupervised generative model which represents a variation

of a standard GAN. As such it includes two deep neural networks, a generator G and discrimi-

nator D. The generator aims to capture the data distribution, while the discriminator estimates

the probability that a sample actually came from the training data rather than from the genera-

tor. In order to learn a generative distribution over the data x, the generator builds a mapping

G(z;θG) from a prior noise distribution pz to the image data space, θG being the generator

parameters. The discriminator outputs the probability that x came from the real data distribu-

tion pdata(x) rather from the generated one. We denote by D(x;θD) the discriminator function,

θD being the discriminator parameters. In standard GANs, the optimal mappings G� is

obtained as the equilibrium point of the min–max game:

ðG�;D�Þ ¼ arg min
G

max
D

LGANðD;GÞ;
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where we have defined the objective function

LGANðD;GÞ :¼ Ex�pdataðxÞ
½logDðx; yDÞ� þ Ez�pzðzÞ

½logð1 � DðGðz; yGÞÞÞ�; ð2Þ

where E½�� stands for the expected value. In the conditional framework, an extra variable y is

added as a further source of information on G, which combines the noise prior pz(z) and y.

The objective function thus becomes

LcGANðD;GÞ ¼ Ex�pdataðxÞ
½logDðx; yDÞ� þ Ez�pzðzÞ

½logð1 � DðGðzjy; yGÞÞÞ�: ð3Þ

Previous approaches have found it beneficial to mix the GAN objective with a more traditional

loss, such as L2 distance [27]. The discriminator’s job remains unchanged, but the generator is

bound not only to fool the discriminator but also to stay near the ground truth output in an L2

sense. In this work we rather explore the use of the L1 distance rather than L2 as L1 promotes

sparsity and at the same time it encourages less blurring [28]:

LL1
ðGÞ ¼ Ex;y;z½ky � Gðzjy; yGÞk1�; ð4Þ

where we recall that kxk1 ¼
Pn

i¼1
jxij, with xi begin the i–th element of the vector x. The final

objective is thus

ðG�;D�Þ ¼ arg min
G

max
D

LcGANðD;GÞ þ lLL1
ðGÞ ð5Þ

where λ is a regularization hyperparameter. In our implementation the extra information cor-

responds to the leaf skeletons which condition G in the image generation task to preserve leaf

shape and venation pattern. The discriminator is provided with skeleton plus generated image

pairs and must determine whether the generated image is a plausible (feature preserving)

translation. Fig 3 shows the training process of the cGAN. We refer to Section B in S1 File. for

specifications of the Pix2pix architecture we adopted and the relative training strategy.

L2L workflow: From random samples to leaf images. Upon training of the ResVAE and

Pix2pix architectures, we dispose of an end-to-end procedure for the generation of synthetic

leaves. The procedure, which is completely unsupervised, can be summarized as follows (see

also Fig 4):

1. Load weights of the trained ResVAE decoder and Pix2pix generator.

2. Draw a random vector from a normal distribution whose parameters are chosen according

to the ResVAE latent space representation (note that its size equals the dimension of the

latent space used in the ResVAE, 32 in the present case).

3. Input the random vector in the trained ResVAE decoder and generate a leaf skeleton

4. Input the leaf skeleton into the trained generator of the Pix2Pix net to translate it into a

fully colorized leaf.

Results

The proposed technique can be employed to generate as many synthetic leaf images as the user

requires. The model has been implemented with Keras. The code and data for this project are

available on GitHub at https://github.com/AleBenfe/Leaf2Leaf. Upon generation of the syn-

thetic images, their quality is assessed performing both qualitative (visual) and quantitative

evaluations as detailed here below.
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Visual qualitative evaluation

Consistency test. Beforehand, we have evaluated the consistency of the methodology by

verifying that the net has learned to translate a leaf sample comprised in the training set into

itself.

Translation from unseen real companion skeleton. We verify that it is able to produce

reliable synthetic images using skeletons obtained from leaves that are not part of the training

dataset. Fig 5 shows an instance of colorized leaf obtained from this test: the overall quality is

highly reliable, except for small vein discoloration and a small blurring effect, which is a well–

known product of AEs employed in image generation [29].

Fig 3. Illustration of the Pix2Pix framework (training).

https://doi.org/10.1371/journal.pone.0276972.g003

Fig 4. L2L workflow illustration. A random input vector is drawn from the ResVAE latent space representation and is input into the trained ResVAE

decoder. This latter outputs a synthetic leaf skeleton, which in turn is fed into the trained generator of the Pix2Pix and translated into a corresponding

colorized leaf.

https://doi.org/10.1371/journal.pone.0276972.g004
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Full L2L translation. Fig 6 shows several instances of synthetic colorized leaves obtained

starting from different random latent vectors. Note that the generated leaf images differ in

terms of their global appearance, that is the model generalizes and does not trivially memorizes

the examples. As a note, one should observe that some discolored parts may be appear. More-

over, sometimes the skeletons show small artifacts consisting in not–connected pixels posi-

tioned outside the leaf boundary (not appearing in Fig 6). This latter issue will be addressed via

a refinement algorithm explained below.

L2L-RGNIR translation. As mentioned above, applications in crop management require

to have at disposal images also in the NIR channel. To do this, we use the L2L generation pro-

cedure as for the RGB channels starting from RGNIR images as Pix2Pix targets, using the

same approach without modifications. Since the same leaf skeletons are used, it is not neces-

sary to re-train the ResVAE if this procedure has been already carried out for the RGB case.

Fig 7 shows some results of this model.

Refinement algorithm. We have already discussed the fact that synthetically generated

images may sometimes present artifacts (leaf regions that appear detached from the leaf blade).

Obviously this is not realistic and we need to remove such artifacts. The refinement algorithm

is implemented at present in a procedural way and it is based on the idea of finding the con-

tours of all the objects and removing all objects laying outside the leaf contour. Note that this

procedure must pay attention to leave internal holes intact, because in nature such holes are

the result of the superposition of leaf lobes or due to several abiotic/biotic conditions. Fig 8

shows the first leaf in Fig 6 which presents artifacts (panel A, zoomed area including the arti-

fact in panel B) and its cleaned counterpart (panel C).

Quantitative quality evaluation

In order to assess quantitatively the quality of the generated leaves, we employ a DL–based

anomaly detection strategy. This approach is discussed in detail in [30], here we briefly recall

the main points. The strategy consists in training an AE to compress real leaf images in a latent

subspace and then reconstruct the images using the latent representation (see Generative

methods for L2L translation section for the same concept). Once the network is trained in this

way, we feed it with a synthetic image generated by our procedure. The AE encodes it in the

latent space and tries to recover the original image according to its training rules. Since the

net has been trained to be the identity operator for real images, if the artificial images are

Fig 5. Translation from unseen real companion skeleton. A binarized leaf skeleton companion of a real leaf not belonging to the training set is passed

through the generator of the Pix2Pix net to check. A: companion skeleton; B: synthetic colorized blade; C: real image.

https://doi.org/10.1371/journal.pone.0276972.g005
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Fig 6. Full L2L translation results. Examples of synthetic colorized leaves along with the corresponding synthetic

companion skeletons.

https://doi.org/10.1371/journal.pone.0276972.g006
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Fig 7. L2L-RGNIR translation results. Examples of synthetic leaves colorized in the RGNIR channels along with the

corresponding synthetic companion skeletons.

https://doi.org/10.1371/journal.pone.0276972.g007

PLOS ONE A deep learning generative model approach for image synthesis of plant leaves

PLOS ONE | https://doi.org/10.1371/journal.pone.0276972 November 18, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0276972.g007
https://doi.org/10.1371/journal.pone.0276972


substantially different, an anomalous reconstruction is obtained. Fig 9 provides a visual

schematization of this approach. The figure also details the score system used to detect the

anomaly.

The degree of anomaly is quantified via the Receiver Operating Characteristic (ROC) curve

and the corresponding Area Under Curve (AUC) index [31]. A point on the ROC curve repre-

sents the False Positive Rate (FPR, x-axis) vs the True Positive Rate (TPR, synonim of recall, y-

axis) for a certain threshold of the anomaly score, FPR and TPR being defined in this context

as

FPR ¼
FP

FPþ TN
; TPR ¼

TP
TP þ FN

ð6Þ

where TN = no. of genuinely real images correctly classified as real, TP = no. of genuinely fake

images correctly classified as fake, FN = no. of genuinely fake images incorrectly classified as

real and FP = no. of genuinely real images incorrectly classified as fake. The looser the criteria

for determining a positive result, the more points on the curve move upward and to the right

since more items are classified as positive (thus increasing both FPs and TPs). The AUC is the

Fig 8. Refinement algorithm. The generative procedure sometimes produces artifacts, that is leaf regions that appear outside the leaf blade. These

artifacts are corrected by procedurally finding the contours of all the objects in the image and removing the objects outside the leaf contour. A: first leaf

in Fig 6 presenting artifacts; B: inset showing the magnified artifacts; C: cleaned leaf.

https://doi.org/10.1371/journal.pone.0276972.g008

Fig 9. AE for anomaly detection. The AE is trained with images of real leaves to be the identity operator of the input. A synthetic leaf with a low level

of similarity is recognized as an anomaly if fed into the trained AE and its anomaly score sx is high.

https://doi.org/10.1371/journal.pone.0276972.g009
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value of the 2D area under the ROC curve and provides an aggregate measure of performance

across all possible classification thresholds. We found AUC = 0.25: this results can be inter-

preted as the fact that, for a random synthetic (and unseen) image fed into the AE, there is a

25% of possibility to classify it as an anomaly, that is to be synthetic instead of real. The results

are shown in Fig 10. While we do not attain a perfect generation of synthetic leaves, these

results show that they are a reasonably accurate surrogate of real leaves and can be used for a

first massive training at a very low cost. A successive refinement can then be applied using a

limited number of real leaves upon transfer–learning techniques.

Fig 10. Quantification of anomaly via ROC curve and AUC index. A point on the ROC curve represents—for a certain threshold on the anomaly

score—the FPR vs the TPR as defined in (6). We found AUC = 0.25, which means that a synthetic image is classified as synthetic in the 25% of cases and

in the 75% is considered real. The dotted line represents the result one would obtain by tossing a coin to decide whether an image is artificial or real.

https://doi.org/10.1371/journal.pone.0276972.g010
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Application to image-based sensing of plants: Early recognition of powdery

mildew symptoms on cucumber leaves

As an illustrative example of the proposed methodology, we consider an application in image-

based sensing of plants, an advanced crop-management approach aimed at supporting and

maximizing efficiency of farming processes [32]. Given the enormous volume and the hetero-

geneity of the data generated by these systems, automatic image-analysis for monitoring the

status of the plants plays a key-enabling role. To this aim, the applications of deep learning

methods based on CNNs in this domain have recently dramatically expanded [33]. Specifically,

here we consider the task of training a neural network to automatically detect early symptoms

of powdery mildew (a major fungal disease which mostly affects leaves in many crop plants,

exhibiting common symptoms as whitish spots on the leaf blade tissue) in images of cucumber

Cucumis sativus leaves. To do this, one should collect a sufficiently large and well–balanced

dataset of both healthy and diseased leaves. In order to enrich the available datasets of real

leaves, we generated two datasets of synthetic images with the algorithm presented above, a set

of healthy leaves and one of leaves affected by powdery mildew with different severity levels.

To produce the datasets, we started from collections of images of real healthy and diseased

cucumber leaves acquired with the same modalities described in the Material and Methods

section (see [30] for a detailed description of these collections). Fig 11 shows examples of real

and synthetic (generated via the L2L algorithm) images of healthy and diseased leaves.

We use supervised U-net architectures (e.g., see [34]) trained with a mix of real and syn-

thetic leaves from the healthy and diseased collections to perform semantic segmentation.

Without the addition of synthetic leaves, we were not able to perform the training, since we

disposed of too few samples. Fig 12 (right column) shows the segmentation masks (indicating

Fig 11. Real and synthetic images of cucumber leaves. Real images were acquired with the procedure described in the Material and Methods section,

synthetic images were generated via the L2L algorithm. Diseased leaves are affected by powdery mildew with different severity levels: the whitish spots

on the leaf blade are signs of early-to-mid powdery mildew infection. Notice that while advanced signs of podwery mildew are easily recognizable, early

stages signs are much more elusive.

https://doi.org/10.1371/journal.pone.0276972.g011
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diseased regions) obtained from real healthy (a-b) and diseased (c-d) test images—i.e. never

seen by the net—of leaves. The U-net produces empty masks for healthy leaves since no disease

spots have been recognized, while it correctly recognizes (with more than 94% accuracy) pow-

dery mildew spots on diseased leaves (c-d). The correctness was validated by an expert plant

pathologist.

Discussion and conclusions

Goal of this work was to explore advanced DL generative methods to produce synthetic images

of leaves to be used in computer–aided applications. In these latter fields, several approaches

for the generation of synthetic leaves do exist in literature, but, the best of our knowledge, this

is the first attempt to use a DL-based generative methodology. The main focus was on the gen-

eration of artificial samples of leaves to be used to train DL networks for modern crop manage-

ment systems in precision agriculture. The L2L procedure took inspiration from works aimed

at the generation of synthetic images of the fundus of the eye, which is typically composed of a

tissue background on which retinal vessels are superposed. However, leaves generally show

more complexity and variation patterns and algorithms had to be adapted to our specific con-

text. Positive impacts of the present work are:

• the availability of synthetic samples which have a quantitive—and not only qualitative—

resemblance to real leaf sample so to alleviate the burden of manually collecting and annotat-

ing hundreds of data

• image-sensing in smart agriculture is an innovative approach which can deeply impact

everybody’s life, being connected to effective and sustainable food production. We have

Fig 12. Segmentation masks. The masks, which are produced by a U-net architecture trained with a mix of real and synthetic leaves, denote the

diseased spots. The masks are empty for the healthy leaves (a-b), while they indicate disease spots with an accuracy above 94%—according to the

segmentation of a human expert—for leaves affected by powdery mildew (c-d).

https://doi.org/10.1371/journal.pone.0276972.g012
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discussed an application of the present algorithm to this context, which we believe can lead

to a significant improvements in the use of these technologies

• we originally proposed the use of an AnoGAN to provide a quantitative evaluation of the

results, which remains a delicate point

• while our target application was the enrichment of datasets for DL-based image sensing in

smart agriculture, we deem that the present approach may be of interest also in a wider

range of collateral fields, including computer graphics applications in all their declinations.

The generated images show a certain number of defects. We have observed that the critical

part is the generation of a correct skeleton. A quality check on the quality of this latter can filter

out skeletons that do not represent the typical structure of a certain leaf (observe that this

structure can be strongly dependent on the leaf species). Once one has obtained a plausible

skeleton, the Pix2pix net performs good translations from the leaf skeletons generated by the

ResVAE, except for some discolored parts, both for the colorization of RGB and RGNIR

images. Also, the leaves generated by ResVAE have sometimes pixels positioned outside the

boundary which, if not corrected, can cause artifacts in the synthetic leaves. Recognizing and

correcting these artifacts can be implemented in an easy procedure. In our work we resized

images to a relatively low resolution. Available GANs, as StyleGANs, are indeed able to gener-

ate images with a higher resolution. However, these architectures require a very large (of the

order of many thousands) train dataset in order to achieve good results. The point of the pres-

ent work is rather to explore the feasibility of the approach and its validity for our target appli-

cation. The general approach we propose does not really depend on the specific generative

architecture and other generalist architectures could be used as well. What we instead find

more interesting are the specific observations relative to the generations of leaves, that is the

strong importance of a good skeleton in order to obtain quantitatively correct results (and not

only a qualitatively reasonably correct appearance). Eventually, we observe that several com-

puter–aided applications may also benefit of such a strategy, where many samples are required,

possibly with different degree of accuracy in the representation. This is especially true in all

applications related to medicine, where the availability of data is a crucial point.
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S1 File. Implementation and training of the neural architectures. This SI file provides
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strategies.

(PDF)
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of organizing synthetic leaf generation into a two step procedure.
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