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Abstract

Members of the Bacillus genus are industrial cell factories due to their capacity to secrete

significant quantities of biomolecules with industrial applications. The Bacillus paralicheni-

formis strain Bac84 was isolated from the Red Sea and it shares a close evolutionary rela-

tionship with Bacillus licheniformis. However, a significant number of proteins in its genome

are annotated as functionally uncharacterized hypothetical proteins. Investigating these pro-

teins’ functions may help us better understand how bacteria survive extreme environmental

conditions and to find novel targets for biotechnological applications. Therefore, the purpose

of our research was to functionally annotate the hypothetical proteins from the genome of B.

paralicheniformis strain Bac84. We employed a structured in-silico approach incorporating

numerous bioinformatics tools and databases for functional annotation, physicochemical

characterization, subcellular localization, protein-protein interactions, and three-dimensional

structure determination. Sequences of 414 hypothetical proteins were evaluated and we

were able to successfully attribute a function to 37 hypothetical proteins. Moreover, we per-

formed receiver operating characteristic analysis to assess the performance of various tools

used in this present study. We identified 12 proteins having significant adaptational roles to

unfavorable environments such as sporulation, formation of biofilm, motility, regulation of

transcription, etc. Additionally, 8 proteins were predicted with biotechnological potentials

such as coenzyme A biosynthesis, phenylalanine biosynthesis, rare-sugars biosynthesis,

antibiotic biosynthesis, bioremediation, and others. Evaluation of the performance of the

tools showed an accuracy of 98% which represented the rationality of the tools used. This

work shows that this annotation strategy will make the functional characterization of

unknown proteins easier and can find the target for further investigation. The knowledge of

these hypothetical proteins’ potential functions aids B. paralicheniformis strain Bac84 in

effectively creating a new biotechnological target. In addition, the results may also facilitate

a better understanding of the survival mechanisms in harsh environmental conditions.
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Introduction

Bacillus paralicheniformis is a newly discovered species in the Bacillus genus [1]. It is phyloge-

netically closely related to B. licheniformis [1, 2]. In the biotechnology sector, B. licheniformis
has already been employed to produce biochemicals, enzymes, antibiotics, and other products

[1, 3]. Several current investigations have indicated that B. paralicheniformis species have a

strong potential for the biosynthesis of antimicrobial compounds [4, 5]. One of the strains can

also inhibit plant pathogenic microbes [6]. In this way, B. paralicheniformis may be of biotech-

nological relevance but still, it has remained largely unexplored.

B. paralicheniformis is a gram-positive, facultatively anaerobic, rod-shaped, motile, and

endospore-forming Bacillus species [1]. The B. paralicheniformis strains are found in a variety

of habitats, including soil, freshwater, marine, and niches associated with food [1, 4, 6]. This

strain is adapted to survive in extreme conditions such as high osmolarity which provides it

with metabolic capabilities similar to industrial strains [4]. The B. paralicheniformis strain

Bac84 was isolated from the Red Sea which is an ecosystem of harsh, extremely saline, and

high temperature [4]. Hence, this strain may be a potential microbial cell factory to produce

both thermo-tolerant and osmotolerant enzymes that may be more suitable for use in industry

as well as able to survive frequent exposure to these extreme conditions [7]. This particular

strain showed promising antibacterial activity against three-indicator pathogens: Salmonella
typhimurium, Staphylococcus aureus, and Pseudomonas syringae [8]. Additionally, one very

closely related strain (B. paralicheniformis Strain GSFE7- 95% genome sequence similarity)

has been reported to be involved in the promotion of halotolerant plant growth [9]. Besides,

another closely related strain (B. paralicheniformis Strain CCMM B940 which shares 98.94%

identity with B. paralicheniformis strain Bac84) can break down complex polysaccharides [10].

The genome of B. paralicheniformis strain Bac84 has been fully sequenced and published

[4]. According to the National Center for Biotechnology Information database—NCBI reposi-

tory, it encodes 4,237 proteins (CP023665.1). However, 414 coding sequences have been antic-

ipated to encode for proteins without any expression and function-associated data. These

sequences have been assigned as “hypothetical”. These hypothetical proteins (HPs) have con-

stituted a considerable portion (9.8% of the total number of proteins) of the genome. Func-

tional annotation is necessary for these HPs to find the possible roles in the cell which can lead

to an understanding of new structures, and functions in this bacterium. Several studies have

revealed the expression of HPs [11–13]. Homology-based gene annotation has been assigned

previously to predict the unknown functions of numerous HPs in several organisms [14–18].

Additionally, numerous bioinformatics tools are available to determine the functions of the

HPs such as Pfam, InterPro, CATH, SUPERFAMILY, SMART, CDD-BLAST SCANPROSITE,

and many more [17–23]. Moreover, the STRING database is also an essential way of protein-

protein interaction (PPI) determination to understand the protein functions in a biological

network [24–26]. Hence, the PPI study of these HPs can lead to inferences about their biologi-

cal functions [27]. Furthermore, the tertiary structure modeling through homology searches

utilizing the SWISS-MODEL server is important to find the function of unknown proteins

[28].

In this study, we aimed to determine the functional roles of the HPs from the B. paralicheni-
formis strain Bac84. We utilized an annotation-based workflow to determine the functions of

the HPs for the identification of new biotechnologically important proteins as well as novel

proteins contributing to the survival of this bacterium in extreme environments. We success-

fully identified potential target proteins in the B. paralicheniformis strain Bac84. It may eventu-

ally be possible to develop new biotechnological applications based on further experimental

validation of these identified proteins.
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Materials and methods

Sequence retrieval

The genome of B. paralicheniformis strain Bac84 was used (CP023665.1). It has 4,376,831 bp in

length containing 4413 genes. It encodes 4,237 proteins and 414 are HPs among those (https://

www.ncbi.nlm.nih.gov/genome/). The HPs’ sequences were obtained in FASTA format for the

analyses (S1 Table).

Functional annotation of hypothetical proteins

Functional annotation was applied to the HPs to reveal their functions (Fig 1). Firstly, several

publicly available tools and databases (Pfam, InterPro, CATH, SUPERFAMILY, SMART,

SCANPROSITE, and CDD-BLAST) are listed in the S2 Table were used. These bioinformatics

tools and databases assist to find the conserved domains and afterward categorize the proteins.

Pfam [29], InterPro [30], SUPERFAMILY [20], and SCANPROSITE [31] were employed to

interpret the functional roles of the HPs based on similarity. Additionally, SMART and CATH

were used to search for functions of our HPs based on the domain architecture and to catego-

rize the domains within the structural hierarchy respectively [32, 33]. Conserved Domain

Database (CDD) was utilized to search conserved domains [34]. All these analyses were per-

formed in the default parameters and the results are given in detail in the S3 Table. These web

tools showed distinctive results and to perform downstream analyses, 37 HPs were filtered as

these HPs exhibited functional domains or motifs in at least three of the bioinformatic tools

(S4 Table).

We also have predicted the gene ontology of all the HPs using Argot2.5 (Annotation

Retrieval of Genel Ontology Terms) [35] (S5 Table) and the findings are illustrated in Fig 2.

We further used the FASTA sequences of the selected 37 HPs for manual annotation utiliz-

ing the Basic Local Alignment Search Tool (BLAST) [36]. Here, the NCBI nonredundant data-

base and hits with an identity� 90% were employed (S6 Table).

In addition, we used BPROM (in the default settings) to perform the promoter analysis of

the 37 proteins [37]. All the DNA sequences were downloaded from the NCBI database. The

Shine Dalgarno (SD) sequence was manually assigned in this case.

The DEG database was utilized to detect the essential genes with the screened 37 HPs [38].

The search was performed against the available genomes of Bacillus subtilis 168, and Bacillus
thuringiensis BMB171 in the default parameters (S7 Table).

Prediction of physicochemical parameters and the Sub-cellular

localization

The physicochemical parameters of the selected 37 HPs were theoretically measured using

Expasy’s Protparam server [39]. The predicted properties such as molecular mass, isoelectric

point (pI), extinction coefficient, the total number of +/- residues, extinction coefficient, insta-

bility index, aliphatic index, and grand average of hydropathicity (GRAVY) were determined.

Determination of the protein cellular localization helps to estimate its function. In this

study, PSORTb [40] and CELLO [41] were used to identify the proteins’ location in the cell.

PSORTb includes both lab experimental data sets as well as in silico predictions. In contrast,

CELLO employs a two-level support vector machine (SVM) based system.

Furthermore, SOSUI [42], HMMTOP [43], TMHMM [44], and SignalP [45] were utilized

to predict the transmembrane helices as well as determine the presence of signal peptide cleav-

age sites. All the results of these characterization analyses were listed in the S8 Table.
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Fig 1. Workflow representing the overall design of the study. The tasks listed in the green outlined boxes were applied only

after the analyzed HPs showed the same function in at least three different bioinformatics tools.

https://doi.org/10.1371/journal.pone.0276085.g001
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Protein-protein interaction analysis

In this study, STRING software [24, 26] was used to predict interactive partners using a confi-

dence score above 0.7 for ensuring the dependability of the predictions (S9 Table). We had to

use the Bacillus licheniformis DSM 13 reference genome to generate the interaction networks

as the dataset for any strain of B. paralicheniformis has not been available yet. Both the physical

and functional associations were applied to compute the networks. The Cytoscape was used to

visualize the interaction networks (S1 Fig).

Tertiary structure prediction

Tertiary protein structures give significant insights into the molecular basis of protein function

[46]. We used the SWISS-MODEL server [28] for homology modeling of the target proteins

where only templates with an identity� 30% were considered (S10 Table). The UCSF Chi-

mera-1.16 was used to visualize the 3D structures as well as to perform the structural align-

ments (Fig 3A & 3B). Additionally, several predicted structures were also compared with the

AlphaFold models to validate the structures.

Fig 2. The gene ontology of all the 414 HPs. (A) The distribution of the HPs among the three gene ontology categories. (B) Graph of the

cellular components. (C) Graph of the biological processes. (D) Graph of the molecular functions. Here, the distribution of GO terms is

presented on the Y axis and the area of the bubbles is relative to the number of proteins found in each category.

https://doi.org/10.1371/journal.pone.0276085.g002

Fig 3. A & B. Tertiary structures analysis. Three-dimensional structures were modeled by the SWISS-MODEL server reliably using the templates with higher

coverage, more than 30% of identity, and higher GMQE scores along with Ramachandran Favored percentages�90%. Only the templates determined by the

X-ray crystallography with high resolution were used. The known proteins and the modeled structures are indicated in red and blue colors respectively. The

proteins are orientated using the Chimera MatchMaker according to the optimal superposition of the matching residues.

https://doi.org/10.1371/journal.pone.0276085.g003
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Performance assessment

We performed a ROC- receiver operating characteristic analysis with 100 functionally charac-

terized proteins (S11 Table) from the genome of the B. paralicheniformis strain Bac84 to check

the accuracy of the anticipated functions of our studied HPs [47]. These proteins were func-

tionally checked using the seven databases used for our studied HPs.

For the interpretation, the binary numerals “1” and “0” were applied as the true positive

and true negative respectively. The integers ‘2’, ‘3’, ‘4’, and ‘5’ were used to assess the prediction

efficacy. After that, these datasets were submitted to the Web-based Calculator and calculated

the specificity, sensitivity, accuracy, and the ROC area of each tool employed earlier for func-

tional prediction of the HPs.

Results and discussion

Analysis of The hypothetical proteins from the B. Paralicheniformis strain

Bac84 genome

DNA sequencing technologies are advancing, and high throughput sequencing technologies

have allowed a significant number of bacterial genome sequencing. Sequence homology tech-

niques are commonly used for the annotation of genes [48]. Nevertheless, these homology

techniques alone are not always able to predict functions accurately and lead to false annota-

tions [49]. Hence, multiple bioinformatic tools must be employed to assign functional annota-

tions of HPs. In this study, we applied a number of effective tools and databases to do the

annotation of HPs from the B. paralicheniformis strain Bac84.

We first identified the domains of the HPs which are structural, functional, and evolution-

ary parts of a protein, therefore providing the functional role of a protein [50]. We extensively

analyzed all the 414 HPs sequences using Pfam, InterPro, CATH, SUPERFAMILY, SMART,

SCANPROSITE, and CDD-BLAST (S3 Table). The results were evaluated aiming to assign

functions to HPs and it revealed 37 HPs which demonstrated similar functions from three or

more programs listed in Table 1. In this way, functional annotations were assigned with strong

confidence to the HPs. For the rest HPs (n = 377), domains were recognized from less than

three mentioned bioinformatic tools which are needed further assessments.

Further, the GO terms were determined using the ARGOT2.5 server [35] that provides

results based on the confidence scores. 133 HPs have GO term predictions among the 414 tar-

gets and the distribution among the GO categories was depicted in Fig 2. The rest of the HPs

with no GO terms can be found in the S5 Table. Among the three categories, the largest cluster

was cellular components followed by molecular functions and biological processes. We found

seven different GO terminologies in the cellular component category including 45 having

membrane function (Fig 2B). Although studying membrane proteins is difficult, it is well

known that many membrane proteins play important roles in gram-positive bacteria’s physiol-

ogy [51, 52]. The membrane proteins come first in the interaction among cells and the envi-

ronmental stresses [53]. These membrane HPs need to be analyzed as these may have

considerable roles in the survival mechanism of the B. paralicheniformis strain Bac84 in

extreme environments. For biological processes, twenty-five different GO terminologies were

identified, mostly associated with transcription and DNA-related processes (Fig 2C). Tran-

scriptional regulation is a crucial process for a living organism. The cell can respond to intra-

cellular and external signals such as environmental cues or nutritional insufficiency through

this transcription-controlling process. According to the GO annotation, the molecular func-

tion category showed twenty-one GO terminologies; mostly indicated to several enzymatic

functions, and the others related to protein binding (Fig 2D). Here, the DNA and protein
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interactions (sequence-specific and sequence non-specific binding) are involved in many bio-

logical processes including regulation of transcription, DNA repair, DNA modification, etc.

[54]. Additionally, the proteins with enzymatic functions have potential biotechnological

applications [55, 56].

Additionally, 15 HPs carried homologous sequences with described functions were found

in BlastP analysis whereas the remaining HPs were matched to uncharacterized family pro-

teins and/or hypothetical proteins (S6 Table). All the 15 HPs that matched with functional pro-

teins in the BlastP analysis were functionally similar to the anticipated functions. We also

analyzed the promoter regions of all 37 proteins. Promoter segments are required for the start

Table 1. Hypothetical proteins functionally annotated from the B. paralicheniformis strain Bac84.

No. HP ID Inferred function

1 WP_158700706.1 Metal-dependent hydrolase

2 WP_230368348.1 Catalytic core DNA breaking-rejoining enzymes

3 WP_095290960.1 RNA polymerase sporulation sigma factor SigK

4 WP_026579962.1 YhzD-like protein

5 WP_224146215.1 Response regulator aspartate phosphatase

6 WP_095291534.1 The YqzH-like protein family

7 WP_003179940.1 The YgaB-like protein family

8 WP_020449960.1 Inner membrane protein YiaA-like

9 WP_105981192.1 YqaH-like protein

10 WP_020453622.1 Bacteriophage A118-like, holin

11 WP_006638778.1 Metal-responsive transcriptional regulator

12 WP_003180123.1 Sigma-M inhibitor protein YhdK

13 WP_025810847.1 Streptogramin lyase

14 WP_020450411.1 RlpA-like domain superfamily

15 WP_105980832.1 Phenylalanyl-tRNA synthetase

16 WP_009328837.1 Flavin-phosphopantothenoylcysteine decarboxylase/Flavin prenyltransferase

17 WP_003180732.1 Pathogenicity locus—Putative mitomycin resistance proteins

18 WP_199792123.1 YetA-like protein

19 WP_020451108.1 ESAT-6-like superfamily

20 WP_020451191.1 YkyB-like protein

21 WP_026579751.1 Transcription regulator DksA-related

22 WP_105980957.1 Nudix_Hydrolase super family

23 WP_023857538.1 YhzD-like protein

24 WP_020451915.1 Heat Shock protein (Hsp20 proteins)

25 WP_020452052.1 HesB-like domain superfamily

26 WP_026579290.1 YqfQ-like protein

27 WP_020452371.1 RmlC-like cupin superfamily

28 WP_234026546.1 Chromosome segregation protein SMC

29 WP_023855527.1 Response regulator aspartate phosphatase

30 WP_105981186.1 Putative phage metallopeptidase

31 WP_105981199.1 Alpha/Beta hydrolase fold

32 WP_003185659.1 Swarming motility protein SwrA

33 WP_023857076.1 Acyl-CoA N-acyltransferase

34 WP_023856950.1 BslA (Biofilm surface layer A)

35 WP_026580354.1 Immunity protein WapI-like/YxiJ super family

36 WP_023856884.1 Six-hairpin glycosidase superfamily

37 WP_020453535.1 Prephenate dehydratase

https://doi.org/10.1371/journal.pone.0276085.t001
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of transcription at a certain genomic site. Several conserved regions such as the Pribnow

box and -35 box were determined along with the SD sequence (S2 Fig). These conserved

sequences are vital for the binding of RNA polymerase and ribosome [57, 58]. The SD-

sequence initiates the translation process and has a huge influence on protein expression levels

[59, 60]. It was found that all 37 proteins have SD sequences. The findings from the promoter

analysis of the 37 proteins indicate that further experimental validation is worth pursuing. We

did not find any study regarding the experimental transcription data sets of the organism.

Furthermore, the DEG database was utilized to predict fundamental genes (S7 Table). This

database adapts both in vitro and in vivo experiments to detect fundamental genes which are

essential for cellular machinery [38]. Though different challenging lab experiments were used

to detect the essential genes such as RNA interference, gene knockouts, and transposon muta-

genesis [61], this DEG database offers an alternative for predicting essential genes. In our anal-

ysis, we did not find any essential genes among the targeted 37 HPs.

Physicochemical characterization and subcellular localization

To evaluate the physicochemical characteristics and their cellular distribution the sequences of

the screened 37 HPs were used (S8 Table). Most of the studied proteins had molecular weight

(MW) values over 10000 Da. Proteins with a lower MW (< 10000 Da) need special modifica-

tions for analysis in the SDS-PAGE system [62]. Hence, the first few HPs with lower MW

require special attention to perform further lab experiments. The pH value of a protein at

which it carries no net electrical charge is known as isoelectric point pI. For our selected HPs,

it ranged from 4.4 to 10.48 and 11 proteins have acidic nature (pI < 7), whereas others were

found to be basic. Along with the MW, the pI also helps in the laboratory analysis of proteins

[63].

The aliphatic index (AI) is used to evaluate the protein thermostability and our HPs were in

the range of 55.19–145.1. The range of temperatures at which a protein will be stable increases

with increasing AI values [64]. Protein WP_003180123.1, associated with growth and survival

after salt stress showed the highest value of 145.1. The instability index (II) was applied to get

the idea regarding in vitro protein stability. 15 HPs were considered to be unstable, and 22

HPs were stable. The cut-off values>40 and<40 were used to categorize stable and unstable

proteins, respectively [65]. The GRAVY indicates the interactive nature of a protein with water

[66]. Among these 37 HPs, only four (WP_158700706.1; WP_003180123.1; WP_023857538.1

and WP_020453535.1) showed positive values which indicates that these might be

hydrophobic.

Moreover, the cellular localization of proteins is vital for their biological functions in a spe-

cific environment [67–69]. Among the 37 HPs, most of the proteins were determined as cyto-

plasmic. Several cytoplasmic proteins are in the regulation of several functional processes

including biosynthesis, regulatory activities, and transport which may help environmental bac-

teria to compete with the neighboring organisms in the same ecological niche [70]. Addition-

ally, we only found 4 proteins to have signal peptides that are critically related to protein

secretion [71].

Protein-protein interactions

To determine the interaction partners of the HPs, we performed a protein-protein interaction

analysis [72]. In this study, protein WP_095290960.1, RNA polymerase sporulation sigma fac-

tor SigK showed a very strong interaction (score 0.930) with the sporulation stage IV protein

A (SpoIVA) which is involved in sporulation [73]. WP_006638778.1 interacted with EndoA–a

putative RNase (score 0.988) with functional endoribonuclease activity [74]. WP_009328837.1
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was found to interact with the YacB (score 0.987) which catalyzes the phosphorylation of pan-

tothenate [75]. The protein WP_023855527.1 showed interaction with the Raca protein which

is required for the formation of axial filaments [76]. All these findings along with the other pre-

dictions (S9 Table and S2 Fig) strengthened our functional predictions.

Tertiary structure predictions

X-ray crystallography has become a robust approach to determining novel protein structures

[77]. The functional annotation methods in combination with the protein structure analysis

are evident to lead to the interpretation of uncharacterized proteins [78, 79]. In this study, we

employed the protein structure homology-modeling server SWISS-MODEL to have the ter-

tiary structures and used the UCSF Chimera software to visualize the models. Next, we com-

pared the structures of known proteins with the modeled structures to check the degree of

similarity (Fig 3A & 3B).

We successfully build the three-dimensional models for 9 HPs with identity above 30% and

the details were listed in the S10 Table. We also checked the quality of the models with the

Ramachandran plots and scores (S10 Table and S3 Fig). Structural comparisons were per-

formed based on the Needleman-Wunsch algorithm [80]. We observed different percentages

of structural similarities between the models and known proteins (S10 Table). The alignment

results from the structural comparisons were shown in S4 Fig. The structural data collected for

several HPs has validated the precise functional annotation. For instance, WP_105981199.1

and WP_023856950.1 showed high identities and resolutions which were functionally anno-

tated as Alpha/Beta hydrolase and BslA (Biofilm surface layer A) respectively. The structures

built for these two proteins were determined by X-ray crystallography from two Bacillus sp.

and those two template proteins have similar functions as we predicted in this study. In this

way, proteins with similar sequences usually exhibit similar functions. Proteins dissimilar to

current PDB entries may correspond to novel functions. In addition, several final protein

models were visualized using the Chimera 1.16 and compared to the predicted models sug-

gested by AlphaFold (S5 Fig). We used the AlphaFold since Alpha-Fold has been demonstrated

to be more accurate than Nuclear magnetic resonance spectroscopy (NMR) [81]. The findings

showed similarities among the predicted models by Swiss-Model vs AlphaFold.

ROC performance measurement

The availability of genome sequences is increasing which is also allowing more scope to do the

computational protein analysis. As these analysis methods are solely dependent on autonomic

computing, the accuracy of these methods should be high. The ROC analysis is a broadly

applied technique for evaluating the tool’s accuracy. The employed pipeline had an average

accuracy of 98 percent (Table 2), and the ROC analysis’s findings supported the strong

dependability of the tools used.

Table 2. ROC results of the tools used in this study.

Software Accuracy (%) Sensitivity (%) Specificity (%) ROC area

Pfam 99.0 98.0 100 0.99

InterPro 100.0 100.0 100.0 1

CATH 100.0 100.0 100.0 1

SUPERFAMILY 96.0 94.7 100.0 0.99

SCANPROSITE 97.0 93.8 100.0 0.99

SMART 98.0 97.0 100.0 1

CDD-BLAST 96.0 65.9 100.0 0.985

https://doi.org/10.1371/journal.pone.0276085.t002
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Proteins with biotechnological potentials

We found several proteins that can be used for biotechnological applications.

WP_158700706.1 was predicted as a Metallo-dependent hydrolase (the amidohydrolase

superfamily). This group includes numerous hydrolytic enzymes with a varied spectrum of

substrates and reactions. The microbial obtained amidohydrolase possesses extensive biotech-

nological applications that include cosmetics, food, and therapeutics, especially as an antican-

cer/anti-proliferative agent [82, 83]. This hydrolase group also contains amylases and α-

amylase derived from B. licheniformis, B. amyloliquefaciens and B. stearothermophilus which

has been commercially used in fermentation, paper, and textiles industries [84, 85].

Protein WP_020453622.1 is a Bacteriophage A118-like, holin that involves the lysis of bac-

terial membrane [86]. These holins can be utilized for controlled pore formation and can pro-

mote the release of the desired products. Microorganisms are used and improved for the

industrial manufacture of a wide range of substances, including pharmaceuticals and biofuels.

These target compounds can be sequestered inside the cell causing toxic effects to the chassis

without an efficient active efflux system. In this case, Holin-mediated cell lysis offers an effi-

cient releasing mechanism [87]. One of the rate-limiting steps is releasing products from the

microbial host for biotechnology-based chemical production on an industrial scale. Holins can

provide an affordable and effective method of product release in many instances where the use

of mechanical disruption or solvent extraction increases the cost of production [88]. Liu and

Curtiss applied phage holin/endolysin cassettes containing a nickel-inducible signal transduc-

tion system into the chromosome of Synechocystis sp. strain PCC6803 which is being devel-

oped for biofuel production [89]. They successfully eliminated the chemical or mechanical

removal step by just adding nickel to the culture medium resulting in cell lysis. Another group

utilized a light-inducible lytic mechanism in the same cyanobacterium for similar purposes

[90].

The protein WP_009328837.1 was predicted as Flavin-containing phosphopantothenoyl-

cysteine decarboxylase which is involved in coenzyme A (CoA) biosynthesis [91]. CoA is a cru-

cial cofactor involved in many metabolic processes including secondary metabolites

production. These distinctive features make CoA an economically significant chemical com-

pound in the cosmetic, and therapeutic industries [92]. Hence, the catalytic abilities of this

enzyme make it of immense biotechnological significance.

The protein WP_020452371.1 is in the RmlC-like cupin superfamily and RmlC is a dTDP-

sugar isomerase enzyme (dTDP—deoxythymidine diphosphates). This enzyme is involved in

the L-rhamnose synthesis, commonly found in bacteria and plants [93, 94]. This sugar getting

more interest due to its wide range of substrate specificity and its excellent potential for various

unique sugars syntheses such as D-allose, D-cellulose, L-mannose, L rhamnulose, L-spotose,

and L-talose [95]. Besides, rhamnose is combined with lipids to form rhamnolipids that can be

used as potential biosurfactants [94].

The protein WP_105981199.1 contains an α/β-hydrolase fold that includes proteases,

lipases, peroxidases, esterase, epoxide hydrolases, dehalogenases, and many others [96]. There-

fore, this protein can be studied further to uncover its actual functionality as several hydrolases

are being used in industrial processes [56]. Additionally, an α/β-hydrolase fold protein was

also studied which is involved in the cyclic oligopeptide antibiotic ‘thiostrepton’ biosynthesis

[97].

The protein WP_023857076.1 carries a structural domain found in numerous acyl-CoA

acyltransferases including the N-acetyl transferase (NAT) [98]. Several NATs from Bacillus sp.

Have shown the capability to metabolize xenobiotic compounds that are highly toxic contami-

nants of groundwater and soils [99]. This study showed that a class of industrial contaminants
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or by-products of agrochemicals named “Arylamines” can be converted into less toxic states

by Bacillus NATs. Hence, our WP_023857076.1 protein should be studied further to find out

its bioremediation potential. Additionally, a synthetic N-acetyltransferase (MAT—methionine

sulfone N-acetyltransferase) from a bacterial source was utilized to successfully design herbi-

cide “Phosphinothricin” -resistant rice and Arabidopsis [100].

Different glycosyltransferases transfer sugar parts from donor molecules to acceptors to

form glycosidic bonds and involve in disaccharides, oligosaccharides, and polysaccharides bio-

synthesis. Several microbial glycosyltransferases are frequently applied in food processes such

as in the shelf-life improvement of bakeries, production of glucose, fructose, or dextrins, lac-

tose hydrolysis, food pectins modification, and many others [101, 102]. In our study, protein

WP_023856884.1 has the catalytic domain of the Six-hairpin glycosidase superfamily. To use

this class of enzymes in different industrial conditions several enzymes functional in alkaline/

acidic pH and/or at high temperatures have been discovered from various microorganisms

[103–105]. In several studies, bacterial glycosidases were characterized to improve human

health and the treatment of different diseases [106, 107].

The WP_020453535.1 was anticipated to be a prephenate dehydratase that is involved in

the biosynthesis of phenylalanine and phenylalanine is an essential amino acid for animals.

Recently, the interest in microbial production of L- phenylalanine has increased [108]. It has

been widely used in food and feeds as a taste and aroma enhancer, in pharmaceuticals as the

drug’s building block, as well as used in cosmetics as an ingredient [109, 110].

Proteins with adaptational functions to extreme environments

In this study, we identified 12 HPs that may have a significant role for B. paralicheniformis in

the adaptation to extreme environments.

Sporulation aids bacterial survival in extreme environments by limiting active growth

[111]. We found protein WP_095290960.1 as RNA polymerase sporulation sigma factor SigK

which is involved in the gene expression controlling during sporulation [112]. Two HPs

(WP_224146215.1 and WP_023855527.1) were identified to be the aspartate phosphatase,

which regulates the phosphorelay for sporulation initiation by dephosphorylating Spo0F-P

[113]. In this way, these HPs can be predicted to play crucial roles in adaption, and survival in

extreme environments.

The protein WP_006638778.1 is a metal-responsive transcriptional regulator which can be

engaged in the homeostasis and metabolism of any specific metal. These metal-responsive

transcriptional regulators allow mechanisms for selective metal ion accumulation and utiliza-

tion as well as tightly regulate intracellular metal trafficking mechanisms [114]. Metals can be

limited in the environment or can be in high amounts that cause toxicity in extreme environ-

ments. Hence, a metal-responsive transcriptional regulator protein might be essential to the

microorganism for the evolution and adaptation in that specific extreme environment [115].

Likewise, WP_026579751.1 is related to the transcription regulator DksA. It is an RNA poly-

merase-binding transcription factor and is involved in different stress conditions, including

nitrosative stress, nutritional shortage, and other environmental stresses [116, 117]. So, this

HP can be taken part in extreme environmental adaptations.

We detected a sigma-M inhibitor protein (WP_003180123.1). The sigma-M (YhdM) gene

is essential for growth and survival in salt stress conditions [118]. Our predicted Sigma-M

inhibitor WP_003180123.1 might play role in salt stress adaptation similarly to a previous

study [119].

Protein WP_105980957.1 contains a Nudix hydrolase domain that hydrolyzes intracellular

nucleotides, regulates their levels, and removes potentially toxic derivatives [120]. Some
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superfamily members can degrade mutagenic, oxidized, and damaged nucleotides that may

occur due to exposure to extreme environments [121].

As mentioned earlier, WP_023857076.1 carries a structural domain found in numerous

acyl-CoA acyltransferases including- GCN5-related N-acetyltransferases (GNAT) and Glycine

N-acyltransferase [122]. The proteins from these classes were studied and found to be involved

in the adaptation to diverse environmental stress conditions including high salinity, pH toler-

ance, nutrient stress, etc. [123, 124].

Small Heat shock proteins are abundant molecular chaperones that counteract the aggrega-

tion of protein upon stress-induced unfolding [125]. We identified protein WP_020451915.1

as a heat shock protein (Hsp20). Several studies showed that Hsp20 responds to different envi-

ronmental stresses including severe heat, hydrogen peroxide, desiccation, and osmotic shocks

[126–129]. Therefore, WP_020451915.1 might have adaptational functions to extreme

environments.

The HesB-like domain is observed in several microbial nitrogen fixation proteins that are

associated with FeS-cluster assembly [130]. Previous studies found that proteins having a

HesB-like domain are involved in different metal resistance and thermal stress conditions

[131, 132]. HesB-like domain-containing protein WP_020452052.1 might also play role in sur-

vival in the extreme environment specifically in metal-rich or metal deficient conditions.

The WP_003185659.1 protein was identified as a swarming motility protein SwrA which is

a transcription factor. It drives the fla/che operon, which encodes the components of the fla-

gella, and causes swarming motility [133]. Another study showed that SwrA is involved in bac-

terial motility [134] and bacterial motility might be significant in extreme temperatures [135].

The WP_023856950.1 protein was predicted as a biofilm surface layer A (BslA) protein

which acts as a hydrophobin and participates in biofilm assembly [136]. Certain microorgan-

isms have great resistance to environmental challenges because of biofilm development [137–

139]. Therefore, this protein might be crucial for adaptation to harsh environments.

Conclusions

Protein macromolecules are involved in numerous biological processes. Hence, functional

annotation of proteins is crucial. An in silico approach was employed in this study to attribute

functional annotation of HPs from the B. paralicheniformis strain Bac84 genome. We predicted

the functions of 37 HPs from this bacterium. The determination of physicochemical parameters

and subcellular localization were effective to understand the specific properties of the annotated

proteins. The PPI and tertiary structures of these proteins were also explored which assisted to

obtain more understanding of the annotated proteins. Several protein structures were also vali-

dated by the AlphaFold protein modeling. We identified several proteins with biotechnological

potentials as well as proteins having the possibility to be involved in extreme environmental

adaptation of the B. paralicheniformis strain Bac84. Moreover, the findings of this strategy sug-

gested that it can be utilized to perform the predictive annotations of unknown proteins. The

combination of such in-silico analysis with the proper lab experiments was successful to obtain

functional annotations of HPs from different organisms [140–142]. Furthermore, the results

also open prospects for further research of this bacterium for biotechnological applications.
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