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Abstract

Understanding the common topological characteristics of the human brain network across a

population is central to understanding brain functions. The abstraction of human connec-

tome as a graph has been pivotal in gaining insights on the topological properties of the

brain network. The development of group-level statistical inference procedures in brain

graphs while accounting for the heterogeneity and randomness still remains a difficult task.

In this study, we develop a robust statistical framework based on persistent homology using

the order statistics for analyzing brain networks. The use of order statistics greatly simplifies

the computation of the persistent barcodes. We validate the proposed methods using com-

prehensive simulation studies and subsequently apply to the resting-state functional mag-

netic resonance images. We found a statistically significant topological difference between

the male and female brain networks.

Introduction

Modeling the human brain connectome as graphs has become the cornerstone of neurosci-

ence, enabling an efficient abstraction of the brain regions and their interactions [1, 2]. Graphs

offer the simplistic construct with only a set of nodes and edges to describe the connectivity of

the brain network [3]. The generalizability of graph representation allows one to obtain quan-

titative measures across multiple spatio-temporal scales ranging from the node level up to the

whole network level [4, 5]. To build the graph representation of brain networks, the whole

brain is usually parcellated into hundreds of disjoint regions, which serves as nodes and the

edges are associated with weights that indicate the strength of connection between the brain

regions [6]. The graph theory based models provide reliable measures such as small-worldness,

modularity, centrality and hubs [7–9]. However, these measures are often affected by the

choice of arbitrary thresholds on the edge weights and thus make comparisons across networks

difficult [10, 11]. To overcome this issue, the topological data analysis (TDA) has emerged to

be a powerful method to systematically extract information from hierarchical layers of abstrac-

tion [12–15].

Persistent homology (PH), one of the TDA techniques, provides a coherent framework for

obtaining topological invariants or features such as connected components and cycles at
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different spatial resolutions [16–19]. These topological invariants are often used to provide

robust quantification measures to assess the topological similarity between networks [6].

Mostly the persistent barcodes are represented as persistent landscapes or diagrams and their

distributions are used to compute a topological distance measure [20]. The PH based topologi-

cal distances are found to consistently outperform traditional graph based metrics [21]. The

main idea of using PH to brain networks is to generate a sequence of nested networks over

every possible threshold through a graph filtration, which builds the hierarchical structure of

the brain networks at multiple scales [10, 22–24].

In the graph filtration, a series of nested graphs containing topological information at dif-

ferent scales are produced. During the graph filtration, some topological features may live lon-

ger, whereas others die quickly. The filtration process tracks the birth, death and persistence of

the topological features. The lifespans or persistence of these features are directly related to the

topological properties of networks. The collection of intervals from births to deaths that

defines persistences are called the barcodes which characterizes the topology of an underlying

dataset [14]. The persistent diagram displays the paired births and deaths as scatter points [16,

20, 25–29]. The Betti curves, which counts the number of such features over filtrations, provide

comprehensive visualizations of these intervals [6]. Thus, it is instructive to develop a statistical

inference procedure using the persistent barcodes in order to compare across different groups

and achieve meaningful inferences. This requires the statistical version of TDA [27, 30]. [30]

worked on computing confidence bands through bootstraps. [27] introduced persistent land-

scapes which lies in a vector space, where the sample mean and variance can be computed and

thus enable a proper statistical inference. [31] worked on the hypothesis testing on the Gauss-

ian kernel smoothing on persistent diagrams Analogous to the persistent barcodes, we

also have their stochastic versions referred as the expected persistent barcodes. However,

computing them requires complex theoretical constructs and they are generally approximated

[32–34].

Since the real brain networks are often affected by heterogeneity and intrinsic randomness

[35, 36], it is challenging to build a coherent statistical framework to transform these topologi-

cal features as quantitative measures to compare across different brain networks by averaging

or matching [37]. The brain networks are inherently noisy which makes it even harder to

establish similarity across networks. Thus, there is a need to develop a statistical model that

accounts for the randomness and provides consistent results across networks. The statistical

models based on the distributions are expected to be more robust and less affected by the pres-

ence of outliers. To this end, we use the concept of random graph to analyze brain networks

across a population.

The random graphs have been investigated by many authors [38–42]. A graph whose fea-

tures related to nodes and edges are determined in a random fashion is called a random graph.

The theory of random graphs lies at the intersection between graph theory and probability the-

ory. They are usually described using a probability distribution or a stochastic process that

generates them [43, 44]. The homology of random graphs have been studied studied by Kahle

in particular. [45] investigated the connectivity of neighborhood complex of a random graph.

[46] studied the expected topological properties of Rips complexes built on randomly distrib-

uted points inRd
. [47] worked on the central limit theorem for Betti numbers of random sim-

plical complexes. Random graphs are often encountered in graphical models, which build

probabilistic models on the conditional dependency structures between nodes [48, 49]. How-

ever, topology is rarely investigated in graphical models.

In this paper, we propose a more adaptable random graph model for brain networks. We

consider a random complete graph, where all the nodes are connected with its edge weights
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randomly drawn from a continuous distribution. The consideration of a complete graph

model simplifies building graph filtration straightforward [22, 37]. We then compute the

expected 0D and 1D barcodes through the order statistics [50–55]. The use of order statistics

in computing persistent homology features such as persistent barcodes and Betti numbers can

drastically speed up the computation. Further, we propose the expected topological loss (ETL),

which quantifies the 0D and 1D barcodes obtained through order statistics. We use the ETL as

a test statistic to determine the topological similarity and dissimilarity between networks. The

proposed random graph model and corresponding ETL methods are validated using extensive

simulation studies with the ground truths. Subsequently, the method is applied to the resting-

state functional magnetic resonance images (rs-fMRI) of the human brain.

Materials and methods

Data

We considered a resting-state fMRI dataset collected as part of the Human Connectome Proj-

ect (HCP) [56, 57]. The dataset consisted of fMRI scans of 400 subjects (168 males and 232

females) over approximately 14.5 minutes using a gradient-echoplanar imaging sequence with

1200 time points [24, 37]. Informed consent was obtained from all participants by the Wash-

ington University in St. Louis institutional review board [58]. The ethics approval for using the

HCP data was obtained from the local ethics committee of University of Wisconsin-Madison.

The human brain can be viewed as a weighted network with its neurons as nodes. However,

considering a high number of neurons (* 1012) in a human brain, the traditional brain imag-

ing studies parcellate the brain into a manageable number of mutually exclusive regions [59–

61]. These regions are then considered as nodes while the strength of connectivity between

these regions are edges. For the considered dataset, the Automated Anatomical Labeling

(AAL) template was employed to parcellate the brain volume into 116 non-overlapping ana-

tomical regions [62] and the fMRI across voxels within each brain parcellation were averaged.

This resulted 116 average fMRI time series with 1200 time points for each subject. Further, we

removed fMRI volumes with significant head movements [63] because such movements are

shown to produce spatial artifacts in functional connectivity [64–66].

Simplicial complex

A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.

A 0-simplex is a point, a 1-simplex is a line segment, and a 2-simplex is a triangle. In general, a

k-simplex Sk is a convex hull of k + 1 affinely independent points u0; u1; . . . ; uk 2 R
k
:

Sk ¼ y0u0 þ � � � þ ykuk

�
�
�
�

Xk

i¼0

yi ¼ 1; yi � 0 for i ¼ 0; � � � ; k

( )

:

Whereas, a simplicial complex K is a set of simplices that satisfies the following two conditions.

(1) Every face of a simplex from K is also in K. (2) The non-empty intersection of any two sim-

plices S1; S2 2 K is a shared face [67]. We call a simplicial complex consisting of up to k-simpli-

ces a k-skeleton. Since graphs are a collection of nodes (0-simplices) and edges (1-simplices),

they are 1-skeleton simplicial complexes. In a 1-skeleton, 0-dimensional (0D) holes are con-
nected components while the 1-dimensional (1D) holes are cycles. A cycle or loop in a graph is

a path that starts and ends at the same node but no other nodes in the path are overlapping.

There is no higher dimensional homology beyond dimensions 0 and 1 in 1-skeleton [37].
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Graph filtration

The brain networks are traditionally represented and analyzed as a graph, a 1-skeleton consist-

ing of only nodes and edges [59–62, 68]. The main focus of functional brain network analysis

is quantifying and modeling the pairwise interaction between brain regions, which is usually

called the effective connectivity [69–72]. Thus, we limited our algebraic representation of brain

networks to graphs. Compared to the vast body of studies analyzing brain networks as graphs,

modeling them as higher order simplicial complexes are only few [17, 73–75]. We used the

graph filtration, which iteratively builds nested subgraphs of the original graph in a hierarchi-

cal manner [22]. Currently, this is the most often used filtration in analyzing brain networks

due to its simplicity.

Consider a weighted graph G(p, w), where p is the number of nodes and w = (w1, . . ., wq)
>

is a q-dimensional vector of edge weights with q = (p2 − p)/2. The binary graph G�(p, w�) of G
(p, w) has binary edge weight w�,i:

w�;i ¼
1; if wi > �;

0; otherwise:

(

The binary network G�(p, w�) is a 1-skeleton. In 1-skeleton, 0-dimensional (0D) holes are con-
nected components while the 1-dimensional (1D) holes are cycles. There is no higher dimen-

sional homology beyond dimensions 0 and 1. The number of connected components and the

number of independent cycles in a graph are referred to as the 0th Betti number (β0) and 1st

Betti number (β1) respectively. For 1-skeletons, there is an efficient 1D filtration method called

the graph filtration, which filters at the edge weights from −1 to1 in a sequentially increasing

manner [6, 37]. The graph filtration of G is defined as a collection of nested binary networks

G�0
� G�1

� � � � � G�k

over increasing filtration values �0 < �1 < � � �< �k. We used the edge weights as the filtration

values to make the graph filtration unique [6].

During the graph filtration, edges are deleted one at a time from the lowest edge weight to

the highest. The deletion of an edge disconnect the graph into at most two. Thus, the number

of connected components (β0) stays the same or increases at most by one. Euler characteristic

χ of the graph is given by [76]

w ¼ b0 � b1 ¼ # of nodes � # of edges:

Thus the change of Euler characteristic Δχ over the filtration is given by

Dw ¼ Db0 � Db1 ¼ 1;

where the change of β0 is Δβ0 = 0 or 1. Subsequently the change of β0 is Δβ1 = −1 or 0. The

number of cycles decrease at most by 1 [6, 77].

Birth-death decomposition

When we increase the filtration value �, either one new connected component appears or one

cycle disappears [6]. Once a connected component is born, it never dies implying an infinite

death value. On the other hand, all the cycles are considered to be born at −1. Therefore, we

simply ignore the infinite death values of the connected components and the negative infinite

birth values of the cycles and build the computation framework based on only the birth

(death) values of the connected components (cycles) [37]. Also, the number of connected com-

ponents (or cycles) is non-decreasing (or non-increasing) as � increases. Subsequently, the 0D
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barcode is given by a set of increasing birth values:

BðGÞ : �b1
< � � � < �bm0

;

and the 1D barcode is given by a set of increasing death values:

DðGÞ : �d1
< � � � < �dm1

:

By tracing the birth values of connected components and the death values of cycles together,
we can characterize the topology of the graph.

The above 0D and 1D barcodes summarize the persistences of connected components and

cycles and are often visualized using persistent diagrams [16, 25–27] and Betti curves. The

Betti curves plot the Betti numbers with respect to the filtration values. Since the Betti numbers

are monotonic, the Betti curve is a step function with a one-unit jump (or drop) at every birth

(or death) values. The total number of finite birth values of connected components and the

total number of death values of cycles are

m0 ¼ p � 1 and m1 ¼
ðp � 1Þðp � 2Þ

2
;

respectively [37]. The number of connected components (β0) and cycles (β1) in the complete

graph G−1 are 1 and m1 respectively. We note that every edge weight must be in either 0D bar-

code or 1D barcode as summarized in the following theorem [37].

Theorem 1 (Birth-death decomposition). The set of 0D birth values B(G) and 1D death val-
ues D(G) partition the edge weight vector w such that B(G) [ D(G) = w and B(G) \ D(G) = ϕ.

The cardinalities of B(G) and D(G) are p − 1 and (p − 1)(p − 2)/2, respectively.

The schematic of graph filtration and birth-death decomposition for a random graph is pre-

sented in Fig 1. The cycles we identify using the birth-death decomposition algebraically inde-

pendent of each other and hence form a basis for cycles [24, 37]. In binary graph GW3
in Fig 1,

there is one cycle consisting of edge weights W(4), W(5) and W(6). The cycle can be algebraically

represented as [W(4)] + [W(5)] + [W(6)] with the convention of putting clockwise orientation

along the edges. In the complete graph G−1, there are three independent cycles

C1 ¼ ½Wð4Þ� þ ½Wð5Þ� þ ½Wð6Þ�

C2 ¼ � ½Wð5Þ� þ ½Wð3Þ� þ ½Wð2Þ�

C3 ¼ ½W1� þ ½W6� þ ½W3�:

All other cycles can be represented as a linear combination of C1, C2 and C2. For instance,

½Wð4Þ� þ ½Wð3Þ� þ ½Wð2Þ� þ ½Wð6Þ� ¼ C1 þ C2

� ½Wð1Þ� þ ½Wð2Þ� þ ½Wð4Þ� ¼ � C3 þ C1 þ C2:

The total number of algebraically independent cycles is the 1st Betti number β1, which is

equivalent to the number of death values of cycles. For a complete graph with p nodes, the

total number of edges is p(p − 1)/2. In a graph filtration, the total number of birth values of

connected components equals to the number of edges p − 1 in the maximum spanning tree.

From the birth-death decomposition, the remaining edges contribute to the death values of
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cycles. The remaining number of edges are [37]

m1 ¼
pðp � 1Þ

2
� ðp � 1Þ ¼

ðp � 1Þðp � 2Þ

2
:

The connected components characterize the modular structure or shape of a network

whereas the cycles are loops in a network [24, 78]. In [24], the authors focused specifically on

cycles in a brain network as they embed higher order signal transmission paths to provide

insights of the functioning of the brain. The presence of more cycles in a network indicates a

dense connection with stronger connectivity. The cycles in the brain network not only deter-

mines the propagation of information but also controls the feedback [79]. The connected com-

ponents and cycles provide dependent but complementary information about the network.

Wasserstein distance on barcodes

Since there is no higher dimensional homology beyond dimensions 0 and 1 in 1-skeleton, the

0D and 1D barcodes together can characterize the topology of a network [14]. Therefore, the

topological similarity between two such networks can be quantified using a distance metric

between the corresponding 0D or 1D barcodes [80]. Often used metric is the Wasserstein dis-

tance [23, 81–83]. Let G1(p, u) and G2(p, v) be two networks and the corresponding barcodes

Fig 1. Schematic of graph filtration and persistent barcodes computation. We consider a random weighted graph

with p = 4 nodes, where the number of edges is q = p(p − 1)/2 = 6. The random edge weights are {W1, W2, . . ., W6}. We

order them using the order statistic as W(1) <W(2) < � � �<W(6). We remove each edge of the random graph one at a

time in the graph filtration and construct the random birth and death sets of the connected components and cycles,

respectively. The Betti-0 (lower right) and Betti-1 (lower left) curves are drawn using the birth and death sets. The blue

and green shaded areas represent the areas under Betti-0 and Betti-1 curves. Later, we will consider the area under

Betti-0 curve to quantify the curve and construct a test statistic to discriminate between two groups of networks.

https://doi.org/10.1371/journal.pone.0276419.g001
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(or persistent diagrams) be P1 and P2. Then, the 2-Wasserstein distance on barcodes is given by

DðP1; P2Þ ¼ inf
t:P1!P2

X

x2P1

kx � tðxÞk2

 !1=2

over every possible bijection τ between P1 and P2 [23, 84, 85]. For graph filtrations, barcodes

are 1D scatter points. Therefore, the bijection τ can be simplified to the L2 norm between the

sorted birth values of connected components or the sorted death values of cycles [23].

Theorem 2 Let G1 and G2 be two networks with p nodes and

f�
ðkÞ
b1
< � � � < �

ðkÞ
bm0
g and f�ðkÞd1

< � � � < �
ðkÞ
dm1
g

be the birth and death sets of the network Gk, k = 1, 2. Then, the 2-Wasserstein distance between
the 0D barcodes for graph filtration is given by

D2

0
ðP1; P2Þ ¼

Xm0

i¼1

ð�
ð1Þ

bi
� �

ð2Þ

bi
Þ

2

" #1=2

;

and the 2-Wasserstein distance between the 1D barcodes is

D2

1
ðP1; P2Þ ¼

Xm1

i¼1

ð�
ð1Þ

di
� �

ð2Þ

di
Þ

2

" #1=2

:

Expected persistent barcodes of random graph

Consider random graph Gðp;WÞ, where its edge weights are drawn independent and identi-

cally from a distribution function FW. p is the number of nodes and W = (W1, . . ., Wq)
> is a q

dimensional vector of random weights with q = (p2 − p)/2. The considered graph is complete

and its edge weights are drawn randomly from a continuous distribution. To be mathemati-

cally precise, the considered random graph is almost surely complete. Since we the edge

weights are drawn from a continuous distribution, the probability of having zero edge weight

is nil. Fig 2 displays weighted brain networks randomly drawn from Beta distributions.

If we apply a graph filtration on the random weighted graph Gðp;WÞ, we have a set of ran-

dom birth values of connected components (or random 0D barcode) and a set of random

death values of cycles (or random 1D barcode). Since the notions of random birth and death

values are abstract, it is important to turn them into deterministic topological descriptors. As

often, one of the simplest way to turn a random object into a deterministic summary is to con-

sider its average behavior. To that end, we study the expected birth and death values (or

expected persistent barcodes) as follows.

Let Gðp;WÞ be a random graph and its sorted random edge weights be

Wð1Þ <Wð2Þ < � � � <WðqÞ;

where the subscript (i) indicates the ith smallest edge weight. For instance, W(1) = min1�i�qWi

is the smallest edge weight while W(q) = max1�i�qWi. is the largest edge weight. Order statistics

can be formulated by modeling indices (i) using random permutations while the actual edge

weights are fixed nonrandom quantity. However, in order statistics, the indices (i) themselves

are not considered as random but fixed [86, 87]. They simply indicates the order the random
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variables are indexed. Only what is in the ith variable is considered as random. In this study,

we will follow the traditional convention in order statistics.

Let the random birth and death values of the connected components and cycles be

BðGÞ : Wði1Þ
<Wði2Þ

< � � � <Wðim0
Þ and DðGÞ : Wðj1Þ

<Wðj2Þ
< � � � <Wðjm1

Þ;

where m0 = p − 1 and m1 = (p − 1)(p − 2)/2. Then, the expected birth and death values are

given by

BðGÞ : EðWði1Þ
Þ < EðWði2Þ

Þ < � � � < EðWðim0
ÞÞ

and

DðGÞ : EðWðj1Þ
Þ < EðWðj2Þ

Þ < � � � < EðWðjm1
ÞÞ;

where E indicates the standard expectation operator on a random weight.

In order to compute the expected birth and death values, we provide an explicit expression

for EðWðkÞÞ, for k = 1, . . ., q, through Theorem 3 below.

Theorem 3 Let the edge weightsW = {W1, W2, . . ., Wq} of a random graph Gðp;WÞ be
drawn from a distribution with cumulative distribution function (cdf) FW and probability den-
sity function (pdf) fW. Then, the expectation of the kth edge wight W(k) can be approximated by

E WðkÞ

� �
� F� 1

W
k

qþ 1

� �

; k ¼ 1; . . . ; q:

Proof Since the edge weights W1, W2, . . ., Wq are drawn from a distribution with a cdf FW and

a pdf fW, the pdf of the kth order statistic W(k) is given by

WðkÞ �
q!

ðk � 1Þ!ðq � kÞ!
fWðxÞfFWðxÞg

k� 1
f1 � FWðxÞg

q� k
: ð1Þ

Fig 2. Visualization of simulated brain networks with 116 nodes. Left: The empirical density functions of simulated

edge weights from Beta(2, 5) (top) and Beta(5, 2) (bottom) distributions. Middle: The 116 × 116 correlation matrices

constructed using the simulated edge weights. Right: Human brain networks with the simulated edge weights. Since

correlation networks are too dense for visualization, we only displayed edges with values below 0.1 and above 0.9.

https://doi.org/10.1371/journal.pone.0276419.g002
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W(k) does not follow a well-known distribution and, therefore, the computation of its mean

and variance is difficult. However, [88] showed that the rth sample quantile of {W1, W2, . . .,

Wq} is asymptotically normally distributed:

Wð½ðqþ1Þr�Þ � AN F� 1
W ðrÞ;

rð1 � rÞ
ðqþ 1Þ½fWfF� 1

W ðrÞg�
2

 !

ð2Þ

for large q, where AN stands for asymptotic normal distribution. Thus, the approximate mean

and variance of W(k) can be found from (2) by letting r = k/(q + 1):

E WðkÞ

� �
� F� 1

W
k

qþ 1

� �

and var WðkÞ

� �
�

k
qþ1

1 � k
qþ1

� �

ðqþ 1Þ fW F� 1
W

k
qþ1

� �n oh i2
:

The variance will be later used in computing confidence intervals.

Now, we use Theorem 3 and provide expressions for the expected birth and death values in

Theorem 4 below.

Theorem 4 Let Gðp;WÞ be a random graph, where its edge weights are drawn from a cdf FW.

Then, the expected birth values of the connected components of Gðp;WÞ are given by

F� 1
W

i1
qþ 1

� �

< � � � < F� 1
W

im0

qþ 1

� �

and the expected death values of the cycles of Gðp;WÞ are given by

F� 1
W

j1
qþ 1

� �

< � � � < F� 1
W

jm1

qþ 1

� �

:

The proof follows Theorem 3. As a special case of Theorem 4, we show that if the edge

weights follow uniform distribution in [0, 1], the expected birth and death values have a more

simplified and an exact form. The expected birth values of the connected components are

given by

i1
qþ 1

< � � � <
im0

qþ 1

and the expected death values of the cycles are given by

j1
qþ 1

< � � � <
jm1

qþ 1
:

Then the distribution of the kth order statistic simplifies to

WðkÞ �
q!

ðk � 1Þ!ðq � kÞ!
wk� 1ð1 � wÞq� k;

which is the distribution of the Beta distribution with parameters k and q + 1 − k. Since the

mean of a Beta(k, q + 1 − k) distribution has an exact form of k/(q + 1), we have

E WðkÞ

� �
¼

k
qþ 1

:

Once the expected birth and death values are computed, we can use them to plot Betti

curves. In Fig 3 example, we generated two random graphs with p = 150 nodes and their edge
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weights drawn from Beta(2, 2) and Beta(2, 3) distributions. We observe that a slight change in

distribution significantly affects the topology of a network.

Confidence bands on birth and death values

Given a set of n samples from a random graph Gðp;WÞ, we show how to compute the confi-

dence bands on the expected birth and death values. The method is later validated using a sim-

ulation study.

Let the random weights of the n sampled graphs be w1, w2, . . ., wn, where wi = (wi1, wi2, . . .,

wiq)
> and wij* FW. From the previous section, we know that W(k) follows a asymptotic Gauss-

ian distribution with its mean and variance being

E WðkÞ

� �
� F� 1

W
k

qþ 1

� �

¼ mk

and

var WðkÞ

� �
�

k
qþ1

1 � k
qþ1

� �

ðqþ 1Þ fW F� 1
W

k
qþ1

� �n oh i2
¼ s2

k:

The density fW is estimated by averaging the n graphs with respect to their weights using

Gaussian kernel density estimates (KDE). Let the average weight vector be

�w ¼ 1

n

Pn

i¼1

wi ¼ ð�w1; �w2; . . . ; �wqÞ
>

. Then, the KDE of the pdf fW is given by [89]

f̂ WðxÞ ¼
1

qh

Xq

i¼1

K
x � �wi

h

� �

;

where K is the Gaussian kernel with bandwidth h. To estimate F� 1
W , we first find the empirical

cdf of FW based on the averaged weight vector �w as

F̂WðxÞ ¼
1

q

Xq

i¼1

I�wi�x
:

Here, IA is an indicator function takeing value 1 if the event A is true and 0 otherwise. The

inverse cumulative distribution of F̂WðxÞ is then given by

F̂ � 1

W ðxÞ ¼ infft 2 R : F̂WðtÞ � xg:

Fig 3. Plots of Betti-0 (left) and Betti-1 (right) curves of random networks with edges drawn from Beta(2, 2) (in

dotted red line) and Beta(2, 3) (in solid black line) distributions. The change in distribution affects the topology of a

network.

https://doi.org/10.1371/journal.pone.0276419.g003
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Once fW and F� 1
W are estimated, we plug-in the corresponding estimates in μk and s2

k and

obtain the estimates m̂k and ŝ2
k . Finally, we calculate the α% confidence intervals as

ðm̂k � zaŝk; m̂k þ zaŝkÞ;

where zα is such that

PðZ � zaÞ ¼ a=2

for standard normal Z � N ð0; 1Þ. For α = 95, we have zα = 1.96.

Inference on expected birth and death values

Since a graph can be topologically characterized by 0D and 1D barcodes, the topological simi-

larity and dissimilarity between two graphs can be measured using the differences of such bar-

codes. To quantify these differences, we propose the expected topological loss (ETL) as follows.

Let G1ðp;UÞ and G2ðp;VÞ be two random graphs, where the random weights U = {U1, . . .,

Uq} and V = {V1, . . ., Vq} are drawn from distribution functions FU and FV, respectively. Fur-

ther, let the expected birth and death values of G1ðp;UÞ be

F� 1
U

i1
qþ 1

� �

< � � � < F� 1
U

im0

qþ 1

� �

and F� 1
U

j1
qþ 1

� �

< � � � < F� 1
U

jm1

qþ 1

� �

:

Similarly, let the expected birth and death values of G2ðp;VÞ be

F� 1
V

i0
1

qþ 1

� �

< � � � < F� 1
V

i0m0

qþ 1

� �

and F� 1
V

j0
1

qþ 1

� �

< � � � < F� 1
V

j0m1

qþ 1

� �

:

Then, the ETL is given by

ETLðG1;G2Þ ¼
Xm0

k¼1

F� 1

U
ik

qþ 1

� �

� F� 1

V
i0k

qþ 1

� �� �2

þ
Xm1

k¼1

F� 1

U
jk

qþ 1

� �

� F� 1

V
j0k

qþ 1

� �� �2

: ð3Þ

In most applications, the distribution functions FU and FV are unknown. In such scenarios,

we plug-in the corresponding empirical distribution function estimates F̂ � 1
U and F̂ � 1

V in (3).

The ETL is a function of expected 0D and 1D barcodes. The expected 0D barcode can also be

viewed as the expected heights of branching in a random merge tree [90–95].

Application of ETL in discriminating networks

The ETL can be used to topologically discriminate between two groups of brain networks. Let

O = {O1, . . ., Om} and C = {C1, . . .,Cn} be two sets consisting of m and n complete networks

each comprising p number of nodes. Let the empirical distribution functions of the edge

weights of the graphs in group O be fF̂O1
; . . . ; F̂Om

g and the expected birth and death values

forOi be

F̂ � 1
Oi

i1
qþ 1

� �

< � � � < F̂ � 1
Oi

im0

qþ 1

� �

and F̂ � 1
Oi

j1
qþ 1

� �

< � � � < F̂ � 1
Oi

jm1

qþ 1

� �

;

which will be simply denoted as

uO
1i < � � � < uOm0 i

and vO
1i < � � � < vOm1 i

:
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The average of expected birth and death values within the group O are given by

�uO
1
< � � � < �uOm0

and �vO
1
< � � � < �vOm1

:

Similarly, for the second group Ψ, let the average of expected birth and death values be

�uC
1
< � � � < �uCm0

and �vC
1
< � � � < �vCm1

:

The test statistic based on ETL to discriminate between groups is then given by

LðΩ;ΨÞ ¼
Xm0

j¼1

ð�uOj � �uCj Þ
2
þ
Xm1

j¼1

ð�vOj � �vCj Þ
2
: ð4Þ

Large LðΩ;ΨÞ indicates a significant topological difference between the two groups whereas a

small value suggests that there is no significant topological group difference. Considering the

probability distribution of the test statistic LðΩ;ΨÞ is unknown, we use the permutation test

[96–99]. In this study, we use 100000 permutations for small scale simulation studies and half

million permutations for large-scale real data.

A similar widely-used statistic is the maximum gap statistics. On a similar line to LðΩ;ΨÞ,
the statistic is given by:

L1ðΩ;ΨÞ ¼ max
1�j�m0

j�uOj � �uCj j þ max
1�j�m1

j�vOj � �vCj j: ð5Þ

We will use L1ðΩ;ΨÞ to compare with the ETL statistic LðΩ;ΨÞ in the simulation study

section.

Area under Betti curves in discriminating networks

The difference of β0 curves can be also quantified using the area under the curve (AUC) [100,

101]. The AUC forOi of the group Ω and forCj of the group Ψ are given by

AUCOi
¼
Xm0

k¼2

kðuOki � uO
ðk� 1ÞiÞ and AUCCj

¼
Xm0

k¼2

kðuCkj � uC
ðk� 1ÞjÞ:

We compute the AUC by summing up the areas of rectangular blocks formed by the expected

persistent barcodes. For example, in Fig 1, the area under the Betti-0 curve is 2(W(5) −W(3))

+ 3(W(6) −W(5)).

To determine if AUC is significantly different between groups O and C, we use the Wil-

coxon rank sum test [102]. The Wilcoxon rank sum test is a nonparametric test of the null

hypothesis, For randomly selected values X and Y from two populations, the probability of X
being greater than Y is equal to the probability of Y being greater than X. This is unlike the pre-

vious situation, where we considered a ETL or a max-gap statistic. In those cases, since we are

considering the distance between increasing births or deaths of two networks, the consider-

ation of L1 or L2 norm in the statistic is meaningful. In contrast to distance-based methods,

AUC offers an alternate area based topological inference procedure. The method can be

equally applicable for area under Betti-1 curves as well.

Simulation study

Since there is no ground truth in real brain network data, we performed extensive simulation

studies with known ground truth. The Matlab codes for simulation study is provided in

https://github.com/laplcebeltrami/orderstat.
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Validation of birth and death value estimates

We validate the method to estimate expected birth and death values. We generate the ground

truth graph G(p, w) with given edge weights and calculate its birth and death values using the

birth-death decomposition on p = 10 number of nodes [37]. The weight vector w is of dimen-

sion q = p(p − 1)/2 = 45. We drew the q variate random weights w from the Uniform(0, 1)

distribution.

We then simulate n = 15 vectors of q-variate Gaussian noises and add them to the edge

weights w of G(p, w) to have a set of n graphs

Gðp;wiÞ ¼ Gðp;wþ �iÞ; i ¼ 1; . . . ; n; ð33Þ

where �i � N qð0; s2IÞ with σ = 0.02. The produced set of graphs {G(p, w1), . . ., G(p, wn)} is

considered as a realizations from a random graph Gðp;WÞ and apply the proposed method to

calculate the expected birth and death values along with their corresponding confidence

bands. Then, we compare them with the initially calculated birth and death values of G(p, w).

Fig 4 displays the schematic of the validation procedure. The original and expected birth (left

panel) and death (right panel) values are plotted in Fig 5. The black line represents the original

birth or death values, the dashed red line indicates the estimated birth or death values, and the

dashed blue lines indicate the corresponding 95% upper and lower confidence bands. We

observe that the dashed red lines almost overlap the black lines of the original birth and death

values. In addition, the original birth or death values almost always lie within the confidence

bands supporting the reliability of the proposed methodology.

Analyzing topological similarity between networks

We provide a toy example to illustrate whether the topological similarity or dissimilarity of

two groups of networks, drawn from two different distributions or the same distribution, can

Fig 4. Schematic of validate the proposed method to compute expected birth and death values. The ground truth

graph G is we used to calculate the Betti curves (solid black line) using the birth-death decomposition. We added

Gaussian noise to edge weights to generate samples in each group. Then, we apply the proposed method on this set of

sampled graphs and estimate the expected birth and death values and the Betti curves (dotted red line).

https://doi.org/10.1371/journal.pone.0276419.g004
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be identified using the ETL statistic (4). We used the Beta(a, b) distribution, which are all

defined in interval (0, 1). The shape parameters a and b allow for the variety of shapes includ-

ing the shape of a uniform distribution Uniform(0, 1) when a = b = 1. We considered three dif-

ferent distributions (Fig 6).

We generated two groups of networks. For the both groups, we simulated n = 6, 8, 10, and

12 networks. We investigated the performance of both small (p = 10) and large (p = 100)

Fig 5. Plots of the original and expected birth (left) and death (right) values. The black line represents the original

birth (or death) values, the dashed red line indicates the expected birth (or death) values, and the dashed blue lines

indicate the corresponding 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0276419.g005

Fig 6. Top panel: Probability density functions of Beta(1, 1) or Uniform(0, 1) (in solid line), Beta(5, 2) (in dash-dotted

line), and Beta(1, 5) (in dotted line). We sample the edge weights of random graphs from these three different

distributions for validation purpose. Middle and bottom panel: Histogram plots of the ETL (middle) and maximum

gap (bottom) test statistics and the corresponding observed test statistics (in dotted red lines) for the scenarios: Beta(1,

1) vs. Beta(5, 2) (left) and Beta(1, 1) vs. Beta(1, 1) (right) with 6 networks in each group.

https://doi.org/10.1371/journal.pone.0276419.g006
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network settings. Small networks may not yield complex cyclic structures often present in

large networks. However, the overall conclusions are the same regardless of the size of net-

works. For the permutation test, we considered 100000 permutations and repeated that 10

times to compute the average p-values. Table 1 tabulates the p-values for small and large net-

work settings. In all the scenarios, networks drawn from the same distribution produced large

p-values and networks drawn from different distributions had p-values smaller than 0.01.

Therefore, we conclude that the proposed ETL statistic, based on expected birth and death val-

ues, can discriminate networks drawn from different distributions at 99% confidence level.

The middle panel of Fig 6 plots the histograms of the ETL test statistic and the corresponding

observed test statistics (in dotted red) for two specific scenarios: (i) Beta(1, 1) vs. Beta(5, 2)

(left) and (ii) Beta(1, 1) vs. Beta(1, 1) (right) with 12 networks in each group.

Comparison of ETL against baselines

We compared the proposed ETL with several other widely-used baseline topological distances

such as bottleneck, Gromov-Hausdorff (GH), and Kolmogorov-Smirnov (KS) distances [21,

103, 104]. We also compared the results with the maximum gap statistic defined earlier in (5).

In all the scenarios, we considered two groups of networks each of size n = 6. The remaining

simulation setting is similar to the above. The corresponding p-values are presented in Table 2

for small (p = 10) and large network (p = 100) settings. From the table, we observe that the

ETL performs well in most scenarios. In particular, we note that the KS based methods do not

perform well whereas the maximum gap based method is quite competitive. Further, for test-

ing no network differences, all the distances perform well.

Since the maximum gap based method exhibits a competitive performance with the ETL

based method, we plot the histograms of the maximum gap statistics obtained over different

permutations and the corresponding observed test statistics (in dotted red) for two specific

scenarios: (i) Beta(1, 1) vs. Beta(5, 2) (left) and (ii) Beta(1, 1) vs. Beta(1, 1) (right) with 6 net-

works in each group; see the bottom panel of Fig 6. Although both the methods (ETL and max-

imum-gap) perform well, the ETL generally produces better results (i.e., its p-value is closer to

0 when there is a network difference and closer to 1 when there is no network difference).

Table 1. The average p-values obtained using the ETL statistic for various pairs of distributions for small (p = 10) and large (p = 100) network settings. Here, the col-

umns 6 networks, 8 networks, 10 networks, and 12 networks indicate the number of networks that we considered for both the groups. The p-values smaller than 0.01 indi-

cate that our method can identify network differences at a 99% confidence level.

Distribution (p = 10) 6 networks 8 networks 10 networks 12 networks

Beta(1, 1) vs. Beta(5, 2) 0.0017 1.00 × 10−5 0.0000 0.0000

Beta(1, 1) vs. Beta(1, 5) 0.0022 1.00 × 10−4 1.00 × 10−5 0.0000

Beta(5, 2) vs. Beta(1, 5) 0.0011 1.30 × 10−4 0.0000 0.0000

Beta(1, 1) vs. Beta(1, 1) 0.2478 0.6784 0.6859 0.8264

Beta(5, 2) vs. Beta(5, 2) 0.2393 0.4497 0.7836 0.8772

Beta(1, 5) vs. Beta(1, 5) 0.2721 0.6847 0.7585 0.7573

Distribution (p = 100) 6 networks 8 networks 10 networks 12 networks

Beta(1, 1) vs. Beta(5, 2) 0.0021 9.0000 × 10−5 2.0000 × 10−5 0.0000

Beta(1, 1) vs. Beta(1, 5) 0.0018 8.0000 × 10−5 2.0000 × 10−5 1.0000 × 10−5

Beta(5, 2) vs. Beta(1, 5) 0.0022 1.2000 × 10−4 0.0000 0.0000

Beta(1, 1) vs. Beta(1, 1) 0.6430 0.2844 0.3308 0.2665

Beta(5, 2) vs. Beta(5, 2) 0.7882 0.8828 0.5559 0.9319

Beta(1, 5) vs. Beta(1, 5) 0.1526 0.3831 0.2241 0.5021

https://doi.org/10.1371/journal.pone.0276419.t001
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Area under Betti curves

We also conducted a simulation study for the method based on the area under β0 curve. The

considered simulation layout was the same as before. The obtained p-values are tabulated in

Table 3 for small networks (p = 10) and large networks (p = 100). As shown in Fig 3, a slight

change in distribution significantly changes the topology of the network and, therefore, the

area under β0 curve varies significantly. This change is more visible especially for large net-

works, which incases AUC. However, the Wilcoxon rank sum test places ranks to the aggre-

gated sample that combined the first and second sample, then considers the sum of ranks for

the both samples. This makes the test statistic fairly robust even if the distributions are varied.

This makes the p-value computation extremely stable for large networks. For example Table 3

shows the exactly same p-value of 0.0022 for p = 100. Similar to the ETL, this approach can

also discriminate networks drawn from different distributions at a 99% confidence level.

Table 2. The average p-values obtained using bottleneck, GH, KS, maximum gap, and ETL based statistics for small (p = 10) and large (p = 100) network settings.

There were 6 networks in each group. The p-values smaller than 0.01 indicate that the corresponding method can identify network differences at a 99% confidence level.

Distribution (p = 10) Bottleneck GH KS(β0) KS(β1) Maximum gap ETL

Beta(1, 1) vs. Beta(5, 2) 0.0035 0.0028 0.4667 0.3438 0.0022 0.0014

Beta(1, 1) vs. Beta(1, 5) 0.0190 0.0692 0.3804 0.6406 0.0016 0.0022

Beta(5, 2) vs. Beta(1, 5) 0.0026 0.3345 0.2885 0.5177 0.0021 0.0011

Beta(1, 1) vs. Beta(1, 1) 0.2255 0.4385 0.2591 0.6893 0.1013 0.3136

Beta(5, 2) vs. Beta(5, 2) 0.3046 0.2346 0.1991 0.6035 0.1446 0.2393

Beta(1, 5) vs. Beta(1, 5) 0.3351 0.5392 0.1217 0.4172 0.1058 0.2721

Distribution (p = 100) Bottleneck GH KS(β0) KS(β1) Maximum gap ETL

Beta(1, 1) vs. Beta(5, 2) 0.0029 0.0032 0.0879 0.2984 0.0020 0.0021

Beta(1, 1) vs. Beta(1, 5) 0.0039 0.1391 0.3412 0.1333 0.0032 0.0028

Beta(5, 2) vs. Beta(1, 5) 0.0001 0.8790 0.5854 0.4600 0.0015 0.0022

Beta(1, 1) vs. Beta(1, 1) 0.8204 0.3911 0.9848 0.7357 0.0863 0.6430

Beta(5, 2) vs. Beta(5, 2) 0.5272 0.0919 0.7677 0.6115 0.3785 0.7882

Beta(1, 5) vs. Beta(1, 5) 0.4840 0.1640 0.4224 0.6654 0.1315 0.1526

https://doi.org/10.1371/journal.pone.0276419.t002

Table 3. The average p-values obtained using Wilcoxon rank sum test on the areas under β0 curves for small (p = 10) and large (p = 100) network settings. Here, the

columns 6 networks, 8 networks, 10 networks, and 12 networks indicate the number of networks that we considered for both the groups. The p-values smaller than 0.01

indicate that our method can identify network differences at a 99% confidence level.

Distribution (p = 10) 6 networks 8 networks 10 networks 12 networks

Beta(1, 1) vs. Beta(5, 2) 0.0087 3.10 × 10−4 7.68 × 10−4 0.0014

Beta(1, 1) vs. Beta(1, 5) 0.0022 6.21 × 10−4 0.0017 0.0061

Beta(5, 2) vs. Beta(1, 5) 0.0043 0.0030 1.82 × 10−4 3.65 × 10−5

Beta(1, 1) vs. Beta(1, 1) 0.6991 0.7209 0.4727 0.8852

Beta(5, 2) vs. Beta(5, 2) 0.4848 0.2786 0.2413 0.9770

Beta(1, 5) vs. Beta(1, 5) 0.8182 0.2786 0.7337 0.5444

Distribution (p = 100) 6 networks 8 networks 10 networks 12 networks

Beta(1, 1) vs. Beta(5, 2) 0.0022 1.5540 × 10−4 1.8365 × 10−4 3.6585 × 10−5

Beta(1, 1) vs. Beta(1, 5) 0.0022 1.5540 × 10−4 1.8267 × 10−4 3.6585 × 10−5

Beta(5, 2) vs. Beta(1, 5) 0.0022 1.5540 × 10−4 1.8267 × 10−4 3.6585 × 10−5

Beta(1, 1) vs. Beta(1, 1) 0.9372 0.2345 0.2413 0.4025

Beta(5, 2) vs. Beta(5, 2) 0.8182 0.1605 0.6776 0.7075

Beta(1, 5) vs. Beta(1, 5) 0.2403 0.6454 0.7913 0.1572

https://doi.org/10.1371/journal.pone.0276419.t003
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Results

For each of the 400 subjects, we computed the whole-brain functional connectivity by calculat-

ing the Pearson correlation matrix over 1200 time points across 116 anatomical regions result-

ing in 400 correlation matrices of dimension 116 × 116. Therefore, using our notations, we

have p = 116 nodes, q = p(p − 1)/2 = 6670 edges, m0 = p − 1 = 115, and m1 = (p − 1)(p−2)/

2 = 6555. Fig 7 summarizes the average female (left) and male (right) brain networks (top) and

the corresponding correlation matrices (bottom).

Two-sample test using ETL statistic

Given the 400 correlation matrices of 168 males and 232 females, we aim to check whether the

proposed ETL statistic can determine the difference between the groups of males and females.

We assume that the male and female edge weights are coming from distributions with cdfs FU
and FV, respectively. However, these distribution functions are unknown. Therefore, we need

to estimate them because the ETL statistic is constructed using these cdfs. To estimate the cdf,

we average the male (female) correlation matrices across 168 subjects (232 subjects) and find

the empirical cdf based on the averaged 6670 edge weights. The empirical cdfs of the average

edge weights of females (in solid black line) and males (in dashed red line) are presented in the

left panel of Fig 8. We observe that the empirical cdf corresponding to female is slightly higher

than that of male. This suggests a relatively more number of edge weights with smaller values

for the female, and a relatively more number of edge weights with bigger values for the male.

In other words, the distribution of the female edge weights is slightly positively skewed than

the male edge weights. Fig 9 plots the β0 and β1 curves of the average female and male networks

(calculated in the standard way) and their corresponding estimated counterparts (computed

using the expected birth and death values). We observe that the estimated Betti curves well

approximate the original Betti curves.

Fig 7. Visualization of the fMRI brain data. Left panel: The average female brain network (top) and the

corresponding correlation matrix (bottom). Middle panel: The average male brain network (top) and the

corresponding correlation matrix (bottom). Right panel: The β0 (top) and β1 (bottom) curves for female (in solid black)

and male (in dashed red) brain networks. For a better visualization, we consider a threshold value of 0:5 while plotting

the brain networks so that they contain fewer number of edges.

https://doi.org/10.1371/journal.pone.0276419.g007
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To conduct the test, we used the permutation test with 500000 random permutations. The

observed test statistic is 4.9372 and the p-value is 0.0134. The histogram of test statistic is plot-

ted in the right panel of Fig 8. We conclude that, although the weight distributions of the

males and females are very close, the proposed ETL statistic can still discriminate them at a

95% confidence level.

Two-sample test using AUC statistic

We conducted a two-sample test using the method based on the area under β0 curve. The

observed value of the Wilcoxon rank-sum statistic is 48374. The statistic corresponds to the p-

value of 0.1036. That is, the test fails to discriminate male and female subjects if we use the

Fig 8. Left: Plot of the empirical cdfs of the average edge weights of females (in solid black line) and males (in dashed

red line). Right: Histogram plot of the ETL statistic based on the resting-state fMRI dataset. The dotted red line

represents the observed value of the ETL statistic.

https://doi.org/10.1371/journal.pone.0276419.g008

Fig 9. Plots of the original (solid black line) and estimated (dashed red line) β0 (top) and β1 (bottom) curves using

expected birth and death values for the female (left) and male (right) brain networks.

https://doi.org/10.1371/journal.pone.0276419.g009
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traditional values of α, the level of significance, to be 0.05 or 0.1. However, if we relax this

assumption a bit, the test can discriminate males and females at a confidence level of 89.5%.

The sex differences of resting state functional networks were previously investigated. There

is known sex difference in the parietal region involved in spatial ability [105]. [106] reported

sex differences in the left parietal, precentral and postcentral regions. The sex difference is also

reported in the left rolandic operculum [107]. The previous rs-fMRI studies mainly focused on

brain region specific analysis and not topological. Our topological methods are different. The

use of the order statistic in quantifying topological difference between males and females is

novel. This method identifies the impact of distribution differences in topological features.

These specific results have not been observed before to best of our knowledge.

Discussion

The concept of random graphs was first proposed in mid-twentieth century [39] and has been

of many researchers’ interest ever since [108–112]. The concepts of TDA tools such as persis-

tent barcodes were extended to handle stochastic cases, which triggered the computation of

expected persistent barcodes. However, such computation may require complex theoretical

constructs. In this article, we considered a random graph model for which the computation of

expected persistent barcodes became simplified by using the order statistic.
[37] formulated a topological loss based on the birth and death values of connected compo-

nents and cycles of a network that provided an optimal matching and alignment at the edge

level. In this article, we extended this formulation to a random graph scenario and proposed

the expected topological loss (ETL) based on the expected birth and death values. We use the

ETL as a test statistic to discriminate between two groups of networks. We validated this

method using a simulation study. We showed that the ETL can identify group differences at a

99% confidence level whereas it produces large p-values when there is no network differences.

We compared the proposed approach with baseline approaches and established an overall

superior performance of the proposed method. Further, we considered the area under the

Betti curves [101]. This resulted a scalar quantification of the curves which was used to dis-

criminate between the groups. A respective simulation study showed its successful discrimina-

tive ability whenever there are network differences. We also applied the developed tools in a

resting-state brain fMRI dataset and showed that they can differentiate male and female brain

networks.

Fig 10. The average Betti curves of obtained from the graph filtration on correlation matrices computed

separately for the inhibition (go) and initiation (no-go) blocks of fMRI time series in cognitive aging study [130,

131].

https://doi.org/10.1371/journal.pone.0276419.g010
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To calculate the expected persistent barcodes, we computed the unknown distribution

using the nonparametric empirical distribution function. However, one may also consider

hierarchical or Bayesian parametric models for the edge weights instead. For example, one

may consider the edge weights to be drawn from a N ðm;s2Þ distribution, where the location

parameter μ and the dispersion parameter σ2 have a Gaussian and an inverse gamma conjugate

prior, respectively. The parameters of the prior distributions will allow flexibility while we can

still enjoy the advantages of a parametric model. This direction can be pursued in the future.

We can also use different filtration schemes such as relative filtration [113] or normalized

filtration that scales filtration values between 0 and 1 [114]. As long as the order of sorted edge

weights are not changed, they will not affect the statistical results. The Wasserstein distance we

used is defined on the sorted edge weights. As long as we do not change the value of edge

weights, the statistical results will not change.

Our methodology is based on the graph filtration, which gives both 0D and 1D persistence

as monotonic 1D functions of birth and death values only. On the other hand, the clique filtra-

tion [115], does not produce monotone persistence or barcodes and the proposed method is

not directly applicable [116–121]. Our method is applicable to any filtration that provides

monotone persistence or Betti curves. The proposed graph filtration computes the barcodes in

Oðp log pÞ, which is significantly faster than Rips filtrations. In traditional Rips filtrations, the

computational complexity grows rapidly with the number of simplices [122]. With p nodes,

the size of the k-skeleton grows as pk+ 1 and the computational run time is Oðp3kþ3Þ [123, 124].

Compared to the graph filtration, the Rips filtration constructed using Ripser package [125] is

about 8 times slower in a computer. On top of that, we also need to compute the Wasserstein

distance between persistent diagrams [126]. The Wasserstein distance computation requires

expensive optimization process involving Oðp6Þ run-time [127, 128].

Our algorithm exploits the geometric structure of the graph filtration, resulting in the per-

sistence diagram representation in the form of 1-dimensional sorted scalar values. Thus, the

proposed method computes he Wasserstein distance in Oðp log pÞ bypassing multitude of

computational bottlenecks. For resampling based statistical inference such as the permutation

test, the computational bottleneck is caused by repreatedlby computing the test statistic over

the random permutations of group labels at least half million times [129]. This is impractical if

the Wasserstein distance for the Rips filtrations has to be used for 400 networks and then the

whole computation has to be done repeatedly half million times. The development of scalable

computation will have a significant impact in resampling based statistical inference.

Graph filtrations produce the monotone birth and death values over filtrations. Since our

birth and death values are exactly edge weights, the slight changes in edge weight distribution

will correspondingly change the birth and death values slightly. Since the expected topological

loss (ETL) is sum of differences of birth and death values, it will also change correspondingly.

This is the very reason which assures that our method can successfully discriminate topological

group differences whenever there is a difference in edge distributions between two groups.

The monotone Betti curves usually follow S-shaped curves similar to the pattern of cumula-

tive distribution functions. The pattern of S-shaped Betti curves do not change drastically even

if different dataset is used as long as they are weighted graphs. To demonstrate this, we plotted

Betti curves for task-fMRI. Fig 10 shows the Betti curves for task-fMRI, where cognitive inhibi-

tion was measured using go/no-go paradigm in 144 subjects on 100 brain regions [130, 131].

The correlation matrices were computed separately for the inhibition (go) and initiation (no-

go) blocks of fMRI time series. The monotonic Betti curves show almost identical pattern of

Betti curves in rs-fMRI networks in our study.
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