PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Bernardes E, Viollet S (2022) Quaternion
to Euler angles conversion: A direct, general and
computationally efficient method. PLoS ONE
17(11): e0276302. https://doi.org/10.1371/journal.
pone.0276302

Editor: Yaodong Gu, Ningbo University, CHINA
Received: May 12, 2022

Accepted: October 5, 2022

Published: November 10, 2022

Copyright: © 2022 Bernardes, Viollet. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Data are within the
Open Science Foundation repository: https:/osf.io/
premay/.

Funding: The authors received funding from Aix-
Marseille university, CNRS and national agency for
research (ANR OrigaBot project ANR-18-CE33-
0008-0). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Quaternion to Euler angles conversion: A
direct, general and computationally efficient
method

Evandro Bernardes(, Stéphane Viollet® *

Aix-Marseille Université, CNRS, ISM, Marseille, France

* stephane.viollet@univ-amu.fr

Abstract

Current methods of the conversion between a rotation quaternion and Euler angles are
either a complicated set of multiple sequence-specific implementations, or a complicated
method relying on multiple matrix multiplications. In this paper a general formula is pre-
sented for extracting the Euler angles in any desired sequence from a unit quaternion. This
is a direct method, in that no intermediate conversion step is required (no quaternion-to-rota-
tion matrix conversion, for example) and it is general because it works with all 12 possible
sequences of rotations. A closed formula was first developed for extracting angles in any of
the 12 possible sequences, both “Proper Euler angles” and “Tait-Bryan angles”. The result-
ing algorithm was compared with a popular implementation of the matrix-to-Euler angle
algorithm, which involves a quaternion-to-matrix conversion in the first computational step.
Lastly, a single-page pseudo-code implementation of this algorithm is presented, illustrating
its conciseness and straightforward implementation. With an execution speed 30 times
faster than the classical method, our algorithm can be of great interest in every aspect.

1 Introduction

When dealing with 3D orientation problems, many different formalisms can be used to
describe a given rotation [1], each of which has its own set of advantages and shortcomings.
Arguably the most direct representation of a 3D rotation is a matrix R € SO(3), where SO(3) is
the group of invertible 3 x 3 matrices such that det(R) = 1 and RR" = R'R = I, where I is the
identity matrix. These rotation matrices represent direct linear transformations such that, with
veR:

v Rv (1)

rotated ~

Apart from being simple to use, a rotation matrix also has the advantage of being continu-
ous, and a simple matrix multiplication can be used to compose rotations: R = R,R; is the rota-
tion matrix corresponding to a rotation by R, followed by a rotation by R,. 3D rotation
matrices have some numerical shortcomings, however. For example, as many as 9 numbers
(and 6 constraints) are required to represent a 3 degree of freedom rotation, and it can be

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022

1/13

https://orcid.org/0000-0001-7239-0878
https://orcid.org/0000-0003-1585-9822
https://doi.org/10.1371/journal.pone.0276302
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276302&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276302&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276302&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276302&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276302&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276302&domain=pdf&date_stamp=2022-11-10
https://doi.org/10.1371/journal.pone.0276302
https://doi.org/10.1371/journal.pone.0276302
http://creativecommons.org/licenses/by/4.0/
https://osf.io/prcmq/
https://osf.io/prcmq/

PLOS ONE Quaternion to Euler angles conversion: A direct, general and computationally efficient method

difficult and computationally costly to orthogonalize a rotation matrix numerically [2] (i.e., to
check that the matrix has its determinant equal to 1 and its inverse equal to its transpose,
which is necessary to compensate for the accumulated floating point errors).

However, it is possible to parametrize this rotation matrix with a smaller set of numbers [3].
One of the most usual set of parameters are the Euler angles. The approach consists in decom-
posing the 3D rotation matrix into the product of three rotations:

R= Rﬁg €3 Reg e Re. e (2)

Where Ry . is a rotation by the angle 8 around the axis e, and the consecutive axes are
orthogonal (e; - e, = e, - e5 = 0). The advantages of using Euler angles include the fact that only
three numbers have to be stored, and due to their familiarity, they can be more easily under-
stood, which explains why they are still being so widely used, even in cases where other forms
of representation may be more appropriate. The use of Euler angles also has several disadvan-
tages. For example, they are discontinuous and it is difficult to directly compose two 3D rota-
tions expressed in Euler angles. Euler angles are also affected by the phenomenon commonly
called “gymbal lock”: when two axes become aligned, making the system underdetermined,
special care has to be taken. In addition, since there are 12 possible axis sequences (24, when
considering the difference between “intrinsic” and “extrinsic” rotations), the correct sequence
has to be checked in the case of each application. An arguably preferable parametrization are
quaternions. A quaternion is a hypercomplex number defined by one real part and three dis-
tinct imaginary parts (which can also be regarded as the vector part). When the norm of a qua-
ternion is equal to 1, quaternions are a useful and efficient representation of 3D orientation:
they can be composed as easily as rotation matrices, they are continuous, and they are easily
constructed from the axis-angle representation. In addition, quaternions can be normalized
trivially, which is much more efficient than having to cope with the corresponding matrix
orthogonalization problem. For these reasons, most 3D graphical applications and rotation
engines carry quaternions under the hood. Besides these advantages, Euler angles are still
being preferred by many authors: Euler angles are the most familiar concept to most engineers
and researchers. In addition, in the case of many problems in which there exists only one
degree of freedom, angles can suffice.

To be able to perform fast calculations with quaternions and at the same time analyze rota-
tions using angles, it might be necessary to have an efficient method of converting the one set
of parameters to the other. Calculating the corresponding quaternion (or rotation matrix) for
a given set of Euler angles is trivial. Extracting the Euler angles is much harder, however. One
of the following two methods has generally been used up to now. The first method consists in
adopting a different set of formulas for each possible angle sequence [4], which is difficult to
implement and debug. The second method is that described in [5]. SciPy [6], for example, a
widely used scientific library for the Python programming language, implements this method.
It converts rotation matrices into Euler angles and involves many different matrix multiplica-
tions, including the inverse trigonometric functions required, which are naturally computa-
tionally costly. In addition, if rotations are stored in the form of quaternions (as is usually the
case in many of the 3D rendering software tools dealing with rotations), an additional conver-
sion step from quaternions to rotation matrices is necessary.

Since many robotic, graphic and other high-level applications involve the use of quaterni-
ons (even if they are hidden from the user), it can be necessary to have a concise, efficient
method for the conversion between quaternions and Euler angles. The direct conversion for-
mula from quaternions to Euler angles presented here requires fewer computational steps and
less expensive computational resources. Moreover, this conversion formula is much simpler to

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 2/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE

Quaternion to Euler angles conversion: A direct, general and computationally efficient method

implement and debug, making it a great option for any new applications needing to imple-
ment this kind of conversions.

2 Quaternion algebra summary

In this section, the key properties of quaternions are summarized. It is assumed in this work
that we are dealing with the classical Hamilton quaternions. Since the definitions concerning
quaternion algebra are not perfectly consistent in the literature [7], some of the main notations
and definitions used in this study are then presented. Quaternions form a non-commutative
division algebra denoted by H], which extends the complex numbers. A quaternion q € H con-
sists of four components:

q=¢q, tqi+qj+qk (3)

Where q,, q,,9,,q, € R. All the properties of quaternions can be obtained using its fundamen-
tal property, as given by Hamilton:

i =j=k=ijk=-1 (4)

Using the above properties, the product of two quaternions q and p can be expressed by the
Hamilton product:

qp = (p.49. — P49, — P,4, — P.4.) + (.9, + P49, — p,q, + P.4,)i

. (5)
+(p.q, +p.4q, + P,q. — P.9.)i + (0.9, — P4, + P,4, + P.q.)k

For the sake of simplicity, quaternions will be written here as 4 x 1 vectors (with the scalar
q- as the first element):

4.

qx ql’
[l
4y q

9. |

Whereq = [4, 4, 4,]" is the the imaginary/vector part of g. The Hamilton product
between two quaternions in 4-vector form will be denoted by:

ql’ pr

qOp= O] (7)

q.p,—9q-p]

q p 9p+pq9+qgxp

Defining the conjugate g* = [frq] and the absolute value as |q| = , /q? + ¢ + ¢} + g},

the inverse g of q is given by:

q9 =05 (8)

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 3/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE Quaternion to Euler angles conversion: A direct, general and computationally efficient method

And for any quaternion ¢:

909 ' =q'0q=

1
| o
0

If g is a unit quaternion, which means that |g| = 1 and g~' = g%, it can be used to represent
the rotation between two reference frames. Denoting v4 and vy a vector v in frames A and B,
respectively, and g = g% the unit quaternion corresponding to the rotation from A to B:

0 0
=q©
Vg

The equivalent rotation matrix is given by:

© (q1) (10)

Va

¢+q -9, -9 —2949,+2949, 2q49,+2q4,
RE=| 299,+299, q—q:+tq —q —2q9,+294, (11)
—2q.49,+249.9, 24,4, +2q,4, 4 —4q—d; 4
And the equivalent quaternion for a rotation of an angle 6 around an axis e is given by:

cos(0/2)
Qoe = l ‘| (12)
sin(0/2)e

3 Formula development

In the section, the formula for the conversion between a quaternion and any of the 6 proper
Euler angle sequences is derived, and then an adaptation for the 6 remaining Tait-Bryan
sequences is demonstrated.

3.1 Case 1: Proper Euler angles

Assuming g = [g,, q"]" is unit an known, it can be decomposed as follows:
Cy G o
q= © ©) (13)
s,e s,€ s.e

s, =sin(0,/2), ¢, = cos(6,/2)
s, =sin(0,/2), ¢, = cos(0,/2) (14)
s, =sin(0,/2), ¢; = cos(0,/2)

Where s, > 0, ¢, > 0. Taking e and €' to be orthogonal unit vectors (e - € = 0), there is a third

unit vector which is orthogonal to the other two such that:

¢ =cexe (15)

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 4/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE

Quaternion to Euler angles conversion: A direct, general and computationally efficient method

Where £ = (e x €) - €’ = £1. Together, e, € and €’ form an orthonormal basis. We also define:

0,+0,
bo="%
07 — 61 ; 03
And:
s, =sin(0,) =s,¢;+¢s,
s, =sin(0_) =s,¢; — ¢85
c, =cos(0,) =s;5,—c¢y
c. =cos(0_) =s;5,+ccq
Analyzing Eq 13:
cy Cy o
q = © O]
sqe s,€ s.e
C; ¢ Cy
=c, © + s, ©
s5e s.e s,e
c, 0
=6 +$,
s.e cée+sexe

And noting thatex &/ =g ¢

€,

q= [
C,5. e+ s,c_€ + 5,5 ge’

Defining the following four components:

a

b

We obtain:

(16)

(18)

(20)

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022

5/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE Quaternion to Euler angles conversion: A direct, general and computationally efficient method

Alternatively, we can see that [b ¢ d]" is simply a permutation of the components of g:
b
cl=[e € exe|’q (22)

d

3.1.1 Extraction of angles. Using complex numbers, we can define:
z, =a+ib=c,(c, +is,)

(23)
z =c+id=s,(c_+is)

Since ¢, s, > 0, we know that |z, | = ¢,, arg(z,) = 0,, |z_| =, and arg(z_) = 6_. We can then

rewrite:

z, =a+ib = cexp(il,)

(24)
z_=c+id=s,exp(if_)
And we know that:
0,+0
g, = U ; L — arg{a+ ib} = atan2(b, a)
0,—0)
g = ; L= arg{c +id} = atan2(d, c)

3.1.2 Singularities. There are two different singularities in these expressions. When 0, =
0, we have s, = 0 and 6_ is undefined. When 6, = 7, we have ¢, = 0 and 0, is undefined. In both
cases, one degree of freedom is lost and we can argue that 8, (or alternatively, 6;) loses its geo-
metrical meaning. We can then either set 0, to zero, or keep it fixed in its latest value (for
example, when updating an estimator, for the sake of continuity). Defining:

0,=0,,if 0,=0o0r0,=n (26)

Taking 91 to be some constant (zero or otherwise), we can calculate:

0, = 2atan2(b,a) — 0, , when 0, =0
{3 atan2(b,a) — 0, , when 0, 27)

0, = 2atan2(d,c) + 0, , when 0, = =

3.1.3 General formula for 6, and 0; in the absence of singularities. If 6, # 0 and 0, # n/
2, multiplying z, and z_ yields:

(a+ib)(c+id)

0,+0,+0,—0
= C,5,exXp (i—d Thth 1) (28)

Z,Z_

+

2

= ¢,5,exp(il;)

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 6/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE Quaternion to Euler angles conversion: A direct, general and computationally efficient method

On similar lines, multiplying z, and the conjugate of z_ yields:

z,z0 = (a+ib)(c—id) (29)
= ¢,5,exp(i0),)
The angles can then be obtained using:
0, = arg(z, z*) = arg((a + ib)(c — id
| = arg(z, 27) = arg((a + ib)(c — id)) (30)

0, = arg(z, z) = arg((a + ib)(c + id))
Or, more simply, from Eq 25:

0, =arg(a+ ib) — arg(c+ id)
0, =arg(a+ ib) + arg(c+ id)

0,=0,—0

32
0,=0,+0 G2)

It is worth noting that Eq 32 requires fewer operations than Eq 30: only 2 calls to atan2, one
addition and one subtraction, but a final wrapping step may be required in order to either
keep the angles either in (-, 7] or [0, 27).

3.1.4 General formulas for calculating 6,. From Eq 24, we know that:

¢, = cos(0,/2) = |z,| = Va? + b?

(33)
s, =sin(0,/2) = |z_| = V2 + d&?

And we can use any of the following equivalent formulas obtained directly from the defini-

tion:
) e+ d? a’ + b? e+ d2
0, = 2asm<w ") = 2acos< —) = 2atan<\/m> (34)

Where the factor n* = a* + b® + ¢ + d* = |g|* can be ignored if the quaternion is already nor-
malized. Using the properties of inverse trigonometric functions, we can also find the follow-

ing formula, which avoids the need for a square root:

2 b?
0, = acos(Q ¢ :2 - 1) (35)

3.2 Case 2: Tait-Bryan angles

We now define:

(36)

s,e

Where —n1/2 < ¢, < /2. Again assuming that e, ¢ and €’ are orthogonal unit vectors and e’ =

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 7/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE Quaternion to Euler angles conversion: A direct, general and computationally efficient method

cgexé,wheree=(ex¢) e ==l1,wedefine:

A

[cos(m/4)]

1 1
=— 37
sin(/4)¢ \/QL] 7

We note that:

(38)

Which gives:

(39)

Where:

s, =sinb,/2 (>0)
¢, =cosl,/2 (>0)
sy =sin0,/2
¢, =cosl,/2

Where 0, = 0, + /2 and 0, = £0,, and:

9 =204

a

be + ce' + de’

1 a—c
V2 (b—l—d)e-i—(c—l—a)e’-i—(d—b)e”]

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 8/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE Quaternion to Euler angles conversion: A direct, general and computationally efficient method

3.2.1 General formula. Using Eq 41, we can define:

a a—c
v :L b+d)
d V2 c+a

| d | |d—b

And then calculate 6, 0/, and 0, using the formulas obtained in the proper case. Using the
acos formula for 6,, we have:

0, =0,—mn/2

2 b/2 43
:acos(2a + —1)—77:/2 43)

n/2

Which results in singularities when 0/, = 0 or 0/, = 7, which is equivalent to 6, = —7/2 or 6,
= 71/2, as was to be expected. In addition, we know that when no singularities are present:

0, = atan2(¥,d’) — atan2(d',)

(44)
0, =eg(atan2(¥,d’) + atan2(d’,c’))

3.3 Example of a proper sequence: The sequence ZYZ

If we decide to use the sequence ZYZ, thene=e,, ¢ =e,and €’ = e, x e, = —e,. This leads to:

a q.
b q,
= (45)
C qy
L4] | —4, |

And the general formulas for 8;, 6, and 0; (when no singularities are present, and assuming
q to have been normalized) are:

)
S
Il

atan2(q,,q,) — atan2(—q,,q,)
acos(2 (¢ +¢q;) — 1) (46)
0, = atan2(q,,q,) + atan2(—q,,q,)

>
)
I

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 9/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE

Quaternion to Euler angles conversion: A direct, general and computationally efficient method

3.4 Second example: The sequence XYZ

Using the sequence XYZ, equivalent to the common aeronautical angles, thene =e,, ¢ = ¢,
and ¢’ = e,. This leads to:

a 4. — 4, |
b 1|t 47
L T Wt (47)
Ld'] 9, — 4,]

And the general formulas for 8}, 8, and 6; are:

0, = atan2(q, +4,,9, —4,) — atan2(q, — 4,,4, +4,)
= acos((q, —q,)" + (¢, +4q,)" — 1) — /2 (48)
0, = atan2(q, +q,.9, —q,) + atan2(q, — q,,q, +q,)

>
®
|

4 Complete algorithm

Algorithm 1, presented in this section, implements the conversion method from this work.

Assuming that our inputs are g € R’, the rotation quaternion and i, j and k € N, an array of
integers defining the sequence of angles (for example, [, j, k] = [323] is equivalent to the
sequence ZYZ). A Python implementation can be found on [8].
Algorithm 1: Complete implementation of conversion between a rotation quaternion and
Euler angles in any sequence, setting 6; = 0 in case of singularity.
Input: qcR', and i, 7, k € {1, 2, 3}, where i # j, 7 # k
Output: 6;, 6., 63
if i == k then
not proper « False
k«— 6 —-1- 7 // because 1 + j+k=1+2+3 =56
else
not proper « True
end
& «— (i - 3F) x (j — k) x (k- 1)/2 // equivalent to the Levi-Civita
symbol
if not proper then
a « gql0] - gl7]
b — g[i] + glk] x ¢
[71 + gl0]
[k] x e - gl[1]

c «— q
d «— g
else
a <«
b «—
C <«
d «—
end

0, «— acos [2 (%) - 1}

0" «— atan2 (b, a)

6 <« atan2(d, c)

switch value of 6, do
case 0 do

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 10/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE

Quaternion to Euler angles conversion: A direct, general and computationally efficient method

6, «— 0 // For simplicity, we are setting 0, =0
6, — 2 x 8" - 6
case 11/2 do
6, «— 0
6 — 2 x 6 + 6,
otherwise do
6, «— 6" - 6
6, — 6" + 6
end
end
if not proper then
O3 «— € x 65
0, «— 6, — /2
end
61, 63 «— (64, 63) // “wrap” assures 6,, 63 € (-m, m] or 6., 63 € [0, 2m)
Many operations are required to convert a quaternion into a rotation matrix. Using the
homogeneous formula from Eq 11, for example, if special care is taken in order not to repeat
any operations, we have to perform at least 4> = 16 floating point multiplications (all the possi-
ble products between two different components of the quaternion, plus all the squares of each
component), 4 x 3 = 12 multiplications by 2 and 3 x 3 + 6 = 15 additions/subtractions. This
conversion step alone is more than enough to make an algorithm based on [5] much slower
than the proposed method. In addition, multiple matrix multiplications also have to be com-
puted. By comparison, our algorithm replaces all the conversions and matrix multiplications
by a simple permutation of the quaternion elements and in the case of Tait-Bryan angles, only

5 additional additions/subtractions and possibly a sign change are required.

5 Results

In this section, a performance comparison between our method and the Shuster method is
presented. We adapted the SciPy library in order to compile the algorithm as described in Sec-
tion 4. A real data set comprising the orientation of a spinning object with 3284 data points
was used to compare the efficiency of the two algorithms. The full implementation and data
set can be downloaded from [8]. First we noted that both methods give the same results: add-
ing the absolute value of the differences between the two methods in a whole data set gives an
error of the order of 107'%. The execution times required in our tests for each sequence (and
their ratios) are presented in the Table 1. From this test, it can be clearly seen that the method
presented here is about 30 times faster.

6 Conclusion

The Euler angles are still a useful intuitive 3D orientation parametrization. A fast method of
conversion to/from any other set of parameters can therefore be of great interest for displaying
or analyzing data, for instance. In this study, we therefore developed a general formula for this
conversion which is concise, easy to implement and easy to debug. In addition, the fact that
our method is about 30 times faster than the method proposed by [5], which required an inter-
mediate conversion into rotation matrices, we believe that our proposed method can be of
great interest. This faster execution time also makes this method suitable for use in embedded
real time applications such as inertial measurement units (IMUs). We propose that this
method could be adopted as the new standard method for converting quaternions into Euler
angles, and we are now planning to contributing to several scientific libraries accordingly.
Moreover, a possible further development is to generalize this formula for the Davenport

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 11/13

https://doi.org/10.1371/journal.pone.0276302

PLOS ONE

Quaternion to Euler angles conversion: A direct, general and computationally efficient method

Table 1. Comparison of execution times between the two methods. The Python module timeit was used to check the
execution time required to convert the whole data set 500 times on an Intel® Core™ i3-4030U CPU with a 1.90GHz
clock speed.

https://doi.org/10.1371/journal.pone.0276302.t001

seq

ZYZ
ZXZ
XYX
XZX
YXY
YZY
ZYX
ZXY
XYZ
XZY
YXZ
YZX

new method

0.487 s
0.384 s
0.382s
0.414 s
0.359 s
0.375s
0.371s
0.364 s
0.373s
0.385s
0.365 s
0.425s

[5] implemented in [6]
13.770 s
13.361s
13.381s
13.187 s
13.029 s
13.078 s
13.152's
13.124 s
13.170 s
13.157 s
13.087 s
13.122 s

ratio

28.261
34.805
34.998
31.832
36.262
34.884
35.408
36.048
35.291
34.213
35.838
30.844

angles [9], a generalization of the Euler angles in which any set of distinct non-orthogonal axes

are used.

Acknowledgments

We thank J. Blanc for the English improvement.

Author Contributions

Conceptualization: Evandro Bernardes.

Formal analysis: Evandro Bernardes.

Investigation: Evandro Bernardes.

Project administration: Stéphane Viollet.

Software: Evandro Bernardes.

Supervision: Stéphane Viollet.

Validation: Evandro Bernardes.

Writing - original draft: Evandro Bernardes, Stéphane Viollet.

Writing - review & editing: Stéphane Viollet.

References
1.
517.
2.
2020.2973072
3.
6(4):422-430. https://doi.org/10.1137/1006093
4,

Shuster M. Survey of attitude representations. Journal of the Astronautical Sciences. 1993; 41(4):439—

Sarabandi S, Shabani A, Porta JM, Thomas F. On Closed-Form Formulas for the 3-D Nearest Rotation
Matrix Problem. IEEE Transactions on Robotics. 2020; 36(4):1333-1339. https://doi.org/10.1109/TRO.

Stuelpnagel J. On the Parametrization of the Three-Dimensional Rotation Group. Siam Review. 1964;

Henderson D. Euler Angles, Quaternions, and Transformation Matrices. NASA JSC Report. 1977; p.

42.

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022

12/13

https://doi.org/10.1109/TRO.2020.2973072
https://doi.org/10.1109/TRO.2020.2973072
https://doi.org/10.1137/1006093
https://doi.org/10.1371/journal.pone.0276302.t001
https://doi.org/10.1371/journal.pone.0276302

PLOS ONE Quaternion to Euler angles conversion: A direct, general and computationally efficient method

5. Shuster M, Markley L. General Formula for Extracting the Euler Angles. Journal of Guidance Control
and Dynamics. 2006; 29(1):215-221. https://doi.org/10.2514/1.16622

6. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python. Nature Methods. 2020; 17:261-272. https://doi.
org/10.1038/s41592-019-0686-2 PMID: 32015543

7. Sommer H, Gilitschenski |, Bloesch M, Weiss S, Siegwart R, Nieto J. Why and how to avoid the flipped
quaternion multiplication. Aerospace. 2018; 5(3):1-15. https://doi.org/10.3390/aerospace5030072

Quaternion to Euler Scipy implementation; 2022. https://github.com/evbernardes/quaternion_to_euler.

9. Shuster M, Markley L. Generalization of the Euler Angles. Journal of the Astronautical Sciences. 2003;
51(2):132—-123. https://doi.org/10.1007/BF03546304

PLOS ONE | https://doi.org/10.1371/journal.pone.0276302 November 10, 2022 13/13

https://doi.org/10.2514/1.16622
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.3390/aerospace5030072
https://github.com/evbernardes/quaternion_to_euler
https://doi.org/10.1007/BF03546304
https://doi.org/10.1371/journal.pone.0276302

