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Abstract

Current methods of the conversion between a rotation quaternion and Euler angles are

either a complicated set of multiple sequence-specific implementations, or a complicated

method relying on multiple matrix multiplications. In this paper a general formula is pre-

sented for extracting the Euler angles in any desired sequence from a unit quaternion. This

is a direct method, in that no intermediate conversion step is required (no quaternion-to-rota-

tion matrix conversion, for example) and it is general because it works with all 12 possible

sequences of rotations. A closed formula was first developed for extracting angles in any of

the 12 possible sequences, both “Proper Euler angles” and “Tait-Bryan angles”. The result-

ing algorithm was compared with a popular implementation of the matrix-to-Euler angle

algorithm, which involves a quaternion-to-matrix conversion in the first computational step.

Lastly, a single-page pseudo-code implementation of this algorithm is presented, illustrating

its conciseness and straightforward implementation. With an execution speed 30 times

faster than the classical method, our algorithm can be of great interest in every aspect.

1 Introduction

When dealing with 3D orientation problems, many different formalisms can be used to

describe a given rotation [1], each of which has its own set of advantages and shortcomings.

Arguably the most direct representation of a 3D rotation is a matrix R 2 SO(3), where SO(3) is

the group of invertible 3 × 3 matrices such that det(R) = 1 and RRT ¼ RTR ¼ I, where I is the

identity matrix. These rotation matrices represent direct linear transformations such that, with

v 2 R3:

vrotated ¼ R v ð1Þ

Apart from being simple to use, a rotation matrix also has the advantage of being continu-

ous, and a simple matrix multiplication can be used to compose rotations: R = R2R1 is the rota-

tion matrix corresponding to a rotation by R1 followed by a rotation by R2. 3D rotation

matrices have some numerical shortcomings, however. For example, as many as 9 numbers

(and 6 constraints) are required to represent a 3 degree of freedom rotation, and it can be
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difficult and computationally costly to orthogonalize a rotation matrix numerically [2] (i.e., to

check that the matrix has its determinant equal to 1 and its inverse equal to its transpose,

which is necessary to compensate for the accumulated floating point errors).

However, it is possible to parametrize this rotation matrix with a smaller set of numbers [3].

One of the most usual set of parameters are the Euler angles. The approach consists in decom-

posing the 3D rotation matrix into the product of three rotations:

R ¼ Ry3 e3
Ry2 e2

Ry1 e1
ð2Þ

Where Rθ e is a rotation by the angle θ around the axis e, and the consecutive axes are

orthogonal (e1 � e2 = e2 � e3 = 0). The advantages of using Euler angles include the fact that only

three numbers have to be stored, and due to their familiarity, they can be more easily under-

stood, which explains why they are still being so widely used, even in cases where other forms

of representation may be more appropriate. The use of Euler angles also has several disadvan-

tages. For example, they are discontinuous and it is difficult to directly compose two 3D rota-

tions expressed in Euler angles. Euler angles are also affected by the phenomenon commonly

called “gymbal lock”: when two axes become aligned, making the system underdetermined,

special care has to be taken. In addition, since there are 12 possible axis sequences (24, when

considering the difference between “intrinsic” and “extrinsic” rotations), the correct sequence

has to be checked in the case of each application. An arguably preferable parametrization are

quaternions. A quaternion is a hypercomplex number defined by one real part and three dis-

tinct imaginary parts (which can also be regarded as the vector part). When the norm of a qua-

ternion is equal to 1, quaternions are a useful and efficient representation of 3D orientation:

they can be composed as easily as rotation matrices, they are continuous, and they are easily

constructed from the axis-angle representation. In addition, quaternions can be normalized

trivially, which is much more efficient than having to cope with the corresponding matrix

orthogonalization problem. For these reasons, most 3D graphical applications and rotation

engines carry quaternions under the hood. Besides these advantages, Euler angles are still

being preferred by many authors: Euler angles are the most familiar concept to most engineers

and researchers. In addition, in the case of many problems in which there exists only one

degree of freedom, angles can suffice.

To be able to perform fast calculations with quaternions and at the same time analyze rota-

tions using angles, it might be necessary to have an efficient method of converting the one set

of parameters to the other. Calculating the corresponding quaternion (or rotation matrix) for

a given set of Euler angles is trivial. Extracting the Euler angles is much harder, however. One

of the following two methods has generally been used up to now. The first method consists in

adopting a different set of formulas for each possible angle sequence [4], which is difficult to

implement and debug. The second method is that described in [5]. SciPy [6], for example, a

widely used scientific library for the Python programming language, implements this method.

It converts rotation matrices into Euler angles and involves many different matrix multiplica-

tions, including the inverse trigonometric functions required, which are naturally computa-

tionally costly. In addition, if rotations are stored in the form of quaternions (as is usually the

case in many of the 3D rendering software tools dealing with rotations), an additional conver-

sion step from quaternions to rotation matrices is necessary.

Since many robotic, graphic and other high-level applications involve the use of quaterni-

ons (even if they are hidden from the user), it can be necessary to have a concise, efficient

method for the conversion between quaternions and Euler angles. The direct conversion for-

mula from quaternions to Euler angles presented here requires fewer computational steps and

less expensive computational resources. Moreover, this conversion formula is much simpler to
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implement and debug, making it a great option for any new applications needing to imple-

ment this kind of conversions.

2 Quaternion algebra summary

In this section, the key properties of quaternions are summarized. It is assumed in this work

that we are dealing with the classical Hamilton quaternions. Since the definitions concerning

quaternion algebra are not perfectly consistent in the literature [7], some of the main notations

and definitions used in this study are then presented. Quaternions form a non-commutative

division algebra denoted by H, which extends the complex numbers. A quaternion q 2 H con-

sists of four components:

q ¼ qr þ qxiþ qyjþ qzk ð3Þ

Where qr; qx; qy; qz 2 R. All the properties of quaternions can be obtained using its fundamen-

tal property, as given by Hamilton:

i2 ¼ j2 ¼ k2
¼ ijk ¼ � 1 ð4Þ

Using the above properties, the product of two quaternions q and p can be expressed by the

Hamilton product:

q p ¼ ðprqr � pxqx � pyqy � pzqzÞ þ ðprqx þ pxqr � pyqz þ pzqyÞi

þðprqy þ pxqz þ pyqr � pzqxÞjþ ðprqz � pxqy þ pyqx þ pzqrÞk
ð5Þ

For the sake of simplicity, quaternions will be written here as 4 × 1 vectors (with the scalar

qr as the first element):

q ¼

qr

qx

qy

qz

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼
qr

q

" #

ð6Þ

Where q ¼ qx qy qz �
T�

is the the imaginary/vector part of q. The Hamilton product

between two quaternions in 4-vector form will be denoted by:

q� p ¼
qr

q

" #

�
pr

p

" #

¼
qrpr � q � p

qrpþ prqþ q� p

" #

ð7Þ

Defining the conjugate q� ¼
qr
� q

" #

and the absolute value as jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
r þ q2

x þ q2
y þ q2

z

q
,

the inverse q−1 of q is given by:

q� 1 ¼
q�

jqj2
ð8Þ
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And for any quaternion q:

q� q� 1 ¼ q� 1 � q ¼
1

0

" #

ð9Þ

If q is a unit quaternion, which means that |q| = 1 and q−1 = q�, it can be used to represent

the rotation between two reference frames. Denoting vA and vB a vector v in frames A and B,

respectively, and q ¼ qBA the unit quaternion corresponding to the rotation from A to B:

0

vB

" #

¼ qBA �
0

vA

" #

� ðqBAÞ
�

ð10Þ

The equivalent rotation matrix is given by:

RB
A ¼

q2
r þ q2

x � q2
y � q2

z � 2qrqz þ 2qxqy 2qrqy þ 2qxqz

2qrqz þ 2qxqy q2
r � q2

x þ q2
y � q2

z � 2qrqx þ 2qyqz

� 2qrqy þ 2qxqz 2qrqx þ 2qyqz q2
r � q2

x � q2
y þ q2

z

2

6
6
6
4

3

7
7
7
5

ð11Þ

And the equivalent quaternion for a rotation of an angle θ around an axis e is given by:

qye ¼
cosðy=2Þ

sinðy=2Þe

" #

ð12Þ

3 Formula development

In the section, the formula for the conversion between a quaternion and any of the 6 proper

Euler angle sequences is derived, and then an adaptation for the 6 remaining Tait-Bryan

sequences is demonstrated.

3.1 Case 1: Proper Euler angles

Assuming q = [qr, qT]T is unit an known, it can be decomposed as follows:

q ¼
c3

s3e

" #

�
c2

s2e0

" #

�
c1

s1e

" #

ð13Þ

In which (for 0� θ2� π):

s1 � sinðy1=2Þ; c1 � cosðy1=2Þ

s2 � sinðy2=2Þ; c2 � cosðy2=2Þ

s3 � sinðy3=2Þ; c3 � cosðy3=2Þ

ð14Þ

Where s2� 0, c2� 0. Taking e and e0 to be orthogonal unit vectors (e � e0 = 0), there is a third

unit vector which is orthogonal to the other two such that:

e00 � ε e� e0 ð15Þ
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Where ε = (e × e0) � e0 0 = ±1. Together, e, e0 and e00 form an orthonormal basis. We also define:

yþ ¼
y1 þ y3

2

y� ¼
y1 � y3

2

ð16Þ

And:

sþ � sinðyþÞ ¼ s1c3 þ c1s3

s� � sinðy� Þ ¼ s1c3 � c1s3

cþ � cosðyþÞ ¼ s1s3 � c1c3

c� � cosðy� Þ ¼ s1s3 þ c1c3

ð17Þ

Analyzing Eq 13:

q ¼
c3

s3e

" #

�
c2

s2e0

" #

�
c1

s1e

" #

¼ c2

c3

s3e

" #

�
c1

s1e

" #

þ s2

c3

s3e

" #

�
0

e0

" #

�
c1

s1e

" #

¼ c2

cþ

sþe

" #

þ s2

0

c� e0 þ s� e� e0

" #

ð18Þ

And noting that e × e0 = ε e00:

q ¼
c2cþ

c2sþeþ s2c� e0 þ s2s� εe00

" #

ð19Þ

Defining the following four components:

a

b

c

d

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

�

qr

q � e

q � e0

ε q � e00

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð20Þ

We obtain:

a

b

c

d

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

c2cþ

c2sþ

s2c�

s2s�

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð21Þ
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Alternatively, we can see that b c d �T
�

is simply a permutation of the components of q:

b

c

d

2

6
6
6
4

3

7
7
7
5
¼ e e0 e� e0 �Tq
�

ð22Þ

3.1.1 Extraction of angles. Using complex numbers, we can define:

zþ � aþ ib ¼ c2ðcþ þ isþÞ

z� � cþ id ¼ s2ðc� þ is� Þ
ð23Þ

Since c2, s2� 0, we know that |z+| = c2, arg(z+) = θ+, |z−| = s2 and arg(z−) = θ−. We can then

rewrite:

zþ ¼ aþ ib ¼ c2expðiyþÞ

z� ¼ cþ id ¼ s2expðiy� Þ
ð24Þ

And we know that:

yþ ¼
y3 þ y1

2
¼ argfaþ ibg ¼ atan2ðb; aÞ

y� ¼
y3 � y1

2
¼ argfcþ idg ¼ atan2ðd; cÞ

ð25Þ

3.1.2 Singularities. There are two different singularities in these expressions. When θ2 =

0, we have s2 = 0 and θ− is undefined. When θ2 = π, we have c2 = 0 and θ+ is undefined. In both

cases, one degree of freedom is lost and we can argue that θ1 (or alternatively, θ3) loses its geo-

metrical meaning. We can then either set θ1 to zero, or keep it fixed in its latest value (for

example, when updating an estimator, for the sake of continuity). Defining:

y1 � ŷ1 ; if y2 ¼ 0 or y2 ¼ p ð26Þ

Taking ŷ1 to be some constant (zero or otherwise), we can calculate:

y3 ¼ 2 atan2ðb; aÞ � ŷ1 ; when y2 ¼ 0

y3 ¼ 2 atan2ðd; cÞ þ ŷ1 ; when y2 ¼ p

(

ð27Þ

3.1.3 General formula for θ1 and θ3 in the absence of singularities. If θ2 6¼ 0 and θ2 6¼ π/

2, multiplying z+ and z− yields:

zþ z� ¼ ðaþ ibÞðcþ idÞ

¼ c2s2exp i
y3 þ y1 þ y3 � y1

2

� �

¼ c2s2expðiy3Þ

ð28Þ
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On similar lines, multiplying z+ and the conjugate of z− yields:

zþ z�� ¼ ðaþ ibÞðc � idÞ

¼ c2s2expðiy1Þ
ð29Þ

The angles can then be obtained using:

y1 ¼ argðzþ z�� Þ ¼ argððaþ ibÞðc � idÞÞ

y3 ¼ argðzþ z� Þ ¼ argððaþ ibÞðcþ idÞÞ
ð30Þ

Or, more simply, from Eq 25:

y1 ¼ argðaþ ibÞ � argðcþ idÞ

y3 ¼ argðaþ ibÞ þ argðcþ idÞ
ð31Þ

Or:

y1 ¼ yþ � y�

y3 ¼ yþ þ y�
ð32Þ

It is worth noting that Eq 32 requires fewer operations than Eq 30: only 2 calls to atan2, one

addition and one subtraction, but a final wrapping step may be required in order to either

keep the angles either in (−π, π] or [0, 2π).

3.1.4 General formulas for calculating θ2. From Eq 24, we know that:

c2 ¼ cosðy2=2Þ ¼ jzþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

s2 ¼ sinðy2=2Þ ¼ jz� j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2
p ð33Þ

And we can use any of the following equivalent formulas obtained directly from the defini-

tion:

y2 ¼ 2 asin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

n2

r !

¼ 2 acos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

n2

r !

¼ 2 atan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

a2 þ b2

r !

ð34Þ

Where the factor n2 = a2 + b2 + c2 + d2 = |q|2 can be ignored if the quaternion is already nor-

malized. Using the properties of inverse trigonometric functions, we can also find the follow-

ing formula, which avoids the need for a square root:

y2 ¼ acos 2
a2 þ b2

n2
� 1

� �

ð35Þ

3.2 Case 2: Tait-Bryan angles

We now define:

q ¼
c3

s3e00

" #

�
c2

s2e0

" #

�
c1

s1e

" #

ð36Þ

Where −π/2< ϕ2 < π/2. Again assuming that e, e0 and e0 0 are orthogonal unit vectors and e00 =
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ε e × e0, where ε = (e × e0) � e0 0 = ±1, we define:

l �
cosðp=4Þ

sinðp=4Þe0

" #

¼
1
ffiffiffi
2
p

1

e0

" #

ð37Þ

We note that:

l
�
�

c3

s3εe

" #

� l ¼
c3

s3εe� e0

" #

¼
c3

s3e00

" # ð38Þ

Which gives:

q ¼
c3

s3e00

" #

�
c2

s2e0

" #

�
c1

s1e

" #

q ¼ l
�
�

c3

s3εe

" #

� l�
c2

s2e0

" #

�
c1

s1e

" #

q0 ¼
c0

3

s0
3
e

" #

�
c0

2

s0
2
e0

" #

�
c1

s1e

" #

ð39Þ

Where:

s0
2
� siny0

2
=2 ð� 0Þ

c0
2
� cosy0

2
=2 ð� 0Þ

s0
3
� siny0

3
=2

c0
3
� cosy0

3
=2

ð40Þ

Where y
0

2
¼ y2 þ p=2 and y

0

3
¼ εy3, and:

q0 � l� q

¼
1
ffiffiffi
2
p

1

e0

" #

�
a

beþ ce0 þ de00

" #

¼
1
ffiffiffi
2
p

a � c

ðbþ dÞeþ ðcþ aÞe0 þ ðd � bÞe00

" #
ð41Þ
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3.2.1 General formula. Using Eq 41, we can define:

a0

b0

c0

d0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼
1
ffiffiffi
2
p

a � c

bþ d

cþ a

d � b

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð42Þ

And then calculate θ1, y
0

2
and y

0

3
using the formulas obtained in the proper case. Using the

acos formula for θ2, we have:

y2 ¼ y
0

2
� p=2

¼ acos 2
a02 þ b02

n02
� 1

� �

� p=2
ð43Þ

Which results in singularities when y
0

2
¼ 0 or y

0

2
¼ p, which is equivalent to θ2 = −π/2 or θ2

= π/2, as was to be expected. In addition, we know that when no singularities are present:

y1 ¼ atan2ðb0; a0Þ � atan2ðd0; c0Þ

y3 ¼ εð atan2ðb0; a0Þ þ atan2ðd0; c0ÞÞ
ð44Þ

3.3 Example of a proper sequence: The sequence ZYZ

If we decide to use the sequence ZYZ, then e = ez, e0 = ey and e00 = ez × ey = −ex. This leads to:

a

b

c

d

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

qr

qz

qy

� qx

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð45Þ

And the general formulas for θ1, θ2 and θ3 (when no singularities are present, and assuming

q to have been normalized) are:

y1 ¼ atan2ðqz; qrÞ � atan2ð� qx; qyÞ

y2 ¼ acosð2 ðq2
r þ q2

zÞ � 1Þ

y3 ¼ atan2ðqz; qrÞ þ atan2ð� qx; qyÞ

ð46Þ
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3.4 Second example: The sequence XYZ

Using the sequence XYZ, equivalent to the common aeronautical angles, then e = ex, e0 = ey
and e00 = ez. This leads to:

a0

b0

c0

d0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼
1
ffiffiffi
2
p

qr � qy

qx þ qz

qy þ qr

qz � qx

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð47Þ

And the general formulas for θ1, θ2 and θ3 are:

y1 ¼ atan2ðqx þ qz; qr � qyÞ � atan2ðqz � qx; qy þ qrÞ

y2 ¼ acosððqr � qyÞ
2
þ ðqx þ qzÞ

2
� 1Þ � p=2

y3 ¼ atan2ðqx þ qz; qr � qyÞ þ atan2ðqz � qx; qy þ qrÞ

ð48Þ

4 Complete algorithm

Algorithm 1, presented in this section, implements the conversion method from this work.

Assuming that our inputs are q 2 R4
, the rotation quaternion and i, j and k 2 N, an array of

integers defining the sequence of angles (for example, [i, j, k] = [323] is equivalent to the

sequence ZYZ). A Python implementation can be found on [8].

Algorithm 1: Complete implementation of conversion between a rotation quaternion and

Euler angles in any sequence, setting θ1 = 0 in case of singularity.

Input: q 2 R4, and i, j, k 2 {1, 2, 3}, where i 6¼ j, j 6¼ k
Output: θ1, θ2, θ3
if i == k then
not_proper  False
k  6 − i − j // because i + j + k = 1 + 2 + 3 = 6

else
not_proper  True

end
ε  (i − j) × (j − k) × (k − i)/2 // equivalent to the Levi-Civita
symbol
if not_proper then
a  q[0] − q[j]
b  q[i] + q[k] × ε
c  q[j] + q[0]
d  q[k] × ε − q[i]

else
a  q[0]
b  q[i]
c  q[j]
d  q[k] × ε

end

y2  acos 2 a2þb2

a2þb2þc2þd2

� �
� 1

h i

θ+  atan2(b, a)
θ−  atan2(d, c)
switch value of θ2 do
case 0 do
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θ1  0 // For simplicity, we are setting ŷ1 ¼ 0

θ3  2 × θ+ − θ1
case π/2 do
θ1  0
θ3  2 × θ− + θ1

otherwise do
θ1  θ+ − θ−

θ3  θ+ + θ−

end
end
if not_proper then
θ3  ε × θ3
θ2  θ2 − π/2

end
θ1, θ3  (θ1, θ3) // “wrap” assures θ1, θ3 2 (−π, π] or θ1, θ3 2 [0, 2π)

Many operations are required to convert a quaternion into a rotation matrix. Using the

homogeneous formula from Eq 11, for example, if special care is taken in order not to repeat

any operations, we have to perform at least 42 = 16 floating point multiplications (all the possi-

ble products between two different components of the quaternion, plus all the squares of each

component), 4 × 3 = 12 multiplications by 2 and 3 × 3 + 6 = 15 additions/subtractions. This

conversion step alone is more than enough to make an algorithm based on [5] much slower

than the proposed method. In addition, multiple matrix multiplications also have to be com-

puted. By comparison, our algorithm replaces all the conversions and matrix multiplications

by a simple permutation of the quaternion elements and in the case of Tait-Bryan angles, only

5 additional additions/subtractions and possibly a sign change are required.

5 Results

In this section, a performance comparison between our method and the Shuster method is

presented. We adapted the SciPy library in order to compile the algorithm as described in Sec-

tion 4. A real data set comprising the orientation of a spinning object with 3284 data points

was used to compare the efficiency of the two algorithms. The full implementation and data

set can be downloaded from [8]. First we noted that both methods give the same results: add-

ing the absolute value of the differences between the two methods in a whole data set gives an

error of the order of 10−12. The execution times required in our tests for each sequence (and

their ratios) are presented in the Table 1. From this test, it can be clearly seen that the method

presented here is about 30 times faster.

6 Conclusion

The Euler angles are still a useful intuitive 3D orientation parametrization. A fast method of

conversion to/from any other set of parameters can therefore be of great interest for displaying

or analyzing data, for instance. In this study, we therefore developed a general formula for this

conversion which is concise, easy to implement and easy to debug. In addition, the fact that

our method is about 30 times faster than the method proposed by [5], which required an inter-

mediate conversion into rotation matrices, we believe that our proposed method can be of

great interest. This faster execution time also makes this method suitable for use in embedded

real time applications such as inertial measurement units (IMUs). We propose that this

method could be adopted as the new standard method for converting quaternions into Euler

angles, and we are now planning to contributing to several scientific libraries accordingly.

Moreover, a possible further development is to generalize this formula for the Davenport
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angles [9], a generalization of the Euler angles in which any set of distinct non-orthogonal axes

are used.
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Software: Evandro Bernardes.

Supervision: Stéphane Viollet.
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