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Abstract

The emergence of genetic data coupled to longitudinal electronic medical records (EMRs)

offers the possibility of phenome-wide association studies (PheWAS). In PheWAS, the

whole phenome can be divided into numerous phenotypic categories according to the

genetic architecture across phenotypes. Currently, statistical analyses for PheWAS are

mainly univariate analyses, which test the association between one genetic variant and one

phenotype at a time. In this article, we derived a novel and powerful multivariate method for

PheWAS. The proposed method involves three steps. In the first step, we apply the bottom-

up hierarchical clustering method to partition a large number of phenotypes into disjoint clus-

ters within each phenotypic category. In the second step, the clustering linear combination

method is used to combine test statistics within each category based on the phenotypic clus-

ters and obtain p-values from each phenotypic category. In the third step, we propose a new

false discovery rate (FDR) control approach. We perform extensive simulation studies to

compare the performance of our method with that of other existing methods. The results

show that our proposed method controls FDR very well and outperforms other methods we

compared with. We also apply the proposed approach to a set of EMR-based phenotypes

across more than 300,000 samples from the UK Biobank. We find that the proposed

approach not only can well-control FDR at a nominal level but also successfully identify

1,244 significant SNPs that are reported to be associated with some phenotypes in the

GWAS catalog. Our open-access tools and instructions on how to implement HCLC-FC are

available at https://github.com/XiaoyuLiang/HCLCFC.

Introduction

Genome-wide association studies (GWAS) have emerged as a common and powerful tool for

investigating the genetic architecture of human disease over the last ten years [1, 2]. Over the

last decade, numerous disease- and trait-associated common SNPs have been successfully

identified by using statistical methods of GWAS.

To date, many software packages, such as PLINK, Gen/ProbABEL, MaCH, SNPTEST, and

FaST-LMM, have been developed to support GWAS [3–9]. However, GWAS suffer from
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important shortcomings. First of all, GWAS usually focus on a pre-defined and limited pheno-

typic domain and ignore the potential power gained through the use of intermediate pheno-

types that may more closely reflect a gene’s mechanism, as well as the association between

genetic variation and multiple phenotypes [10, 11]. Moreover, it is difficult to reach the thresh-

old of statistical significance by GWAS due to the burden of multiple comparisons conducted;

only those associations with a p-value less than 5 × 10−8 are considered statistically significant.

GWAS have difficulty in explaining a significant portion of the predicted phenotypic heritabil-

ity even though a significant number of SNPs are identified [12]. Lastly, the genotype-pheno-

type association is assessed for millions of SNPs one by one, false-positive results may easily

arise due to large-scale multiple testing. Therefore, large sample size is needed to achieve the

optimal statistical power and minimize spurious associations. Furthermore, the replication of

the significant loci in independent populations is necessary according to the GWAS criteria

[13].

Recently, large-scale DNA databanks linked to longitudinal electronic medical records

(EMRs) offer the possibility of phenome-wide association studies (PheWAS) and have been

proposed as an approach for rapidly generating large, diverse cohorts for the discovery and

replication of genotype-phenotype associations [14–16]. In most EMR systems, the whole phe-

nome can be classified into numerous phenotypic categories according to genotypic and phe-

notypic information such as phenotype similarity [15], genetic architecture [17], and disease

network [18]. As a complementary approach to GWAS, PheWAS investigate the association

between SNPs and a diverse range of phenotypes. By utilizing all available phenotypic informa-

tion and all genetic variants in the estimation of associations between genotype and phenotype,

a broader picture of the relationship between genetic variation and networks of phenotypes is

possible [17]. In summary, GWAS use a phenotype-to-genotype strategy, beginning with a

specific phenotype or disease; PheWAS reverse this paradigm by using a genotype-to-pheno-

type approach, starting with a genotype to test for associations over a wide spectrum of human

phenotypes [12].

We are motivated primarily by PheWAS, which aim to assess associations between SNPs

and a diverse range of phenotypes. Many of the issues that arise in this setting also occur else-

where, for example, in clinical trials, the outcomes of cardiovascular risk may include hospital-

ization, stroke, heart failure, myocardial infarction, cardiac arrest, disability, and death [19].

Therefore, the statistical framework and results given here have a potential for wider

application.

Several statistical methods for genetic association studies based on multiple phenotypes

have been developed. The traditional Multivariate Analysis of Variance (MANOVA) [20] can

take into account multiple continuous phenotypes to essentially test whether or not the inde-

pendent genetic variant simultaneously explains a statistically significant amount of variance

in multiple phenotypes. By performing ordinal regression analysis (proportional odds logistic

regression), the joint model of Multiple Phenotypes (MultiPhen) [21] was developed using a

reversed analysis by considering a genetic variant of interest as an ordinal response variable

and the correlated phenotypes as predictors. A limitation of these multivariate approaches is

that their performance depends on the specific configuration of phenotypic correlation struc-

ture. To address the limitation of some of the multivariate approaches, the Trait-based Associ-

ation Test that uses Extended Simes procedure (TATES) [22] was developed to combine p-

values obtained in standard univariate GWAS while correcting for the observed correlational

structure between phenotypes. However, TATES essentially only depends on the phenotype

that has the strongest association with the variant. Thus, MANOVA and MultiPhen are more

powerful than TATES when genotypes impact on all phenotypes or on a large proportion of

phenotypes because TATES may lose information in this scenario, while TATES is more
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powerful than MANOVA and MultiPhen when genotypes impact on one or very few pheno-

types [23].

In 2019, Sha et al. [24] developed the Clustering Linear Combination (CLC) method that

combines univariate test statistics for jointly analyzing multiple phenotypes in association

analysis. CLC has been theoretically proved to be the most powerful test among all tests with

certain quadratic forms if the phenotypes are clustered correctly. It is not only robust to differ-

ent signs of means of individual statistics but also reduces the degrees of freedom of the test

statistics. Therefore, the CLC method can be applied to PheWAS. However, due to the

unknown number of clusters for a given data, the final test statistic of the CLC method is the

minimum p-value among all p-values of the test statistics obtained from each possible number

of clusters [25], and a simulation procedure is used to estimate the p-value of the final test sta-

tistic which would be time-consuming, especially in the PheWAS setting.

In this article, we derive a novel and powerful multivariate method, which we referred to as

HCLC-FC (Hierarchical Clustering Linear Combination with False discovery rate Control) to

test the association between a genetic variant with a large number of phenotypes. The

HCLC-FC method is applicable to PheWAS. In PheWAS, the whole phenome can be classified

into numerous phenotypic categories according to genotypic and phenotypic information,

and each category contains a certain number of phenotypes. The proposed method

(HCLC-FC) involves three steps. In the first step, we use the bottom-up Hierarchical Cluster-

ing Method (HCM) [26] to partition a large number of phenotypes into disjoint clusters within

each category. In the second step, we apply the CLC method to combine test statistics within

each phenotypic category based on the phenotypic clusters and obtain p-values from each phe-

notypic category. In the third step, we develop a false discovery rate (FDR) control approach

based on a large-scale association testing procedure with theoretical guarantees for FDR con-

trol under flexible correlation structures [10]. Using extensive simulation studies, we evaluate

the performance of the proposed method and compare the power of the proposed method

with the powers of three commonly used methods in association studies using multiple pheno-

types. These three methods include MANOVA [20], MultiPhen [21], and TATES [22]. Our

simulation studies show that the proposed method outperforms the other three methods for

different within-group and between-group phenotypic correlation structures we consider.

Furthermore, the existing methods using our proposed FDR control procedure can control

FDR efficiently. We also evaluate the performance of HCLC-FC through a set of 1,869 EMR-

based phenotypes based on the International Classification of Diseases, 10th Revision (ICD-10

code, Data-Field 41202), across more than 300,000 samples from the UK Biobank, where these

phenotypes can be classified into 260 ICD-10 level 1 blocks. The real data analysis results show

that HCLC-FC can well control the type I error rate and can identify 1,244 SNPs that have pre-

viously been reported in the GWAS catalog.

Materials and methods

Statistical methods

Consider a sample with n unrelated individuals for a PheWAS, indexed by i = 1,2,. . .,n. Each

individual has the phenome with K phenotypes. The K phenotypes can be divided into M phe-

notypic categories, indexed by m = 1, . . ., M. Suppose that there are Km phenotypes in the mth

category, where m = 1,2, . . ., M and K1 þ � � � þ KM ¼ K:yim ¼ ðyim1; . . . ; yimk; . . . ; yimKm
Þ
T

is a

length of Km phenotype vector in the mth phenotypic category of the ith individual, where yimk

is the kth phenotype in the mth category of the ith individual. Denote xi 2 {0,1,2} as the number

of minor alleles that the ith individual carries at a genetic variant of interest. We are interested
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in simultaneously testing the collection of M hypotheses H0m: the mth phenotypic category is

not associated with the genetic variant of interest.

We assume that there are no covariates. If there are covariates, such as, gender, age, BMI,

and top principal components to adjust for population stratification, we adjust both phenotype

and genotype values for the covariates using the method applied by Price et al. [27] and Sha

et al. [28]. That is, if there are p covariates, zi1, . . ., zip, for the ith individual, we adjust both phe-

notype and genotype values for the covariates through linear models

yimk ¼ a0mk þ a1mkzi1 þ � � � þ apmkzip þ εimk;

xi ¼ g0 þ g1zi1 þ � � � þ gpzip þ ti:

In this article, we derived a novel and powerful multivariate method for PheWAS, which is

referred to as HCLC-FC. The proposed method (HCLC-FC) involves three steps. In the first

step, we use the bottom-up HCM [26] to partition Km phenotypes into Lm disjoint clusters

within each category, where m = 1, . . ., M. In the second step, we apply the CLC [24] to com-

bine test statistics within each category. The CLC test statistic with Lm clusters follows a chi-

square distribution with Lm degrees of freedom. We then obtain the p-value of the CLC test

statistic for each phenotypic category. In the third step, we propose an FDR control approach

based on the method proposed by Cai et al. [10]. FDR is widely used to claim significance for

high-dimensional correlated data. However, most of the existing methods of FDR cannot

accurately estimate FDR due to different directions of genetic effects on different phenotypes.

Recently, Cai et al. (2019) developed a method to evaluate FDR that works well for PheWAS if

only a single phenotype is considered at a time. However, Cai’s method is based on test statis-

tics which are difficult to extend to test statistics for multiple phenotypes. Instead of using test

statistics, we propose a new approach to evaluate FDR which is based on p-values and does not

depend on test statistics. In the following sections, we give a detailed approach for each step.

Step 1: HCM to partition phenotypes in each phenotype category. For the mth pheno-

typic category, we partition Km phenotypes into Lm disjoint clusters. Denote Dm = 1 − Sm with

entries dm
ll� as the dissimilarity matrix, where Sm is Km × Km similarity matrix of Ym for the mth

phenotypic category and dm
ll� is the dissimilarity value between lth and l�th phenotypes. The

HCM is based on the agglomerative clustering algorithm. In agglomerative clustering, all the

phenotypes are a cluster of their own, and we merged pairs of clusters until they form a single

cluster. In each iteration, we merge two clusters that have the smallest value of the average dis-

similarity dm
ll� between all phenotypes in two clusters and define the smallest average dissimilar-

ity hb as the height of the bth iteration. The established principle in Bühlmann et al. [29] is used

to determine the number of clusters for each phenotypic category. That is, the number of clus-

ters Lm is identified at the bbth iteration, where bb ¼ arg max
b�1
ðhbþ1 � hbÞ.

Step 2: CLC to test the association between phenotypes in each category and a genetic

variant. For each phenotypic category, we apply the CLC method [24] to combine test

statistics among the Lm clusters. We use Tmk to denote the score test statistic to test the

null hypothesis H0mk: β1mk = 0 (the kth phenotype in the mth phenotypic category is not

associated with the genetic variant) under the generalized linear model yimk = β0mk +

β1mk xi + εimk, where k = 1, . . ., Km. So Tmk is given by Tmk ¼ Umk=
ffiffiffiffiffiffiffiffi
Vmk
p

, where

Umk ¼ Sn
i¼1

yimkðxi � �xÞ;Vmk ¼
1

nS
n
i¼1
ðyimk � �ymkÞ

2
Sn

i¼1
ðxi � �xÞ2; �x ¼ 1

nS
n
i¼1

xi, and

�ymk ¼
1

nS
n
i¼1

yimk. If we let Tm ¼ ðTm1; . . . ;TmKm
Þ
T

be the test statistic vector that contains

score test statistics for each phenotype in the mth phenotypic category and let Bm be a Km

× Lm matrix with the indicator entry bkl = 1 if the kth phenotype belongs to the lth cluster
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and bkl = 0 otherwise. Then the CLC test statistic for the Lm clusters in the mth phenotypic

category is given by TLm
CLC ¼ ðWmTmÞ

T
ðWmΣmW

T
mÞ
� 1
ðWmTmÞ, where Wm ¼ BT

mΣ� 1m :T
Lm
CLC fol-

lows a chi-square distribution with Lm degrees of freedom. We denote pm as the p-value

of TLm
CLC.

Step 3: Threshold for FDR-controlling. The method proposed by Cai et al. [10] is based

on test statistics which are hard to extend to other test statistics. Therefore, in this step, we

develop a new approach to evaluate FDR which is based on p-values. In the second step, the p-

value for the test statistic in the mth category for m = 1, . . ., M can be obtained. In this step, we

propose a new multiple testing FDR controlling procedure by thresholding the p-values {pm:

m = 1, . . ., M}. Under the null hypothesis, each pm follows a uniform distribution U(0,1). Let t,
0� t� 1, be a rejection threshold so that H0m is rejected if and only if pm� t. For any given

threshold t, 0� t� 1, the false discovery proportion (FDP) based on a random sample is given

by

FDP tð Þ ¼

X

m2H0

I pm � tð Þ

max
XM

m¼1

I pm � tð Þ; 1

( ) :

To maximize the power of the test or equivalently the rejection rate among H1 while main-

taining an FDP level of α, the optimal threshold t isbt0 ¼ supft : FDPðtÞ � ag. The key to

empirically controlling the FDP is to find a good estimate of the numerator
X

m2H0

Iðpm � tÞ.

Using the idea in Cai et al. [10], we estimate the numerator by
X

m2H0

Iðpm � tÞ � m0GðtÞ,

where m0 is the number of categories under the null hypothesis and we can use M to estimate

m0 due to the sparsity in the number of alternative hypotheses in many real data applications,

and G(t) = P(U(0,1)� t) = t.
For a given nominal FDR level α 2 (0,1), we reject H0i whenever pm � bt , where

bt ¼ sup t : FDP tð Þ � af g ¼ sup t :

X

m2H0

I pm � tð Þ

max
XM

m¼1

I pm � tð Þ; 1

( ) � a

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼ sup t :
m0t

max
XM

m¼1

I pm � tð Þ; 1

( ) � a

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼ sup 0 � t � 1 : t �

amax
XM

m¼1

I pm � tð Þ; 1

( )

m0

8
>>>><

>>>>:

9
>>>>=

>>>>;

Comparison of methods

We compare the performance of the proposed method HCLC-FC with those of MultiPhen

[21], MANOVA [20], and TATES [22]. To evaluate the FDR-controlling performance, MAN-

OVA, MultiPhen, and TATES are first applied to each category. Then, we apply the third step

of HCLC-FC to the three methods to control FDR, which are referred to as MANOVA-FC,

MultiPhen-FC, and TATES-FC. That is, we not only compare the performance of different
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methods for joint analysis of multiple phenotypes but also compare the performance of differ-

ent methods with the newly developed FDR-controlling process.

In the following sections, we will estimate the FDR and power of each method. FDR is estimated

by FDP and the estimated FDR is dFDR ¼ FDP ¼ 1

B

XB

b¼1

XM

m¼1
Iðpm � btÞ �

X

m2Ha
Iðpm � bt Þ

maxf
XM

m¼1
Iðpm � bt Þ; 1g

,

where B is the number of replications, Ha is the alternative hypothesis, pm is the p-value of the test

statistic for the mth phenotypic category, m = 1, . . ., M, andbt is the threshold estimated by

HCLC-FC in step 3. The power of each method is the probability of correctly rejecting H0; it is esti-

mated by dPower ¼ 1

B

XB

b¼1

X

m2Ha
Iðpm � btÞ

#fm : m 2 Hag
.

Simulation study

To evaluate the FDRs and powers of the proposed method, we generate genotypes according

to the minor allele frequency (MAF) of a genetic variant and assume Hardy Weinberg equilib-

rium. Then, we generate K phenotypes by the following models similar to the models used by

Sha et al. [2019] and Liang et al. [2018] [24, 26]. We use the same notations in the method sec-

tion. Suppose there are M categories and K� ¼ K
M phenotypes in each category, that is, Km = K�.

For the ith individual, let yim = (yim1, . . ., yimk�)
T denote a length of K� phenotype vector in the

mth phenotypic category. We assume

yim ¼ xilm þ cfim1K� þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

Eim for i ¼ 1; . . . ; n;m ¼ 1; . . . ;M ð1Þ

where xi is the genotype score at the variant of interest; λm = (λm1,. . ., λmK�)
T is the vector of

effect sizes of the genetic variant on phenotypes in the mth category; fi ¼ ðfi1; . . . ; fiMÞ
T
�

MVNMð0;Σf Þ;Σf ¼ ð1 � rf ÞI þ rfA; rf is a constant to define the phenotypic correlation

between phenotypic categories, A is an M ×M matrix with elements of 1, and I is an M ×M
identity matrix; c is a constant; Ei1, . . ., EiM are independent and Eim~MVNK� (0, Se) with Se =

(σhh�), where shh� ¼ r
jh� h�j
e and ρe is constant to define the phenotypic correlation within each

phenotypic category.

Based on Eq (1), we consider the following six models. In these six models, the correlation

between the hth and h�th phenotypes within each category is c2 þ ð1 � c2Þrjh� h�j
e , and between

categories is c2ρf. We set M = 100 for Model 1–3 and M = 50 for Model 4–6.

Model 1: There are M = 100 categories and genotypes impact on only one category. Let λ1 =

. . . = λM−1 =0 and λM = β(1,. . .,K�)T, β is a constant that is used to define the effect size.

Model 2: There are M = 100 categories and genotypes impact on two categories. Let

l1 ¼ � � � ¼ lM� 2 ¼ 0; lM� 1 ¼
2b

K�þ1
ð1; . . . ;K�ÞT , and lM ¼ 2b

 

1; . . . ; 1
|fflfflfflffl{zfflfflfflffl}

K�=2

; 0; . . . ; 0

!T

.

Model 3: There are M = 100 categories and genotypes impact on three categories. Let l1 ¼

. . . ¼ lM� 3 ¼ 0; lM� 2 ¼
b

K�=2þ1
ð1; 2; 3; . . . ;K�=2;K�=2; . . . ; 3; 2; 1Þ

T
; lM� 1 ¼

2b

K�þ1
ð1; . . . ;K�ÞT and lM ¼ 2b

 

1; . . . ; 1
|fflfflfflffl{zfflfflfflffl}

K�=2

; 0; . . . ; 0

!T

.

Model 4: Same as Model 1, but there are M = 50 categories.
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Model 5: Same as Model 2, but there are M = 50 categories.

Model 6: Same as Model 3, but there are M = 50 categories.

Results

Simulation results

In our simulation studies, we estimate the p-values of all test statistics using their asymptotic

distributions. We first set ρf = 0.2, ρe = 0.3, c2 = 0.5, and K = 1,000, 2,000 for comparing the

performance of different methods for joint analysis of multiple phenotypes, in other words, we

consider the proposed FDR-controlling method and compare the performance of HCLC-FC,

MANOVA-FC, MultiPhen-FC, and TATES-FC. For FDR evaluation, we consider different

numbers of phenotypes, different sample sizes, different values of effect size, and different

models.

The estimated FDRs of the four methods are summarized in Tables 1 and 2. From these

tables, we can see that all methods using our FDR control procedure control their respective

targeted error rates very well, which indicates applying our new FDR-controlling procedure to

the entire collection of hypotheses can control the rate of FD of associated genetic variants as

well as the expected value of the average proportion of FD of phenotypic categories influenced

by such variants.

To compare the power of HCLC-FC with that of MANOVA-FC, MultiPhen-FC, and

TATES-FC, we consider different numbers of phenotypes, different sample sizes, different

models, and different genetic effect sizes. The power of the four tests at an FDR level of 5% for

1,000 phenotypes and 2,000 phenotypes are shown in Figs 1 and 2, respectively. According to

the power comparison results, we summarize the following conclusions. (1) HCLC-FC

Table 1. The estimated FDR of the four tests under the six models for 1,000 phenotypes (K = 1,000). MAF is 0.3. The sample size (n) is 2,000. ρf = 0.2, ρe = 0.3, and c2

= 0.5. β is the effect size. FDR is evaluated using 200 replicated samples at a nominal FDR level of 5%. All estimated FDR are within the 95% confidence interval (0.0198,

0.0802).

Model β Method

HCLC-FC MANOVA-FC MultiPhen-FC TATES-FC

1 0.012 0.038 0.039 0.048 0.041

0.014 0.045 0.029 0.033 0.037

0.016 0.039 0.049 0.047 0.048

2 0.050 0.034 0.048 0.047 0.044

0.060 0.041 0.042 0.041 0.037

0.070 0.049 0.053 0.045 0.073

3 0.050 0.049 0.037 0.048 0.063

0.090 0.047 0.043 0.046 0.048

0.130 0.048 0.057 0.057 0.063

4 0.005 0.043 0.063 0.063 0.035

0.006 0.047 0.061 0.049 0.045

0.007 0.041 0.050 0.049 0.065

5 0.050 0.048 0.052 0.056 0.030

0.060 0.048 0.047 0.044 0.034

0.070 0.042 0.038 0.048 0.050

6 0.050 0.035 0.064 0.065 0.040

0.090 0.055 0.039 0.049 0.034

0.130 0.047 0.044 0.043 0.046

https://doi.org/10.1371/journal.pone.0276646.t001
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outperforms MANOVA-FC, MultiPhen-FC, and TATES-FC consistently for all models we

consider; HCLC-FC is the most powerful test no matter whether the effect sizes show no

groups (Model 1 and 4) or show some groups (Model 2, 3, 5, and 6) within the categories

impacted by the SNP; (2) MANOVA-FC and MultiPhen-FC have similar power and are more

powerful than TATES-FC for all models we consider.

In addition to considering power as a function of genetic effect size, we further evaluate

power with varying the correlation between phenotypic categories ρf (S1 Fig in S1 File), the

correlation within each phenotypic category ρe (S2 Fig in S1 File), the constant c2 in the model

(S3 Fig in S1 File), and the MAF (S4 Fig in S1 File). These figures show that 1) The powers of

HCLC-FC, MANOVA-FC, and MultiPhen-FC slightly decrease with the increasing correla-

tion between phenotypic categories. HCLC-FC outperforms MANOVA-FC, MultiPhen-FC,

and TATES-FC consistently for different correlations between phenotypic categories no mat-

ter the effect sizes show no groups (Model 1 and 4) or show some groups (Model 2, 3, 5, and 6)

(S1 Fig in S1 File). 2) The powers of HCLC-FC, MANOVA-FC, and MultiPhen-FC consider-

ably decrease as the within-category correlation increases, while the power of TATE-FC does

not change too much as the correlation increases (S2 Fig in S1 File). HCLC-FC is the most

powerful test for correlation less than or equal to 0.4. For strong correlation within category

structures (within-category correlation� 0.6), TATES-FC outperforms other methods when

the effect sizes show no groups (Models 1 and 4) or show some groups and genotype impact

on multiple categories (Models 3 and 6). The power gap is much larger when the phenotypes

are highly correlated and show no groups (Models 1 and 4). The reason is that the p-value of

TATES equals the smallest weighted p-value, so TATES is expected to outperform multivariate

approaches as the phenotype correlations increase; The power of MANOVA-FC and Multi-

Phen-FC are nearly identical. 3) For power as a function of c2 (S3 Fig in S1 File), HCLC-FC is

either the most powerful test (Model 1, 2, 4, 5, and 6) or comparable with the most powerful

Table 2. The estimated FDR of the four tests under the six models for 2,000 phenotypes (K = 2,000). MAF is 0.3. The sample size (n) is 4,000. ρf = 0.2, ρe = 0.3, and c2

= 0.5. β is the effect size. FDR is evaluated using 200 replicated samples at a nominal FDR level of 5%. All estimated FDR are within the 95% confidence interval (0.0198,

0.0802).

Model β Method

HCLC-FC MANOVA-FC MultiPhen-FC TATES-FC

1 0.004 0.038 0.055 0.038 0.028

0.005 0.053 0.054 0.046 0.063

0.005 0.026 0.047 0.043 0.041

2 0.030 0.043 0.046 0.049 0.050

0.040 0.034 0.038 0.048 0.046

0.050 0.054 0.051 0.065 0.042

3 0.050 0.051 0.052 0.052 0.041

0.070 0.064 0.065 0.062 0.041

0.090 0.051 0.052 0.054 0.056

4 0.002 0.042 0.057 0.054 0.059

0.002 0.059 0.063 0.078 0.073

0.002 0.054 0.077 0.060 0.049

5 0.030 0.024 0.045 0.051 0.043

0.040 0.039 0.050 0.050 0.052

0.050 0.034 0.039 0.044 0.042

6 0.050 0.050 0.052 0.042 0.047

0.070 0.046 0.052 0.046 0.056

0.090 0.055 0.048 0.053 0.048

https://doi.org/10.1371/journal.pone.0276646.t002
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test (In Model 3, c2 = 0.3). The powers of HCLC-FC, MANOVA-FC, and MultiPhen-FC

increase with the increase of the constant c2, but the power of TATES-FC decreases as the

increase of the constant c2. 4) For all the methods we considered, lower MAF decreases the

power, but our method has the highest power no matter the effect sizes show no groups or

show some groups (S4 Fig in S1 File).

One of the important steps of our method, HCLC-FC, is the third step, the FDR controlling

procedure. To date, many methods have been developed to address multiple test correction.

Here, we compare the performance of using our proposed FDR controlling procedure in step

3 of HCLC-FC with some existing FDR controlling approaches, namely the spectral decompo-

sition-based redundant filtering methods mentioned in Asif et al., 2021 [30]. Nyholt’s spectral

decomposition method [31] and Li and Ji’s method [32] are used to estimate the effective num-

ber of independent phenotypes, then, Bonferroni and Sidak [33] corrections are applied to

address multiple test corrections. We refer to the combinations of those methods as Nyholt-

Sidak (NySi), Nyholt-Bonferroni (NyBo), Ji-Sidak (JiSi), and Ji-Bonferroni (JiBo). S5 Fig in S1

File shows FDR comparisons of the methods using our proposed FDR controlling procedure

with those of using NySi, NyBo, JiSi, and JiBo for multiple test correction. We can see from S5

Fig in S1 File, the methods using our proposed FDR control procedure can control the FDRs

Fig 1. Power comparisons of the four tests for the power as a function of effect size (β) under the six models for 1,000 phenotypes (K = 1,000). MAF is 0.3.

The sample size (n) is 2,000. ρf = 0.2, ρe = 0.3, and c2 = 0.5. The power of all of the four tests is evaluated using 200 replicated samples at a nominal FDR level of

5%.

https://doi.org/10.1371/journal.pone.0276646.g001
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across all six models. In contrast, the tests using NySi, NyBo, JiSi, and JiBo suffer FDR infla-

tion, and the inflation is especially severe when the number of categories is large (Model 1, 2,

and 3).

Real data applications

The UK Biobank is a population-based cohort study with a wide variety of genetic and pheno-

typic information [34]. It includes ~ 500K people from all around the United Kingdom who

were aged between 40 and 69 when recruited in 2006–2010 [35]. Genotype and phenotype

data from the UK Biobank have 488,377 participants with 784,256 variants on chromosomes

1–22 [36]. The preprocess of genotype is achieved by quality control (QC) which is performed

on both genotypic variants and samples using PLINK 1.9 [37] (https://www.cog-genomics.

org/plink/1.9/). We summarize the QC procedures in S6 Fig in S1 File. In QC, we filter out

genetic variants with variant-based missing rates larger than 5%, p-values of Hardy-Weinberg

equilibrium exact test less than 10−6, and MAF less than 5%. We also filter out individuals with

sample-based genotype missing rates larger than 5% and individuals without sex. After QC,

there are 250,850 SNPs and 466,501 individuals remaining in the following analysis.

Fig 2. Power comparisons of the four tests for the power as a function of effect size (β) under the six models for 2,000 phenotypes (K = 2,000). MAF is 0.3.

The sample size (n) is 4,000. ρf = 0.2, ρe = 0.3, and c2 = 0.5. The power of all of the four tests is evaluated using 200 replicated samples at a nominal FDR level of

5%.

https://doi.org/10.1371/journal.pone.0276646.g002
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In this study, we define phenotypes using ICD-10 codes, a standardized coding system for

defining disease status as well as for billing purposes [38]. After truncating each full ICD-10

code to the UK Biobank ICD-10 level 2 code (https://biobank.ndph.ox.ac.uk/showcase/field.

cgi?id=41202), we generate a total of 1,869 unique phenotypes with the names of these pheno-

types being the unique truncated ICD codes. For each individual, we denote the EMR-based

phenotype for that individual as “1” if a corresponding truncated ICD code ever appears, oth-

erwise, we denote the EMR-based phenotype as “0”. To ensure the individuals in our analysis

are from the same ancestry, we first restrict individuals to the individuals who self-report

themselves from a white British ancestry and have very similar ancestry based on a principal

component (PC) analysis of genotypes [34]. To avoid the low quality of phenotype data, we

exclude individuals who are marked as outliers for heterozygosity or missing rates and have

been identified to have ten or more third-degree relatives or closer. Finally, we also exclude

individuals that are recommended for removal by the UK Biobank. After preprocessing the

phenotype data, there are 337,285 individuals left (details described in S6 Fig in S1 File). It is

worth noting that some individuals violate multiple criteria, therefore, the total number of

individuals we start with minus the number of individuals that need to be removed does not

necessarily equal the number of individuals we keep.

There are 260 blocks based on the UK Biobank ICD-10 level 1 code, therefore, 1,869 pheno-

types from the UK Biobank ICD-10 level 2 can be classified into 260 blocks (M = 260). We fur-

ther limit SNPs of interest to those SNPs reaching the genome-wide significance threshold

5 × 10−8. On Oct. 21st, 2019, the GWAS catalog (https://www.ebi.ac.uk/gwas/) contains a total

of 90,428 data entries covering 3,153 publications of 61,613 SNPs which contains 29,297 signif-

icant SNPs. Among 250,850 SNPs obtained from the UK Biobank after QC, there are 3,267

SNPs matched with those significant SNPs in GWAS Catalog. After preprocessing procedures,

individuals with both genotype and phenotype information are used in our study. There is a

total of 322,607 individuals across 3,267 common SNPs and 1,869 case-control phenotypes

which are classified into 260 blocks. Furthermore, we adjust each phenotype by thirteen covar-

iates, including age, sex, genotyping array, and the first 10 PCs [28].

Based on the results shown in Tables 1 and 2, we know that HCLC-FC, MultiPhen-FC,

MANOVA-FC, and TATES-FC can control targeted FDR under all of the simulation models.

However, in the UK Biobank data, most of the phenotypes have extremely unbalanced case-

control ratios, where the case-control ratios of 1,869 phenotypes are ranged from 3.10 × 10−6

to 1.87 × 10−1. Meanwhile, many widely used approaches for joint analysis of multiple pheno-

types produce inflated type I error rates for such extremely unbalanced case-control pheno-

types [39]. Notably, our proposed FDR control method assumes that the p-value of the test

statistic in the mth category, pm, for m = 1, . . ., M, follows a uniform distribution U(0,1). There-

fore, we first evaluate the distributions of the p-values under the null hypothesis for each of the

four methods based on the UK Biobank data by permutation procedures. For each of the four

tests, we randomly permute genotypes for each of the 3,267 SNPs. After permutation, 3,267

SNPs have no association with each of the 260 phenotypic blocks. Therefore, we consider 260

blocks and 3,267 SNPs as 260 × 3,267 = 849,420 replicated samples. For each replicated sample,

we apply four tests for testing the association between each permuted SNP and each pheno-

typic block.

S7 Fig in S1 File shows the histogram of p-values and QQ plot for uniform distribution for

each method based on 849,420 replicated samples. The red dashed line in the histogram repre-

sents the theoretical frequency (849,420/25� 33,977) for the standard uniform distribution.

The frequencies of the p-values of the HCLC method are the only ones that approach the theo-

retical frequency. We also calculate the genomic inflation factor (λ) and show the observed

and expected p-values from the standard uniform distribution in quantile-quantile (QQ) plots
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for each method. In general, the genomic inflation factor λ should be close to 1 if the p-values

fall within the standard uniform distribution [40]. In the QQ plots in S7 Fig in S1 File, our

proposed HCLC method forms a line that’s roughly straight and λ = 0.99, indicating that the

p-values based on 849,420 replicated samples come from the standard uniform distribution. In

contrast, λ = 0.58 for MultiPhen and λ for MANOVA, where the sample quantiles of these

methods deviate from the theoretical quantile. Even though the genomic inflation factor of

TATES is equal to 0.97 which is pretty satisfactory, the sample quantiles fluctuate around the

theoretical quantiles slightly which is not as good as our proposed HCLC method. Here are the

possible reasons why the other three methods do not satisfy the uniform distribution assump-

tion of p-values, and only HCLC works. The main assumption of MANOVA is that pheno-

types should be continuous. However, all of the phenotypes in the analysis are binary

phenotypes that violate the main assumption of MANOVA. MultiPhen uses the likelihood

ratio test statistic based on the proportional odds logistic regression and TATES uses the

extended Simes procedure to integrate the p-values from the score test statistics for the univar-

iate association tests. It has been shown that the commonly used methods, such as the likeli-

hood ratio test and score test, can inflate type I error rates for unbalanced case-control studies

[34] that may result in the non-uniform distribution of the p-values of these two methods

under the null hypothesis. Even though our proposed method, HCLC, uses the score test statis-

tic to test the association between each phenotype and a SNP, it then uses the CLC test statistics

to combine the individual statistics linearly within each cluster and combine the between-clus-

ter terms in a quadratic form [28]. Our real data analysis shows that CLC is robust to unbal-

anced case-control studies.

Since MultiPhen is very time-consuming for real data analysis, we apply the other three

methods, HCLC, MANOVA, and TATES, to test the association between each of the 3,267

SNPs and each of the 260 phenotypic blocks. S8 Fig in S1 File shows the number of SNPs iden-

tified by the three methods. Although MANOVA-FC and TATES-FC identified more SNPs

than HCLC-FC, they violate the uniform distribution assumption of p-values. Therefore, in

the following, we focus on the SNPs identified by HCLC-FC.

There is a total of 3,267 significant SNPs related to different phenotypes in the GWAS Cata-

log. If a SNP is associated with at least one phenotype in a block, we define this block as a SNP-

related phenotypic block in the GWAS Catalog. By controlling the FDR at the 5% level,

HCLC-FC identifies 1,244 out of 3,267 SNPs that are significantly associated with at least one

phenotypic block. Table 3 lists the top nine SNPs identified by the HCLC-FC method. We use

SNP rs3129716 as an example. rs3129716 is mapped to genes HLA-DQB1 and MTCO3P1. By

controlling the FDR at 5%, the FDR threshold is 5.96 × 10−3. Using this threshold, HCLC-FC

identifies 28 phenotypic blocks significantly associated with this SNP. Based on the GWAS cat-

alog, 17 out of 28 phenotypic blocks (bold-faced) are reported to be significantly associated

with this SNP.

To visualize the associations between SNPs and phenotypic blocks identified by our pro-

posed HCLC-FC method, we use two sets of phenotypic blocks, the diseases of the circulatory

system (I00-I99) and the malignant neoplasms (C00-C97) as examples. Fig 3 and S9 Fig in S1

File are used to showcase interconnections among phenotypes due to shared genetic associa-

tions. Fig 3 shows the associations between SNPs (red circle) and the diseases of the circulatory

system phenotypic blocks (I00-I99; blue square) identified by the HCLC-FC method. There

are a total of nine phenotypic blocks. S9 Fig in S1 File shows the associations between SNPs

(red circle) and the set of malignant neoplasms phenotypic blocks (C00-C97; blue square).

There are a total of 15 phenotypic blocks. From these two figures, we can see that many SNPs

are associated with one phenotypic block while some SNPs are associated with multiple pheno-

typic blocks, which supports our hypothesis that some SNPs are associated with at least one
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phenotypic block. For example, Fig 3 shows that 108 SNPs are associated with the phenotypic

block hypertensive diseases (I10-I15) and 17 out of 108 SNPs are associated with both hyper-

tensive diseases (I10-I15) and Ischaemic heart diseases (I20-I25).

Discussion

GWAS have become a very effective research tool to investigate associations between genetic

variation and a disease/phenotype. In spite of the success of GWAS in identifying thousands of

reproducible associations between genetic variants and complex diseases, in general, the asso-

ciation between genetic variants and a single phenotype is usually weak. It is increasingly rec-

ognized that joint analysis of multiple phenotypes can be potentially more powerful than the

univariate analysis and can shed new light on underlying biological mechanisms of complex

diseases. As a complementary approach to GWAS, PheWAS analyze many phenotypes with a

genetic variant and combine both the exploration of phenotypic structure and genotypic varia-

tion [11].

Similar to the widely used GWAS approaches, existing methods for PheWAS largely focus

on the association between a single genetic variant with a large number of candidate pheno-

types and test the association between one genetic variant and one phenotype at a time. In this

paper, we develop a novel and powerful multivariate method, HCLC-FC, to test the association

between a genetic variant with multiple phenotypes in each phenotypic category. HCLC-FC

Table 3. The top nine SNPs that are associated with multiple phenotypic blocks identified by the HCLC-FC method based on the UK Biobank data. The information

of the phenotypic blocks can be found at https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202. The bold-faced blocks indicate the associations with the correspond-

ing SNP reported in the GWAS catalog. The number under the rs-number of SNP represents the total number of phenotypic blocks identified. FDR threshold is calculated

at a nominal FDR level of 5%.

SNPs Mapped Gene(s) FDR

Threshold

Phenotypic Blocks

rs3117582

(29)

APOM 5.96E-03 C15-C26, C81-C96, D50-D53, D60-D64, E10-E14, E15-E16, E20-E35, E70-E90, G50-G59, H00-H06, H30-H36,

I70-I79, J40-J47, K20-K31, K40-K46, K50-K52, K70-K77, M15-M19, M20-M25, N00-N08, N20-N23, N30-N39,

N40-N51, Q00-Q07, R00-R09, R30-R39, R50-R69, Y90-Y98, Z40-Z54

rs3129716

(28)

HLA-DQB1,

MTCO3P1
5.96E-03 C15-C26, C81-C96, D50-D53, D60-D64, D65-D69, E15-E16, E20-E35, E70-E90, G50-G59, H00-H06,

H25-H28, H30-H36, H55-H59, I70-I79, J40-J47, K20-K31, K40-K46, K50-K52, L10-L14, L40-L45, M15-M19,

M30-M36, N00-N08, N40-N51, R00-R09, R10-R19, R30-R39, R50-R69

rs389884 (27) STK19 5.58E-03 C15-C26, C81-C96, D50-D53, D60-D64, E10-E14, E15-E16, E20-E35, E70-E90, G50-G59, H00-H06, H30-H36,

I70-I79, J40-J47, K40-K46, K50-K52, K70-K77, M15-M19, M20-M25, N00-N08, N20-N23, N30-N39, N40-N51,

R00-R09, R30-R39, R50-R69, Y90-Y98, Z40-Z54

rs3134942

(25)

NOTCH4 5.19E-03 C81-C96, D50-D53, D60-D64, E10-E14, E15-E16, E20-E35, E70-E90, G50-G59, H00-H06, H30-H36, I70-I79,

J40-J47, K40-K46, K50-K52, L20-L30, M15-M19, M20-M25, M45-M49, M50-M54, M80-M85, N00-N08,

N30-N39, R00-R09, R30-R39, R50-R69

rs3130288

(23)

ATF6B 4.81E-03 C81-C96, D50-D53, D60-D64, E10-E14, E15-E16, E20-E35, G50-G59, H00-H06, H30-H36, I70-I79, J40-J47,

K40-K46, K50-K52, M15-M19, M20-M25, N00-N08, N20-N23, N30-N39, N40-N51, R00-R09, R30-R39,

R50-R69, Y90-Y98

rs3094005

(22)

MICB 4.62E-03 C15-C26, C81-C96, D50-D53, D60-D64, D80-D89, E10-E14, E15-E16, E20-E35, G50-G59, H00-H06,

H30-H36, I70-I79, J40-J47, K40-K46, K50-K52, K70-K77, M20-M25, N00-N08, N20-N23, R00-R09, R30-R39,

Z40-Z54

rs9270493

(22)

HLA-DRB1,

HLA-DQA1
4.62E-03 C69-C72, D50-D53, D60-D64, D65-D69, D80-D89, E10-E14, E15-E16, E20-E35, G50-G59, H00-H06,

H30-H36, I70-I79, K20-K31, K50-K52, L00-L08, L40-L45, M05-M14, M20-M25, N00-N08, N80-N98,

R10-R19, R30-R39

rs35242582

(22)

HLA-DQA1 4.62E-03 A75-A79, C15-C26, C43-C44, C60-C63, C73-C75, C76-C80, D00-D09, D50-D53, E00-E07, E10-E14,

E20-E35, G35-G37, K50-K52, L55-L59, L80-L99, M05-M14, M45-M49, M50-M54, N40-N51, N80-N98,

O20-O29, U00-U49

rs1480380

(22)

HLA-DMB,

HLA-DMA
4.42E-03 D10-D36, D50-D53, D60-D64, E00-E07, E10-E14, E15-E16, E70-E90, G10-G14, G50-G59, H00-H06, H30-H36,

K20-K31, K40-K46, K50-K52, L10-L14, M15-M19, M20-M25, N00-N08, N80-N98, R00-R09, V30-V39,

X60-X84

https://doi.org/10.1371/journal.pone.0276646.t003
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involves three steps. In the first step, we use the bottom-up hierarchical clustering method [26]

to partition a large number of phenotypes into disjoint clusters within each category. In the

second step, we apply the clustering linear combination method [24] to combine test statistics

within each category based on the phenotypic clusters and obtain a p-value from each pheno-

typic category. In the third step, we propose a large-scale association testing procedure with

theoretical guarantees for FDR control under flexible correlation structures. We perform

extensive simulation studies to compare the performance of HCLC-FC with that of other exist-

ing methods. The results show that the existing methods using our proposed FDR control pro-

cedure can control FDR at a nominal level, and our proposed HCLC-FC method outperforms

the other three methods we compare under the six models for different within-group and

between-group phenotypic correlation structures. Finally, we also evaluate the performance of

HCLC-FC through a set of 1869 case-control phenotypes based on ICD-10 code across more

than 300,000 samples from the UK Biobank, where these phenotypes can be classified into 260

ICD-10 level 1 blocks. The real data analysis results show that HCLC-FC not only can well-

Fig 3. The associations between SNPs and the circulatory system phenotypic blocks identified by the HCLC-FC method. The red circles represent SNPs,

and the blue squares represent nine diseases of the circulatory system phenotypic blocks I00-I99 (I00-I02: Acute rheumatic fever; I10-I15: Hypertensive

diseases; I20-I25: Ischaemic heart diseases; I26-I28: Pulmonary heart disease and diseases of pulmonary circulation; I30-I52: Other forms of heart disease;

I60-I69: Cerebrovascular diseases; I70-I79: Diseases of arteries, arterioles and capillaries; I80-I89: Diseases of veins, lymphatic vessels and lymph nodes, not

elsewhere classified; I95-I99: Other and unspecified disorders of the circulatory system). The width of the connection line represents the strength of association

(-log10 scale p-value).

https://doi.org/10.1371/journal.pone.0276646.g003
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control type I error rates but also can identify 1,244 SNPs that have previously been reported

to be associated with some phenotypes in the GWAS catalog.

As we all know, over the last decades, biobanks have been extremely prevalent in medical

research [41] and enable access to a large collection of high-quality biological or medical data

and tissue samples, which contain thousands of diseases/traits and a large sample size [42].

However, in biobanks, case-control ratios of most phenotypes are extremely unbalanced. Dey

et al. [39] pointed out that a normal approximation of the score test statistic has inflated type I

error rates for phenotypes with unbalanced case-control ratios. They proposed a score-test-

based single-variant test that estimates the distribution of the test statistic by using the saddle-

point approximation (SPA) [39] to control type I error rates and to adjust for covariates even

in an extremely unbalanced case-control setting. Based on SPA, the Scalable and Accurate

Implementation of GEneralized mixed model (SAIGE) was proposed to analyze large biobank

data, controlling for both unbalanced case-control ratio and sample relatedness [43]. It uses

SPA [39] to calibrate unbalanced case-control ratios in score tests based on logistic mixed

models.

To extend our method to phenotypes with extreme unbalanced case-control ratios, we can

apply the SPA method to adjust the score test statistics Tmk in Step 2. The adjusted test statistic

of Tmk is given by signðTmkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� 1

Chið1 � pSPA
mk Þ

p
, where FChi(.) denotes the cumulative distribution

function of chi-squared distribution with one degree of freedom and pSPA
mk is the p-value of Tmk

calculated using SPA. Then, we can use the adjusted test statistic to calculate TLm
CLC. To extend

our method to adjust for both case-control imbalance and family relatedness, we can apply the

SAIGE method in Step 2 [43]. Instead of fitting the linear regression model, we can fit the null

logistic mixed model to estimate the variance component and other model parameters, then

test the association between each genetic variant and phenotype by applying SPA to the score

test statistics. Finally, the adjusted test statistic can be used to calculate TLm
CLC. However, the per-

formance of these approaches for phenotypes with extreme unbalanced case-control ratios

needs further evaluations.

TreeWAS is another approach that was developed for identifying cross-disease components

of genetic risk across hospital classification codes within a hierarchical ontology in the UK Bio-

bank [44]. It is based on a Bayesian approach that can estimate a Bayes factor statistic for the

evidence that genetic coefficients are nonzero for at least one node and also estimate the mar-

ginal posterior probability of each node with a nonzero genetic coefficient. The Bayes factor

supports the evaluation of evidence in favor of a null hypothesis, rather than only allowing the

null to be rejected or not rejected. However, calculating the Bayes factor based on the estima-

tion of the marginal likelihoods of each model requires complicated and extensive time-con-

suming operations. Moreover, TreeWAS is based on the tree-structured disease and diagnostic

ontologies that are built into the systematized coding of medical conditions from the biobank

[45]. Therefore, it is developed within two sources of tree-structured phenotypic data sets from

the UK Biobank, one is the hospitalization episode statistics data that are coded by ICD-10

codes, and the other one is the self-reported diagnoses that are coded using UK Biobank classi-

fication tree [44]. However, our proposed method, HCLC-FC, is not limited to biobank data;

it is suitable to be applied to data sets with multiple phenotypes from electronic health records,

epidemiological studies, and clinical trial data [46].

Given the extensibility of our method, there are some natural avenues for future work. 1)

Our study has been mainly focused on testing the association between one genetic variant with

a large number of phenotypes to identify cross-disease components of genetic risk. Future

work is needed to extend the current single variant test to gene- or region-based multiple vari-

ant tests to improve the power to identify disease susceptibility genes. For example, some
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existing methods that are developed to test an optimally weighted combination of common

and/or rare variants with multiple phenotypes can be used to each phenotypic category [47] in

the second step of HCLC-FC. Then, our FDR-control procedure can be used to calculate the

rejection threshold. In addition to utilizing existing methods, developing new methods that

make use of both gene- or region-based SNPs and a large number of phenotypes is also a direc-

tion of our future research. 2) HCLC-FC needs individual-level data for the analysis. We can

extend this methodology to use GWAS summary statistics by estimating the dissimilarity

matrix using the cross-trait linkage disequilibrium (LD) score regression that requires only

GWAS summary statistics [48, 49], then use this dissimilarity matrix to perform the HCM in

the first step. However, the performance of these aforementioned extensions need to be evalu-

ated carefully. We would like to pursue these important extensions in our future studies.

Despite the limitations of HCLC-FC, HCLC-FC has several important advantages over

other existing methods for association studies using multiple phenotypes. First, it clusters phe-

notypes within each phenotypic category, which reduces the degrees of freedom of the associa-

tion tests and has the potential to increase statistical power. Second, it is computationally fast

and easy to implement. The CLC approach [24] uses a simulation procedure to estimate the p-

value of the final test statistic. HCLC-FC has an asymptotic distribution which avoids the

computational burden of permutations. Third, the newly developed FDR controlling process

is based on p-values and does not depend on test statistics. Therefore, it is more general and

can be applied to other multiple testing procedures to control FDR. Fourth, HCLC-FC can be

used for both continuous and discontinuous phenotypes. It can be applied to data sets with

multiple phenotypes from electronic health records, epidemiological studies, and clinical trial

data.
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