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Abstract

Background

Health care has significant environmental impact. We performed a scoping review to map

what is known about the environmental impact of health care for musculoskeletal

conditions.

Methods

We included published papers of any design that measured or discussed environmental

impact of health care or health support services for any musculoskeletal condition in terms

of climate change or global warming (e.g., greenhouse gas emissions it produces). We

searched MEDLINE and Embase from inception to 2 May 2022 using keywords for environ-

mental health and musculoskeletal conditions, and performed keyword searches using Goo-

gle and Google Scholar. Two independent reviewers screened studies. One author

independently charted data, verified by a second author. A narrative synthesis was

performed.

Results

Of 12,302 publications screened and 73 identified from other searches, 122 full-text articles

were assessed for eligibility, and 49 were included (published 1994 to 2022). Of 24 original

research studies, 11 measured environmental impact relating to climate change in ortho-

paedics (n = 10), and medical aids for the knee (n = 1), one measured energy expenditure of

laminar versus turbulent airflow ventilation systems in operating rooms during simulated hip

replacements and 12 measured waste associated with orthopaedic surgery but did not

relate waste to greenhouse gas emissions or environmental effects. Twenty-one editorials

described a need to reduce environmental impact of orthopaedic surgery (n = 9), physiother-

apy (n = 9), podiatry (n = 2) or occupational therapy (n = 1). Four narrative reviews dis-

cussed sustainability relating to hand surgery (n = 2), orthopaedic surgery (n = 1) and

orthopaedic implants (n = 1).
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Conclusion

Despite an established link between health care and greenhouse gas emissions we found

limited empirical data estimating the impact of musculoskeletal health care on the environ-

ment. These data are needed to determine whether actions to lower the carbon footprint of

musculoskeletal health care should be a priority and to identify those aspects of care that

should be prioritised.

Introduction

Climate change is an existential crisis [1]. There is a need to understand the key contributors

to climate change to minimise their impacts. Health care results in significant direct and indi-

rect greenhouse gas emissions, commonly termed the ‘carbon footprint’. It is responsible for

between one to five percent of the total global environmental impacts [2], although the propor-

tion of overall greenhouse emissions due to health care is greater in some countries such as the

United States (8.5%) [3], and Australia (7%) [4]. The UK, whose health care greenhouse emis-

sions is responsible for approximately 4% of the UK’s footprint, is leading the world in striving

for carbon neutral health care by 2040 [5].

The largest contributors to the carbon footprint of health care are generated as part of hos-

pital stays, surgery, pharmaceutical manufacturing and imaging [4, 6]. Recent carbon footprint

estimates suggest the majority of health care related greenhouse emissions are produced from

energy use and the health care supply chain such as manufacturing medical equipment and

materials, transport, agriculture and waste disposal [7]. Yet awareness of the carbon footprint

generated by different aspects of health care is not yet well appreciated among many health

care providers or the general public, delaying efforts to identify and reduce it [8].

Approximately one third of health care is estimated to be of low value or ‘wasted’ [9–11].

For example, there is a large body of evidence attesting to widespread low-value health care

practices for common musculoskeletal conditions such as osteoarthritis [12], low back pain

[13], hip and knee pain [12], shoulder pain [14–16] and sports injuries [17]. Directing efforts

towards eliminating these aspects of care would have the dual benefit of reducing harms asso-

ciated with unnecessary care, and avoiding their harmful effects on the environment.

While the environmental impact of health care in some fields of medicine has been investi-

gated, including treatment of patients with septic shock in intensive care [18], cataract surgery

[19] and geriatric medicine [20], there is a paucity of evidence outlining environmental

impacts of other types of care. The aim of this scoping review was to map what is known about

the environmental impact of health care for musculoskeletal conditions.

Methods

We reported this scoping review in accordance with the recommendations of the Preferred

Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews

(PRISMA-ScR; [21], see S1 Data).

Selection criteria and study selection

We included published papers that measured or explicitly discussed the environmental impact

of health care or health support services for any musculoskeletal condition. This could include

the impacts of the care (e.g. imaging, hospital visits, surgery, prescription medication) on
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indices of climate change or global warming such as the amount and type of greenhouse gas it

produces [22]. All publication designs were eligible for inclusion, including original research,

reviews, or commentaries. We did not impose any date or language restrictions.

Search strategy

We searched electronic databases of MEDLINE and Embase (via Ovid) from inception to 2

May 2022. Our search strategy consisted of combining two concepts: environmental health

and musculoskeletal conditions. Internet searches were also performed using Google and Goo-

gle Scholar between 2 May and 12 May 2022 within the Google Chrome browser. The internet

search engines were chosen to ensure a wide range of publications across multiple musculo-

skeletal disciplines, and combined environmental keywords ‘life cycle assessment’, ‘sustainabil-

ity’, ‘environmental sustainability’, ‘environmental impact’ and ‘carbon footprint’ with terms

of ‘hand’, ‘wrist’, ‘elbow’, ‘shoulder’, ‘foot’, ‘ankle’, ‘knee’, ‘hip’, ‘spine’ and ‘spinal’. We also

used various combinations of the following keywords: ‘surgery’, ‘surgical’, ‘surgical implant’,

‘orthopaedic surgery’, ‘joint arthroplasty’, ‘joint arthroscopy’, ‘joint replacement’, ‘telemedi-

cine’ and ‘telehealth’. We considered the first 50 Google and Google Scholar results from each

set of keywords. The full search strategy is presented in see S2 Data. We also hand searched ref-

erence lists of included publications.

All records generated from electronic databases were exported to Covidence (Veritas

Health Innovation, Melbourne, Australia) for duplicate removal and screening [23]. Two

authors (BM and either RH, GF, CM or RB) independently assessed each title and abstract and

then independently screened the full texts of potentially eligible publications to identify those

eligible for inclusion. Google and Google Scholar records were independently assessed by one

author (BM). Potentially eligible publications were downloaded as full texts and screened by

two authors (BM and either RH, GF, CM or RB). Publications not written in English were

translated with Google Translate [24]. Conflicts were resolved through discussion. Publica-

tions relating to the same primary publication were considered together and counted only

once.

Data charting and analysis

For each original research publication, one author (BM) independently charted author/s, year,

country, setting, timing of study, study design, topic, aim/s and methods, results and conclu-

sion. Data from editorial publications and narrative reviews were independently charted by

one author (BM) for author/s, year, country of author/s, topic, focus and conclusions. Another

author (RH, GF or RB) independently verified all data extraction. A narrative synthesis of the

papers is presented.

Results

Of 12,302 publications retrieved and screened from electronic databases and 73 publications

that were identified and screened using Google, Google Scholar and hand searches of citations,

122 full-text articles were assessed for eligibility and 48 were excluded (Fig 1). Reasons for

exclusion were wrong topic (n = 25) [25–49], wrong setting (n = 3) [50–52], wrong population

(n = 1) [53], unclear population (n = 4) [54–57], and duplicates (n = 15) (see S1 Table and S2

Data for more detail). Nine conference abstract publications were classified as awaiting assess-

ment [58–66] (see S2 Table). Sixteen reports of included publications were collated with an

associated primary report and counted as a single unit to prevent duplication of the same

record [67–82] (see Tables 1 and S3). Forty-nine primary publications were included in this

review [83–131].
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Overview of included publications

The characteristics and findings of included publications are presented in Table 1 for original

research publications and as supplementary materials for included editorials and reviews (see

S3 and S4 Tables). Included papers were published from 1994 to 2022, with most published

since 2019 (n = 36, 73%).

There were 24 original research papers, nine from the United States [83–91], three from

Canada [92–94], two each from Ireland [95, 96], Sweden [97, 98] and the United Kingdom

[99, 100], and one each from Australia [101], Denmark [102], Germany [103], Italy [104], Ser-

bia [105], and South Korea [106].

There were 21 editorials with authors from 13 countries; Australia [107–111], Brazil [109],

Canada [112], Germany [109], Greece [109], India [113, 114], New Zealand [109, 115], Nor-

way [109, 111, 114, 116], Pakistan [109], Sweden [109, 117, 118], Switzerland [109, 119],

United Kingdom [100, 109, 117, 120–122] and United States [109, 116, 123–127]. There were

four narrative reviews, two from the United States [128, 129] and one each from India [130]

and the United Kingdom [131]. Thirty-six (73%) included publications were related to ortho-

paedic surgery [83–104, 106, 117, 120–131].

Original research studies. Eleven (46%) of the 24 research studies used a life cycle assess-

ment (LCA) or carbon footprinting methodology to measure the environmental impact of

health care or health support services in the fields of orthopaedics (n = 9) [83–86, 91, 95, 97,

101, 103, 104], and medical aid manufacturing (n = 1) [105].

Fig 1. PRISMA flowchart.

https://doi.org/10.1371/journal.pone.0276685.g001
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Table 1. Characteristics and findings of original publications.

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Baxter et al.
2021 [83]

United States

Setting: 19

institutions

Timing: February

2020

Survey and life cycle

assessment

Orthopaedic

surgery

To investigate how

variation in use of

disposable surgical

supplies contributes to

environmental and

financial burden.

Surgeons completed

survey relating to (i)

carpal tunnel release,

(ii) open reduction and

internal fixation of

distal radius fracture, or

(iii) primary flexor

tendon repair.

Number of participants:

35 (54 invited)

Carbon emissions per hand

surgery procedure ranged

from 7.8 to 28.8 kg per

person, and were 10.9 kg

greater for high-use versus

lean-use surgeons.

There are opportunities

to reduce the carbon

footprint of hand

surgery.

Surgeons support

sustainable practice but

underestimate the

environmental impact

of surgery.

Bravo et al.
2022 [84]

United States

Setting: Surgical

centre affiliated

with a large

academic centre

Timing: February

2018 to July 2018

Carbon footprint

study (using hospital

purchasing records

and an

environmentally

extended input-

output (EEIO) life

cycle assessment)

Orthopaedic

surgery (hand

surgery waste)

To identify sources of

unnecessary waste and

decrease costs of care

by analysing quantity,

cost and greenhouse

gas emissions of

opened and unused

disposable surgical

supplies.

Total surgeries:

Convenience sample of 85

cases of hand surgery

(endoscopic carpal tunnel

release n = 45; tendon

transfers, tenolysis, tendon

sheath incisions n = 30;

open reductions of distal

radius and internal

fixations n = 7; and carpal

bone and phalangeal

fractures n = 3)

Mean (SD) number of

wasted surgical items

from 51-item custom

surgical pack: 11.5 (3.6)

Total number of wasted

items: 981

Total weight of wasted

items: 441 kg of carbon

dioxide equivalent (CO2e)

emissions

Environmental impact

and costs of hand

surgery can be reduced

by creating awareness of

unnecessary waste.

Approaches to reduce

waste include (i)

reducing number of

items available in

operating room, (ii)

correctly sorting waste

for disposal and

recycling, (iii)

optimising supply of

surgical items and (iv)

incorporating

environmentally

conscious initiatives.

Cappucci et al.
2020 [104]

Record related

to Cappucci

et al. [67]

Italy

Setting:

Engineering

laboratory

Timing: not

reported

Life cycle assessment Orthopaedic

surgery (titanium

hip prosthesis

manufacturing)

To assess

environmental impacts

of titanium (Ti-6AI-

4V) alloy-based femoral

stems produced with

additive manufacturing

(AM) over their entire

life cycle, to (i) identify

environmental

hotspots, and (ii)

compare any benefits to

traditional

manufacturing

processes

Based on a life cycle impact

assessment (LCIA) for the

manufacture of 1 femoral

stem (hip prosthesis) with

gas atomisation (GA)

powder, ‘global warming’

impact at mid-point level

was:

Production phase: 38.8 kg

CO2e (69.3% of total

environmental burden)

Use phase: 17.6 kg CO2e

(30.6% of total

environmental burden)

End of life phase: 0.0175

kg CO2e (0.03% of

environmental burden)

Total: 56.4 kg CO2e

The additive

manufacturing process

was more sustainable

for titanium femoral

stem manufacturing due

to recovery of loose

titanium power at the

end of the process that

can be reused.

(Continued)
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Leiden et al.
2020 [103]

Germany

Setting:

Engineering

laboratory

Timing: not

reported

Life cycle assessment Orthopaedic

surgery (disposable

versus reusable

surgical

instruments for

lumbar spine

fusion)

To investigate

environmental impact

of a disposable and

reusable instrument set.

Key findings1

• The environmental

impact of disposable

instrument sets was ~45 to

85% less than reusable

instrument sets in all

impact categories of data

collection (cumulative

energy demand (CED),

abiotic depletion potential

(ADP), global warming

potential (GWP),

acidification potential (AP)

and particulate matter

(PM)) and the single score

indicator (ReCiPe

Endpoint)

• Steam sterilisation for

reusable instruments was

the greatest contributor of

greenhouse gas emissions

due to energy use

• The production phase of

the disposable instrument

set was the greatest

contributor of greenhouse

gas emissions; these were

consistently higher

compared to the reusable

set

• The environmental

impact of transport and

disposal of waste processes

was minimal across the life

cycle of both surgical

instrument types

Environmental impact

of the disposable

surgical instrument set

was lower than the

reusable set, mostly

related to the high

environmental impact

of the steam sterilisation

process.

Lyons et al.
2021 [95]

Ireland

Setting:

Engineering

laboratory

Timing: not

reported

Life cycle assessment Orthopaedic

surgery (titanium

knee implant

manufacturing)

To compare

environmental impact

(primary energy

consumption (PEC)

and CO2 emissions) of

manufacturing

titanium Ti-6Al-4V

femoral components

used in typical knee

implants via additive

(using electron beam

melting (EBM)

methods) versus

conventional (using

milling methods)

manufacturing.

Carbon dioxide (CO2)

emissions

Additive manufacturing

• Production of Ti-6AI-4V

powder: 11.47 kg per part

• Electron beam melting: 3

kg per part

• Post-process milling: 0.41

kg per part

• Post process grinding:

0.06 kg per part

• Total CO2 emissions:

14.94 kg per part

Conventional

manufacturing

• Production of Ti-6AI-4V

workpiece: 45.24 kg per

part

• Roughing: 0.68 kg per

part

• Finishing: 0.89 kg per part

• Post process grinding:

0.11 kg per part

• Total CO2 emissions:

46.92 kg per part

Manufacture of a

titanium knee implant

using additive methods

was more

environmentally

sustainable largely due

to greater efficiencies

and less waste

compared with

conventional methods.

(Continued)
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Total PEC

Additive manufacture:

143.22 MJ per part

Conventional

manufacture: 314.52 MJ

per part

McGain et al.
2021 [101]

Records

commenting on

McGain et al.
[68–74]

Australia

Setting: Hospital

Timing: Between 9

January 2019 and

10 June 2019

Life cycle assessment Orthopaedic

surgery (general,

regional and

combined

anaesthesia)

To quantify the carbon

dioxide equivalent

emissions of three

anaesthetic approaches

for total knee

replacement surgery.

Total surgeries:

Convenience sample of 30

total knee replacements

(general anaesthesia n = 10,

spinal anaesthesia n = 10,

combined general and

spinal anaesthesia n = 10)2

Anaesthesia and mean

CO2e emissions per

patient3

General anaesthesia group:

sevoflurane gas (n = 8),

total intravenous

anaesthesia (n = 1),

sevoflurane/total

intravenous anaesthesia

(n = 1): 14.9 kg CO2e (95%

CI, 9.7 to 22.5)

Spinal anaesthesia group:

propofol infusion (n = 10):

16.9 kg CO2e (95% CI, 13.2

to 20.5)

Combined general and
spinal anaesthesia group:

sevoflurane gas + propofol

(n = 6), total intravenous

anaesthesia + propofol

(n = 3): 18.5 kg CO2e (95%

CI, 12.5 to 27.3)

The average carbon

footprint of anaesthesia

for a knee replacement

was similar for general,

spinal and combination

approaches when

sevoflurane was the

inhaled anaesthetic gas

used for general and

combination

approaches with an

average low fresh gas

flow.

The carbon footprint of

knee replacement

surgery can be reduced

by using low-flow

anaesthetic gas and/or

local anaesthesia,

reducing single-use

plastics and oxygen

flows during surgery,

and collaborating with

engineers to improve

energy efficiency.

Vukelic et al.
2017 [105]

Serbia

Setting:

Engineering

laboratory

Timing: 2014 to

2015

Life cycle assessment

(cradle to gate; case

study)

Medical aid (knee

support brace)

To develop a multi-

criteria decision-

making model for

optimal product

selection of 3 types of

knee support (elastic,

crossed and hinged)

using life cycle

assessment (LCA) and

multi-criteria decision

making (MCDM)

approaches.

Based on LCA results,

elastic knee support

production had the lowest

environmental impact,

followed by the crossed

knee support. Polyester was

identified as the highest

contributor to the

environmental impact for

each knee support.

The MCDM-LCA model

output ranked the elastic

knee support as the best,

followed by the hinged

knee support and then the

crossed knee support.

Results differences between

LCA and MCDM-LCA

approaches were due to the

significant weighting of

economic and technical

criteria for the

MCDM-LCA model.

LCA and MCDM

approaches can identify

knee supports with the

lowest environmental

impact and can be used

to optimise ‘eco-design’

of new knee support

products.

(Continued)
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Wang et al.
2021 [91]

United States

Setting:

Pre-operative

evaluation centres

Timing: two-

month pre-

intervention period

(Sept-Oct 2015)

and two-month

post-intervention

period (Sept-Oct

2016)

Life cycle assessment

(retrospective cross-

sectional analysis)

Telehealth (spinal

surgery)

To determine the

greenhouse gas

emissions associated

with pre- and post-

implementation of a

novel telehealth

preoperative evaluation

centre (PEC) in

patients undergoing

elective spine surgery.

Number of included

patient records: 2984

Study intervention: New

PEC model including

telehealth (phone)

evaluations and

standardised preoperative

testing guidelines versus

traditional preoperative

care where a surgeon

decides which patients

require in-person PEC

evaluation.

Mean (SD) pre-

intervention kg CO2e per

patient (n = 144):

Testing (e.g., blood tests &

imaging): 15.65 (0.63)

Physician in-person

evaluation: 11.77 (0)

PEC: 18.70 (1.74)

Telehealth: 1.16 (0.18)

Vehicular travel: 37.22

(3.01)

Total: 84.52 (3.31)

Mean (SD) post-

intervention kg CO2e and

t-test of difference to pre-

intervention (n = 154)

Testing: 12.83 (0.21),

p<0.001

Physician in-person

evaluation: 11.77 (0),

p>0.05

PEC: 3.99 (0.84), p<0.001

Telehealth: 8.82 (0.38),

p<0.001

Vehicular travel: 39.01

(3.15), p = 0.56

Total: 76.43 (3.54),

p = 0.019

Implementing a

telehealth preoperative

evaluation process with

standardised

preoperative testing

guidelines led to

reduced carbon

emissions.

Zhang et al.
2022 [85]

United States

Setting: large

multicentre, urban

health system in a

single US

metropolitan

region

Timing: Data were

retrospectively

identified from

2020

Life cycle assessment Orthopaedic

surgery (carpal

tunnel release)

i) To quantify the

carbon footprint of

carpal tunnel surgery

and its principal

driving components.

ii) To compare the

carbon footprint of

open versus endoscopic

carpal tunnel release.

Total surgeries: 28 (14

open, 14 endoscopic)

Mean (SD) carbon

footprint (in kg CO2e) for

open versus endoscopic:

Central processing5: 40.7

(0) vs 81.4 (0)

Facility6: 18.5 (5.5) vs 24.6

(6.3)

Solid waste7: 0.4 (0.2) vs 0.5

(0.2)

Total carbon footprint: 59.6

(5.7) vs 106.5 (6.4), P<0.05

Average duration of time in

operating room

significantly shorter for

open (38 vs 49 minutes,

P<0.05).

Endoscopic carpal

tunnel release was

associated with a larger

carbon footprint across

all categories.

(Continued)
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Holmner et al.
2014 [97]

Records related

to Holmner

et al. [75–77]

Sweden

Setting: Hospital

Timing: January to

December 2012

Simplified,

streamlined life cycle

inventory

Telemedicine

(hand surgery)

To evaluate potential of

telemedicine to reduce

carbon emissions for

hand rehabilitation

consultations following

a range of hand

surgeries.

Number of consultations:

238 (81 from patient’s

home using PC or tablet,

157 from nearest primary

health centre using

videoconferencing

equipment).

Accumulated life cycle

carbon costs of car travel

for face-to-face visits

(n = 238): 21,400 kg

CO2e10 or 42,472 kg

CO2e11.

Accumulated life cycle

carbon costs of 1-hour

telemedicine consultations

(n = 238): 602 kg CO2e

(range: 183 to 1364).

Telemedicine can

significantly reduce

carbon emissions vs face

to face care for hand

surgery rehabilitation.

Wang et al.
2022 [86]

Record related

to Wang et al.
[78]

United States

Setting: Academic

centre

Timing: not

reported

Carbon footprint

study (retrospective

medical chart review)

Orthopaedic

surgery (spinal

fusion)

i) To compare carbon

emissions of general vs

spinal anaesthesia for

single-level spinal

fusion

Total surgeries: 100 by a

single surgeon (50 general

and 50 spinal anaesthesia)

Median total carbon

footprint, grams CO2e

Spinal anaesthesia12: 70

General anaesthesia
(n = 50)12: 4,725

Sevoflurane only12: 4,802

Desflurane only (n = 6)12,13:

154,008

Spinal anaesthesia had

significantly less

environmental impact

than general anaesthesia

with the impact being

greater for desflurane

than sevoflurane.

Marsault et al.
2021 [102]

Denmark

Setting: Hospital

Timing: 31

October 2014 to 30

January 2015 (on

Fridays)

Simulation study Orthopaedic

surgery (airflow

and energy

consumption in

operating rooms)

To determine the

energy consumption,

bacteria and particle

counts of large, high-

volume, laminar airflow

(LAF) and turbulent

airflow (TAF)

ventilation systems at

100% and 50% fresh air

influx during

standardised simulated

total hip arthroplasty.

Total surgeries: 32

standardised simulated

total hip arthroplasties

(LAF 100% n = 8, LAF 50%

n = 8, TAF 100% n = 8,

TAF 50% n = 8)

Energy consumption

(kWh) with 100% fresh air

ventilation:

LAF: 1.85 kWh (1.66 to

2.03)

TAF: 1.54 kWh (1.53 to

1.83)

Energy consumption

(kWh) with 50% fresh air

ventilation:

LAF: 1.12 kWh (0.95 to

1.31)

TAF: 0.75 kWh (0.73 to

0.87)

Lowering fresh air

influx of laminar air

flow (LAF) by 50%

significantly lowered

energy consumption but

did not adversely affect

the bacterial or particle

counts.
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Albert &

Rothkopf 2015

[87]

United States

Setting: Hospital

(University of

Massachusetts)

Timing: January

2012 to April 2013

Before-after study Orthopaedic

(hand) and plastic

surgery

To propose a method of

decreasing cost through

judicious selection of

instruments and

supplies, and initiation

of recycling in hand

and plastic surgery.

A redesigned ‘operating

set’ was implemented

after removing items

that were routinely

opened and wasted.

Total surgeries: not

reported

Surgery types14: carpal

tunnel release, ganglion

cyst excision, A1 pulley

release for trigger finger,

Dupuytren’s contracture

excision, tendon repair,

fracture open reduction

and internal fixation,

fracture closed reduction,

and percutaneous pinning.

Mean recycling rates for

hand and plastic surgeries

over 9 months (from April

2013):

• Hahnemann campus 4.28

tonnes/month (recycling

rate 51%)15

• University campus 37

tonnes/month (recycling

rate 29%)

•Memorial campus 8.84

tonnes/month (recycling

rate 20%)

Significant

environmental benefit

(and financial savings)

can result by altering

surgical disposable

packs and instrument

sets and by

implementation of

recycling.

de SA et al.
2016 [92]

Record related

to de SA et al.
[79]

Canada

Setting: Hospital

Timing: March

2015 to April 2015

Hospital waste audit Orthopaedic

surgery (surgical

waste and

recycling)

To identify potential

waste reduction

practices.

Total surgeries: 5 hip

arthroscopies for

femoroacetabular

impingement16

Mean waste weight per

surgery:9.48 kg (excluding

laundered linens that are

cleaned and reused)

• 1.28 kg (13.5%) normal

solid waste

• 4.34 kg (45.7%) biohazard

waste

• 2.34 kg (24.7%) sterile

wrap (recyclable)

• 1.28 kg (13.5%) recyclable

plastic

• 0.24 kg (2.6%) sharps

Data extrapolation: Based

on estimates of 500 hip

arthroscopies performed

for femoroacetabular

impingement in Ontario,

Canada, approximately

4,700 kg of waste is

produced each year. This

equates to approximately

18,800 kg of waste

produced from

approximately 2,000 of

these procedures

performed in Canada every

year.

Femoracetabular

impingement

procedures produce

considerable biohazard

waste that could be

reduced by recycling

programs, adherence to

proper waste

segregation and

emphasising ‘green

outcomes.’
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Hennessy et al.
2021 [96]

Ireland

Setting: Hospital

Timing: July 2018

to July 2019

Hospital waste audit Orthopaedic

surgery (surgical

waste and

recycling)

To assess the burden of

waste associated with

implant packaging in

Galway University

Hospital operating

theatres.

Total surgeries17: 1 open

reduction internal fixation

for malleolus ankle

fracture.

Surgical waste weight18:

211 g

• Cardboard (not

recyclable): 144 g (68%)

• Hard plastic (recyclable):

42 g (20%)

• Soft plastic (not

recyclable): 25 g (12%)

Data extrapolation: Based

on one standard procedure,

209 procedures produce

over 44 kg of surgical waste

at the study hospital in one

year.

Orthopaedic implants

contribute a significant

amount of operative

waste that could be

reduced by reducing

volume and layers of

packaging for surgical

materials and using kits

which can be re-

sterilised between

procedures.

Kooner et al.
2020 [93]

Canada

Setting: 1 adult and

1 paediatric tertiary

care hospital

Timing: November

2017 (1-month

period)

Hospital waste audit Orthopaedic

surgery (surgical

waste and

recycling)

To determine the

amount of waste

produced in the

preoperative and

intraoperative periods

for several orthopaedic

subspecialties and to

assess how much

surgical waste was

recycled.

Total surgeries: 55; joint

replacement (n = 14),

sports (n = 10), trauma

(n = 10), upper extremity

(n = 12), foot and ankle

(n = 4), paediatrics (n = 5).

Mean waste weight per

surgery: 6.2 kg (95% CI

3.75 to 8.30)

• 27% recyclable, 70% non-

recyclable, 3% biological

• 71% waste in the

intraoperative period, of

which 8% was recyclable

• 29% waste in the

preoperative period, of

which 74% was recyclable

Mean waste weight per

joint replacement surgery:

8.8kg (95% CI 8.48 to 9.07)

• 34% recyclable

• 86% recyclable waste in

the preoperative period and

14% in the intraoperative

period

Data extrapolation: Based

on an estimated 7 million

orthopaedic procedures in

the US per year, 11,564,000

kg of landfill waste could be

diverted for recycling each

year (>2 tonne waste from

total joint replacement

surgeries).

Orthopaedic surgery is a

substantial source of

waste production in the

hospital system. Nearly

3/4 of all waste in the

preoperative period can

be effectively recycled.

Joint replacement

surgery is one of the

largest waste producers,

but it also has the

highest potential for

recycling of materials.
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Lee & Mears

2012 [88]

Record

commenting on

Lee & Mears

[82]

United States

Setting: Hospital

Timing: March to

April 2011 (2

months)

Hospital waste audit Total hip and knee

joint replacements

(surgical waste)

To determine which

types of waste produced

during hip and knee

replacement surgeries

can be recycled

Total surgeries: 20

consecutive primary total

hip (n = 10) and knee

(n = 10) replacements

Mean (range) waste per

hip replacement, kg19: 13.6

(12.3 to 14.8)

Non-recyclable

(contaminated) waste19,20:

9.5 (8.4 to 10.4)

Uncontaminated waste19,21:

4.1 (3.5 to 5.1), includes

22.8% potentially recyclable

paper and plastic material

Mean (range) waste per

knee replacement, kg19:

15.1 (14.0 to 16.0)

Non-recyclable

(contaminated) waste19,20:

10.6 (9.6 to 11.5)

Uncontaminated waste19,21:

4.5 (3.3 to 5.3), includes

22.0% potentially recyclable

paper and plastic material

Thirty percent of

operating room waste

produced during hip

and knee joint

replacements is clean

and uncontaminated, of

which one-fifth can be

recycled.

McKendrick

et al. 2017 [99]

United Kingdom

Setting: Hospital

Timing: Not

reported

Hospital waste audit Orthopaedic

surgery (surgical

waste and

recycling)

(i) To measure the

volume and weight of

paper and cardboard

which could be recycled

within an operating

theatre environment.

(ii) To calculate the

potential cost and

environmental savings

which might result

from recycling paper

and cardboard.

Total surgeries: 20

consecutive orthopaedic

surgeries; major (n = 12),

minor (n = 8).

Surgery types: not

reported.

Total waste weight for 20

surgeries by waste type, kg

(%):

• Overall total waste:

218 (100)

• Clinical waste: 144 (66)

• General (landfill)

waste: 20 (9)

• Recyclable paper: 40

(18)

• Recyclable cardboard:

14 (6)

Data extrapolation: Based

on an estimated 23 tonnes

of recyclable paper and

cardboard produced at the

study hospital in 2013–14,

CO2 emissions could be

reduced by 11 tonnes

annually.

Recycling paper and

cardboard waste from

the anaesthetic room

and theatre preparation

room has significant

environmental and

financial benefits.

Rammelkamp

et al. 2021 [89]

United States

Setting: Medical

centre

Timing: September

2019 (5 days, 9am

to 5pm) and

December 2019 (5

days, 9am to 5pm)

Hospital waste audit Surgery (surgical

waste)

To determine the

amount of waste from

musculoskeletal

surgeries from two five-

day audits.

Total musculoskeletal

surgeries22: 50;

total knee replacement

(n = 14), laminectomy

(n = 6), total shoulder

replacement (n = 6),

amputation (n = 6), total

hip replacement (n = 3),

carpal tunnel release

(n = 2), gastrocnemius

repair (n = 2),

Most surgical waste was

non-recyclable (on

average 85% general

and 2% biohazardous).

Conducting hospital

waste audits may drive a

systems approach to

reduce waste, and lead

to environmentally

sustainable health care

practices.
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Dupuytren’s contracture

excision (n = 2), ACL

repair (n = 1),

foraminotomy (n = 1),

fasciotomy (n = 1), ankle

ligament repair (n = 1),

ankle open reduction

internal fixation (n = 1),

volar wrist repair (n = 1),

arthrodesis (n = 1), rotator

cuff repair (n = 1) and

arthroscopic clavicle repair

(n = 1).

Mean waste weight per

musculoskeletal surgery

(n = 50), kg23:

• Total waste: 11.8 (1.1

to 24.3)

• General waste: 9.9 (1.1

to 16.7)

• Recyclable waste: 1.5

(0.0 to 3.8)

• Biohazard waste: 0.2

(0.0 to 7.1)

• Blue wrap: 0.7 (0.0 to

5.1)

Mean waste weight per

joint replacement surgery

(n = 23), kg:

• Total waste: 15.0 (7.4

to 24.3)

• General waste: 12.2 (6.9

to 15.1)

• Recyclable waste: 1.0

(0.0 to 3.8)

• Biohazard waste: 0.3

(0.0 to 7.1)

• Blue wrap: 1.0 (0.0 to

2.2)

Sand Lindskog

et al. 2019 [98]

Sweden

Setting: Surgery

departments at

three hospitals

Timing: 2013–2014

Survey and hospital

waste audit

Orthopaedic

surgery (waste

reduction to

reduce climate

impact)

To reduce the

environmental impact

of health and medical

care in Sweden based

on a European Union

waste policy framework

that includes waste

prevention, waste

management and

improving resource

efficiency such as

packaging and

procurement of surgical

materials.

Total surgeries: not

reported

Surgery type: total hip

joint replacement

(cemented)

Mean waste weight per

surgery, kg: 5.7 (5 to 6.6)

Based on the variation in

techniques between the 3

hospitals, the authors

estimated waste could be

reduced to:

• 4.5 kg/surgery if all

operating departments

used the lowest product

consumption (most slim

material)

• 3.9 kg/surgery if all

departments changed from

disposable to reusable

materials

The study led to the

introduction of

customised operating

kits for total hip

replacement surgery

that are adapted to the

needs of different

hospitals and types of

surgery in order to

reduce the amount of

sterile packaging.

However, the rationale

for these customised

operating kits and the

calculation of how

much waste it would

reduce is unclear.
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Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Shinn et al.
2017 [106]

South Korea

Setting: Hospital

Timing: June 2015

Hospital waste audit Orthopaedic

surgery (surgical

waste)

To identify the amount

and type of waste

produced by operating

rooms in order to

reduce the hospital–

regulated medical waste

so as to achieve

environmentally

friendly waste

management in the

operating room.

Total surgeries: 5 total

joint replacements24; knee

(n = 4) and hip (n = 1)

Mean waste weight and

estimated volume per

surgery: 16.9 kg, 240.4L

• 3.3 kg (19.4%), 133.6L

(55.6%) non regulated

medical waste

• 12.6 kg (74.4%), 90.6L

(37.7%) regulated medical

waste

• 1.0 kg (6.2%), 16.2L

(6.7%) blue wrap

Data extrapolation: Based

on 105 total knee

replacement surgeries and

97 total hip replacement

surgeries conducted at the

study hospital in 2014,

872.6 kg of regulated

medical waste can be

reduced by waste

segregation.

“It is possible to reduce

the amount of hospital

regulated medical waste

through the segregation

of waste in the

operating room. This

gives clinicians the

opportunity to

deliberately plan a way

to balance the

importance of patient

care with consideration

for the impact on the

environment.”

Southorn et al.
2013 [100]

United Kingdom

Setting: Two

hospitals

Timing: 2-week

period

Hospital waste audit Orthopaedic

surgery (surgical

waste)

To examine the effect

of separating and

recycling surgical waste

to reduce incinerated

waste (implied).

Total surgeries or invasive

procedures: 44; total hip

replacement (n = 18), total

knee replacement (n = 14)

and facet joint injections

(n = 12).

Mean waste weight per

total hip replacement, kg

(SD): 12.1 (0.25), which

includes 5.8 (0.17) of

domestic waste

Mean waste weight per

total knee replacement, kg

(SD): 11.6 (0.18), which

includes 5.3 (0.18) of

domestic waste

Mean waste weight per

facet joint injection kg

(SD): 1.8 (0.17), which

includes 0.8kg (0.20) of

domestic waste

Domestic waste was

predominantly comprised

of recyclable materials25

Data extrapolation: Based

on 180,000 joint

replacements performed in

the UK each year, the

carbon footprint of joint

replacements would be

reduced by 75% (6.3

million kg of carbon

dioxide) if waste was

separated and recycled

rather than being

incinerated.

Changing clinical

practice to recycle

domestic operating

theatre waste can have a

positive impact on the

environment and

significantly reduce

costs.
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Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Stall et al. 2013

[94]

Canada

Setting: Hospital

Timing: February

2010 (1-month

period)

Hospital waste audit Total knee joint

replacements

(surgical waste)

To investigate waste

production associated

with total knee

replacements by

performing a surgical

waste audit to gauge the

environmental impact

of the procedure and

generate strategies to

improve waste

management.

Total surgeries: 5 total

knee joint replacements

Mean waste weight per

surgery, kg (%):

• Total waste: 13.3 (100)

• Normal solid waste: 8.6

(64.5)

• Biohazard waste: 2.5

(19.2)

• Recyclable blue sterile

wrap: 1.6 (12.1)

• Recyclable waste: 0.3

(2.2)

• Sharps: 0.3 (2.2)

Data extrapolation: Based

on a volume of 1.6m3 from

the 5 surgeries, the landfill

waste from all 47,429 total

knee arthroplasties in

Canada in 2008–2009 was

estimated to be 407,889 kg

by weight and 15,272 m3 by

volume.

Total knee

arthroplasties produced

substantial amounts of

surgical waste. It was

not maximally recycled,

was improperly

segregated and was

associated with

substantial surgical

overage.

Thiel et al. 2019

[90]

United States

Setting: Medical

centre

Timing: Between

May 2014 and July

2015

Non-randomised,

comparative analysis

(including hospital

waste audit)

Orthopaedic

surgery (surgical

waste)

To analyse the waste

generation, material

costs, and patient

experience associated

with wide awake hand

surgery (WAHS)

compared with surgery

using traditional ‘local

& sedation’ anaesthesia,

while using a standard

hand surgery custom

pack or a minimal

custom hand surgery

pack.

Total surgeries: 178 small

hand surgeries; carpal

tunnel release (n = 80),

trigger finger release

(n = 39), cyst/mass excision

(n = 32) and other (n = 27,

includes de Quervain’s

release, Dupuytren’s

contracture treatments,

nailbed or nerve repairs, or

multiple procedures

performed during a single

surgical visit)

Overall mean waste

weight per surgery, kg

(SD):

Carpal tunnel release,

trigger finger release and

excision procedures: 2.4

(0.5)

‘Other’ procedures: 2.8

(0.4)

Mean waste weight per

surgery using ‘standard

pack’ of disposable

surgical supplies (n = 80),

kg (SD)26:

Carpal tunnel release,

trigger finger release and

excision procedures

(n = 72): 2.6 (0.5)

‘Other’ procedures: 2.8

(0.4)

Implementing a

‘minimal custom hand

surgery pack’ and wide-

awake hand surgery

(WAHS) together

appear to halve surgical

material costs for some

commonly performed

hand surgeries (carpal

tunnel release, trigger

finger release and

excision of benign

masses) and reduce

mean surgical waste by

13% (0.3 kg) per case28.

(Continued)

PLOS ONE The environmental impact of health care for musculoskeletal conditions: A scoping review

PLOS ONE | https://doi.org/10.1371/journal.pone.0276685 November 28, 2022 15 / 28

https://doi.org/10.1371/journal.pone.0276685


Table 1. (Continued)

Author (year) Country, setting

and time of study

Study design Topic Aim/s and methods Results Conclusion

Mean waste weight per

surgery using customised

‘minimal pack’ of

disposable surgical

supplies (n = 98), kg

(SD)27:

Carpal tunnel release,

trigger finger release and

excision procedures

(n = 72): 2.2 (0.5)

‘Other’ procedures: 2.8

(0.4)

Footnotes

1: Environmental impact data for five impact categories and one single score indicator were reported in graphical form only.

2: Nine patients from the combination anaesthesia group were analysed because one patient who received nitrous oxide was excluded.

3: Carbon emissions data did not include heating, ventilation, air conditioning or any surgical equipment.

4: Seven of the 305 patients lived more than 200 miles from the medical centre and were excluded from the analysis.

5: The central processing-related carbon footprint includes electricity usage for sterilisation and was calculated using data collected from the study institution.

6: The facility-related carbon footprint was calculated as the sum of the kg CO2e produced when using operating room lights, anaesthesia equipment, endoscopy

equipment, heating, cooling and the use of ventilation.

7: Waste-related carbon footprint was calculated as the sum of solid waste derived from positioning, prepping, draping, carpal-tunnel procedure, wound closure and

wound dressing. The carbon footprint of solid waste was determined using the conversion factor of 0.199 kg CO2e per kg.

8: eCTR requires more instrumentation than oCTR, resulting in fewer trays being sterilised per cycle and thus increasing its sterilisation energy requirements. eCTR

also used more electricity compared with oCTR due to longer operating times.

9: This study also reported data for 481 speech therapy visits from a speech therapy unit, which are outside the scope of this review.

10: Based on the cost of a car being 0.26 kg CO2e/km, derived from data by Leduc et al. (2010) [132].

11: Based on estimates by Lenzen et al. (1999) [133] that reported the cost of a car was 0.86 kg CO2e/km.

12: This study did not perform carbon footprint calculations related to the number of plastic disposables used for each anaesthetic modality, the energy use for heating/

cooling, ventilation, lighting, electricity for anaesthetic machines, surgical instruments, surgical implants, single-use items such as drapes and gloves, and intraoperative

imaging.

13: Six general anaesthesia cases included the use of desflurane, which has a very high carbon footprint compared to other anaesthetic gases. Desflurane significantly

skewed the mean total carbon footprint data for general anaesthesia.

14: The study also included plastic surgery procedures; breast reduction, breast augmentation, implant/expander removal, panniculectomy and abdominoplasty.

15: A blue wrap recycling program at Hahnemann campus, where collected blue wrap was sewn into charity items, diverted an additional 1.2 tonnes of waste from

landfill over a 10-month period.

16: All surgeries included osteochondroplasty and labral repair.

17: Additional data were presented for the mean weight of other surgical procedures; ankle ORIF, humerus ORIF, clavicle ORIF, hip hemiarthroplasty and kyphoplasty,

but the number of surgeries used to derive these data was not reported.

18: Fifty-two percent of the total surgical waste (110 grams) was related to surgical screws.

19: Waste weight data were converted from pounds to kilograms by multiplying figures by 0.454.

20: Contaminated waste items included surgical gloves, personal protective equipment, surgical drapes, tables, sponges, towels, tubing and surgical instruments.

21: Uncontaminated waste items included paper packaging, plastic packaging and blue polypropylene sterile wrap.

22: Hospital waste data for 223 non-musculoskeletal surgeries were also recorded for this audit.

23: Data are also available according to musculoskeletal surgery type.

24: This study also reported an additional waste audit of one total knee replacement, one laparoscopic procedure and one pelviscopic procedure, however, individual

data could not be separated.

25: Domestic waste consisted of recyclable dry paper and card (47%), potentially recyclable plastic (47%) and non-recyclable wet paper or card or plastic (6%).

26: Weight of standard hand surgery custom pack was 2.04 kg.

27: Weight of customised minimal hand surgery pack was 1.62 kg.

28: There was no significant difference in mean waste weight between groups for “other” procedures (2-sample t test, P = 0.950).

https://doi.org/10.1371/journal.pone.0276685.t001
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Two LCA studies investigated the environmental impact of manufacturing a titanium

implant for a knee [95] or hip [104] replacement. Both concluded that additive manufacturing

of a prosthesis (building it one layer at a time) is more environmentally sustainable than creat-

ing complex geometric shapes using conventional methods (subtractive manufacturing or

forging, milling, machining from a solid block of material until the final product is produced).

One study reported that additive manufacturing of a titanium knee produced 68% less carbon

emissions compared with conventional methods [95].

Two LCA studies investigated the carbon footprint of telehealth or telemedicine services

versus usual care. One compared the carbon footprint of patient evaluations before and after

implementing a model of care that included telehealth for patients undergoing elective spinal

surgery [91], and the other compared the carbon footprint of telemedicine versus in-person

consultations for hand surgery rehabilitation [97]. Both studies reported significant reductions

in carbon emissions when telehealth or telemedicine was used.

Three LCA studies explored the carbon footprint of various hand surgeries [83–85]. One

compared the carbon footprint of open to endoscopic carpal tunnel release surgery [85]. This

study reported a significantly larger carbon footprint for endoscopic surgery due to higher

energy requirements from sterilising surgical instruments and longer operating times. Another

study quantified the carbon footprint of surgical waste from different types of hand surgeries

and concluded it could be reduced by reducing the number of surgical items in the operating

room and better sorting of waste for appropriate disposal [84]. The third study estimated the

carbon footprint of three hand surgeries (carpal tunnel release, open reduction and internal

fixation of distal radius fracture or primary flexor tendon repair) based upon the practices of

35 surgeons [83]. They found significant differences in operating room waste for the same sur-

gery dependent upon the individual surgeon’s practices.

One LCA from Germany compared the environmental impact of disposable versus reusable

instrument sets for lumbar spine fusion surgery [103]. It found that disposable sets had 45 to

85% less environmental impact largely attributable to the high energy consumption of steam

sterilisation for reusable sets.

One LCA was an engineering-based case study that included a multi-criteria decision-mak-

ing approach to compare the environmental impact of three knee supports manufactured

from different materials [105]. It concluded that these methods are useful to identify and opti-

mise new eco-friendly products.

One LCA study quantified the average carbon dioxide equivalent (CO2e) emissions of gen-

eral, spinal and combination (general and spinal) anaesthesia used for knee replacements at a

hospital in Melbourne, Australia using a ‘cradle to grave’ assessment [101]. This method mea-

sures the carbon footprint of a product from the resource extraction phase (‘cradle’) to its dis-

posal (‘grave’). As well as the anaesthesia, it included single-use items (e.g., plastics, glass,

cotton etc.) and waste disposal. McGain et al. (2021) reported similar CO2e emissions for gen-

eral, spinal, and combination anaesthesia when the parameters for the inhaled anaesthetic,

including use of sevoflurane as the inhaled anaesthetic, were the same in those that received

either general anaesthesia alone or a combination of general and spinal anaesthesia [101].

Their findings differed from another study performed in the US that found that the median

CO2e emissions of general anaesthesia was significantly higher than spinal anaesthesia for sin-

gle-level transforaminal lumbar interbody fusions (TLIF) [86]. This study performed a partial

LCA using a ‘cradle-to-gate’ assessment, a method that only includes the carbon footprint of a

product from the cradle to the moment that it is sold or received by the consumer (‘gate’).

Therefore, some large sources of CO2e emissions (e.g., single-use plastics, electricity for patient

air warmer) were not included. Another point of difference was that the Australian study
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calculated CO2e emissions based on an electricity mix derived from 75% brown coal which has

double the CO2e emissions than electricity produced in the United States [101].

One Danish simulation study measured the energy consumption of differing types of venti-

lation (ventilation system fans and warming/cooling coils) in operating theatres during mock

total hip replacements [102]. They reported that reducing fresh air influx for laminar airflow

systems by 50% led to significantly lower energy consumption without resulting in an unac-

ceptable increase in bacterial counts.

The remaining 12 research studies measured waste associated with orthopaedic surgery

[87–90, 92–94, 96, 98–100, 106]. One study estimated that average dry weight waste, of which

textiles (e.g. bandages, disposable sheets) accounted for over half, could be reduced from 5.7 to

4.5 kg per cemented hip replacement by switching to customised operating kits containing less

consumable materials, packaging and products [98].

A further nine hospital waste audits quantified the weight of waste of 205 orthopaedic oper-

ations, predominantly joint replacements [88, 89, 93, 94, 99, 100, 106], but also hip arthrosco-

pies [92], facet joint injections [100] and open reduction and internal fixation (ORIF) for

malleolus ankle fracture [96]. Three waste audits reported the volume of surgical waste and

extrapolated data to estimate annual landfill from knee replacement surgeries in Canada [94],

as well as the potential reduction of waste or CO2 emissions from recycling programs [99] and

waste segregation [106]. Non-recyclable waste was the largest waste stream for most orthopae-

dic operations [88, 89, 92–94, 96, 99, 100, 106].

Most waste audits recommended strategies to reduce waste in orthopaedic surgery includ-

ing implementing recycling programs [88, 92–94, 96, 99, 100, 106], segregating waste [88, 92–

94, 96, 99, 100, 106], educating hospital staff to correctly dispose of recyclable waste [88, 93,

100], documenting ‘green outcomes’ from surgical procedures to encourage green health care

practices [92], commencing surplus recovery programs [92, 94], reducing excessive packaging

of surgical materials [94, 96, 98, 106], moving to reusable surgical linens [94], providing sur-

geons with a selection of operating kits that can be re-sterilised between procedures [96], and

adopting new procurement routines [98, 100].

One study found that combining a ‘minimal custom’ surgery pack with local anaesthesia

rather than a standard surgery pack with sedation and local anaesthesia reduced average surgi-

cal waste by 13% for minor hand surgery [90]. The final study redesigned the operating set to

include 23 rather than 35 instruments for hand surgery and implemented a waste recycling

program that resulted in a 20 to 51% increase in monthly recycling rates across three hospital

sites [87].

Editorials. Twenty-one editorial papers described a need to reduce environmental impact

of orthopaedic surgery (n = 9) and focussed on disciplines responsible for managing musculo-

skeletal conditions (n = 12). Of those relating to orthopaedic surgery; three discussed a need

for orthopaedic surgery to adopt sustainable practices [121, 125, 126]; two discussed strategies

for reducing the environmental impact of hand surgery [120, 122]; one focused on the benefits

of regional anaesthesia in place of inhaled volatile anaesthetic gases [124]; one discussed the

reuse of undamaged surgical screws or prostheses opened but not used during surgery [123];

one discussed recycling of metal implants posthumously [117]; and one reported the total

weight of waste from 1,099 unspecified hand surgeries, but no methods were reported [127].

Of those discipline-specific editorials, nine discussed the environmental impact of physiother-

apy and the role of the profession in reducing it [109–111, 113–116, 118, 119], two discussed

how podiatrists can engage with the community to drive sustainable practice [107, 108], and

one outlined strategies for occupational therapists to approach climate change [112].

Narrative reviews. Two narrative reviews summarised environmentally sustainable

changes that can be implemented for hand surgery [128, 131]. One summarised ‘Lean and
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Green’ initiatives that aim to reduce waste-energy consumption, improve sterilisation tech-

niques and reprocess single-use devices [128], and the other summarised changes to reduce

the carbon footprint of hand surgery using a ‘Reduce, Reuse, Recycle, Research, Rethink and

Culture’ framework [131]. Both reviews reported financial benefits from implementing

environmentally sustainable hand surgery practices. There were four additional papers relating

to these publications [87, 90, 94, 127] (see Tables 1 and S3).

One narrative review on environmental sustainability in orthopaedic surgery, that identi-

fied all seven relevant studies that we included, highlighted a need for high-quality research on

best practices for orthopaedic surgery to reduce its carbon footprint [129] (see Table 1). The

remaining narrative review explored bioresorbable orthopaedic implants as a sustainable alter-

native to traditional permanent implants for some orthopaedic surgeries [130].

Discussion

Our scoping review identified 49 publications focused on the environmental impacts of health

care for musculoskeletal conditions. Most papers were published within the last three years

and almost half were editorials, likely reflecting an increasing interest in the topic. Almost

three-quarters were related to orthopaedic surgery which is consistent within other health

fields that have recognised surgery as a large contributor of greenhouse gas emissions [134–

136]. Of the 24 included original research studies less than half directly measured the environ-

mental impact relating to climate change for any aspect of musculoskeletal health care and

none quantified the carbon footprint of well-recognised contributors of greenhouse gas emis-

sions such as hospital stays, pharmaceuticals and imaging [4, 55].

Our review identified some promising strategies for reducing the environmental impact of

musculoskeletal health care including use of additive rather than subtractive manufacturing of

orthopaedic components, greater use of telehealth, and reducing fresh air influx for laminar

airflow systems in operating theatres, that warrant further investigation. The finding that open

carpal tunnel release has a lower carbon footprint compared to endoscopic release, which may

be preferred by the patient [137], indicates a need to consider these competing priorities. Simi-

larly, while many studies identified ways of reducing waste in orthopaedic surgery including

greater use of reusable instruments, the finding from one study that reusable instrument sets

had a greater carbon footprint in comparison to disposable sets indicates that evidence of envi-

ronmental benefit is required before introducing changes to practice.

To better understand the environmental impact of health care for musculoskeletal condi-

tions there is a need to identify and quantify the impact of care in terms of a carbon footprint,

and implement standardised and valid metrics for routine collection across multiple institu-

tions and government bodies [138, 139]. Collecting comparable carbon metrics associated

with the delivery of musculoskeletal care such as CO2e emissions via life cycle assessment or

the development of new carbon intensity metrics would facilitate accurate benchmarking,

monitoring and transparent reporting of data that can be used to identify high emitters of

greenhouse gases for targeting efforts to reduce them [138, 139]. The methods for collecting

these metrics are complex and, as exemplified by the different results in comparing general to

spinal anaesthesia across countries and by use of different LCA methods (cradle to gate or to

grave metrics), specialised expertise is needed to be able to explain such differences.

Nine of the original research studies included in this review were waste audits that provided

some information regarding the weight, volume and type of hospital waste associated with

orthopaedic surgeries. However, the estimates had low precision and poor generalisability as

they were based on a small number of surgical operations ranging from one to 55. While larger

studies performed across multiple hospital sites would provide more representative samples of
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the waste produced from orthopaedic surgeries, the UK National Health Service (NHS) esti-

mates that waste produced across the NHS healthcare system accounts for only 3% of the total

carbon footprint of health care [7]. Future research on the environmental sustainability of

orthopaedic surgery may therefore have greater impact if directed towards larger contributors

of greenhouse gas emissions. Additionally, there may be opportunity for existing waste audit

data to be quantified as CO2e emissions estimates using retrospective life cycle assessment

methods, although this process requires a high level of expertise and is resource intensive

[139].

Environmentally sustainable health care is needed across all health systems to minimise

the direct and indirect harms it may be causing to our planet and its population [140]. In

addition to collecting meaningful data using standardised carbon metrics, a framework by

MacNeill et al. (2021) proposes three principles for achieving health system sustainability

that can be directly applied to musculoskeletal care [141]. The first principle involves reduc-

ing the demand for health services. While this has grown as a consequence of ageing popula-

tions and population growth, public health policies are needed that prioritise disease

prevention which will have additional benefits beyond musculoskeletal health. The second

principle is to better match the supply and demand of health care and health support ser-

vices across populations and settings, while the third is to reduce greenhouse gas emissions

from the delivery of health care. The latter could be achieved by de-implementation of low

value care, particularly targeting low-value tests and treatments with large carbon foot-

prints, as well as expanding low carbon services such as telehealth across health systems.

Many of the publications included in this review align with this third principle, although

more carbon metrics are needed to further determine the largest contributors of greenhouse

gas emissions within musculoskeletal health care.

The main strength of this review is that we used scoping review methodology to identify a

broad range of studies and editorials across multiple disciplines. We also developed a compre-

hensive environment-themed search strategy through discussion with environmental scientists

and after examining systematic reviews that had explored environmental sustainability for

health care in other fields [2, 142]. We did this because we could not identify validated search

strategies published for ‘environmental health’ or ‘environmental impact’.

A limitation to our database search is that we used the search strategy for musculoskeletal

conditions used by Cochrane Musculoskeletal [143, 144], but this did not include broad ana-

tomical terms (e.g. hand, wrist, elbow, shoulder etc.). To overcome this, we performed com-

prehensive Google and Google Scholar searches using anatomical, surgical, telehealth and

environment themed keywords and also hand searched the reference lists of included publica-

tions to identify relevant publications and grey literature articles not published or indexed in

biomedical databases. Our search identified narrative reviews that included 11 of our included

original research studies and no additional relevant papers also minimising the likelihood of

missing papers that would have appreciably altered our conclusions.

Conclusion

Despite an established link between health care and greenhouse gas emissions we found lim-

ited empirical data estimating the impact of musculoskeletal health care on the environment.

Most of the studies we identified quantified the carbon footprint of aspects of orthopaedic sur-

gery, particularly surgical waste, but there were limited data for other aspects of care such as

imaging, pharmaceuticals and allied health care. Further data are needed to determine whether

actions to lower the carbon footprint of musculoskeletal health care should be a priority and to

identify those aspects of care that should be prioritised.
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