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Abstract

Asthma, an inflammatory disorder of the airways, is one of the most common chronic ill-
nesses worldwide and is associated with significant morbidity. There is growing recognition
of an association between asthma and mood disorders including post-traumatic stress dis-
order (PTSD) and major depressive disorder (MDD). Although there are several hypotheses
regarding the relationship between asthma and mental health, there is little understanding
of underlying mechanisms and causality. In the current study we utilized publicly available
datasets of human blood mRNA collected from patients with severe and moderate asthma,
MDD, and PTSD. We performed differential expression (DE) analysis and Gene Set Enrich-
ment Analysis (GSEA) on diseased subjects against the healthy subjects from their respec-
tive datasets, compared the results between diseases, and validated DE genes and gene
sets with 4 more independent datasets. Our analysis revealed that commonalities in blood
transcriptomic changes were only found between the severe form of asthma and mood dis-
orders. Gene expression commonly regulated in PTSD and severe asthma, included
ORMDL3 a gene known to be associated with asthma risk and STX8, which is involved in
TrkA signaling. We also identified several pathways commonly regulated to both MDD and
severe asthma. This study reveals gene and pathway regulation that potentially drives the
comorbidity between severe asthma, PTSD, and MDD and may serve as foci for future
research aimed at gaining a better understanding of both the relationship between asthma
and PTSD, and the pathophysiology of the individual disorders.

Introduction

Asthma is a chronic inflammatory disease of the airways associated with recurrent episodes of
wheezing, shortness of breath, chest tightness, and coughing. Generally, asthma is character-
ized by reversible constriction of the airways in response to allergen, but it can also be triggered
by viral infection, physical activity, stress, or a negative mood [1]. Asthma affects 300 million
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people worldwide and the World Health Organization has estimated that it is responsible for
the loss of 15 million disability-adjusted life years (DALYs) annually [2, 3]. Asthma is also the
most common chronic disease in children [4].

Epidemiological studies have shown significant association between asthma and mental
health disorders, including anxiety, depression, panic attacks, and posttraumatic stress disor-
der (PTSD) [5-10].

MDD, more commonly referred to as ‘depression’ is a mental health disorder characterized
by a low self-esteem, mood, and enjoyment of activities [11].

Studies have demonstrated consistent comorbidity between asthma and depression [7] and
Youth with asthma are close to twice as likely to have anxiety and depressive disorders as those
without asthma [8]. The co-occurrence of an anxiety or depressive disorder is associated with
poor symptom control, impaired quality of life and increased health care utilization. While
many studies have focused on psychosocial factors linking asthma and depression there is evi-
dence that there may be shared pathophysiological factors between the diseases. For example,
in a large-scale study in adults twins the association between depression and asthma remained
significant after controlling for genetic and environmental factors [12]. However, the potential
mechanisms and causality relating depression and asthma remain unclear [13-15].

PTSD is a mental health disorder that usually follows exposure to a traumatic event. The
characteristic symptoms of PTSD include intrusive memories and nightmares, negative mood
impaired cognition, avoidance behaviors, and changes to arousal behaviors such as increased
irritability [16].

Clinical evidence supports a strong link between inflammatory conditions and PTSD with a
particularly strong association between asthma and the prevalence and severity of PTSD [17,
18]. A twin study of Vietnam war veterans found that those with the top quartile of PTSD
scores were 2-fold more likely to have asthma than those in the lower quartile [6]. This associa-
tion was shown not to be predicted by familial or genetic factors, smoking, depression, or
demographic factors [6]. Wisnivesky et al., (2021) [5] found that 19% of world trade center res-
cue and recovery workers with asthma also had PTSD, 10 times the prevalence in the general
population. PTSD is also one of the greatest risk factors for decreased quality-of-life related to
asthma [17, 18] and these poorer asthma outcomes do not appear to be due to differences in
key asthma self-management behaviors [18]. Conversely, individuals with asthma prior to
PTSD have been demonstrated to develop more aggravated asthma symptoms after the devel-
opment of PTSD, while non-asthmatic subjects who develop PTSD have increased risk of
adult onset asthma, suggesting a bidirectional relationship between these disorders [17].

An attempt by Jiang et al., (2014) [7] to identify a mechanism behind the comorbidity of
asthma and MDD suggested immune factors may underlie both disorders. The investigation
of 38 depression studies found that monocyte-derived, and other inflammatory cytokines (IL-
1, IL-4, IL-6, and TNF) were significantly overexpressed in individuals with depression, while
T cell derived cytokines (IL-10, and INF-y) were uncorrelated with depression. Data compar-
ing CD4+ T-cell expression in asthmatics with and without depression has also shown that 156
of 1448 total identified genes were differentially expressed in the depressed asthmatics group
[19], suggesting that in circulating T-cells there is a unique transcriptomic profile for comor-
bid asthma and depression.

Genome-wide association studies (GWAS) have identified some shared genetic traits
between those with asthma and MDD [20, 21]. In a cross-trait meta-analysis, Zhu et al., (2019)
[20] identified 10 genomic loci shared between asthma and MDD and mendelian randomiza-
tion identified a significant causal effect of MDD on asthma. The cross-trait meta-analysis per-
formed by Cao et al., (2021) [21] identified 18 loci jointly associated between MDD and atopic
diseases (asthma, eczema, and hay fever). Through Mendelian randomization analysis the
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investigators found that MDD confers a stronger causal effect on those atopic diseases than
they confer on MDD.

Similarly, in a meta-analysis by Nievergelt et al., (2019) [22], a pairwise genetic correlation
demonstrated a high association between PTSD and asthma. Chronic stress, maternal stress,
and more fundamentally, oxidative stress are also associated with severe asthma and increased
asthma exacerbations [23-26]. Yan et al., 2021 [24] identified 12 genes methylated in individu-
als with exposure to chronic stress and violence, that were then shown to be associated with
atopic childhood asthma. Although these studies were not looking at PTSD specifically, it is
likely that genes associated with violence and chronic stress exposure would have close ties to
those associated with PTSD.

Here, we downloaded 5 publicly available datasets from GEO, each of which compare one
of PTSD, MDD, or asthma (a very large dataset which we split randomly into 2 datasets) blood
transcription to that of healthy subjects. One dataset of each disease was used to explore genes
and gene sets commonly shared between diseased subjects, and the other of each disease data-
set was used to validate the genes and sets identified. Prior to conducting the investigation, we
were interested in transcription specifically, as it facilitates functional change in the body and
therefore we decided to compare the data to the hallmark, and C2 gene sets, which characterize
canonical and curated changes in the body. Additionally, we hypothesized that as Jiang et al.,
(2014) [7] found immune factors involved in comorbidity, immune transcriptional changes
commonly differentiated in whole blood would delineate the source of comorbidity. Immune
factors have also been found partially responsible for cross talk between gut and brain in psy-
cho-active probiotic treated mice exhibiting mood disorder-like symptoms [27-29]. For these
reasons, we also compared these datasets to the C7 - immune signature gene set.

With a deeper understanding of the established comorbidity between mental health disor-
ders and asthma, may come tangible knowledge on how to combat the root cause of these dis-
eases and an expectation for how treatment of one disorder might affect another. Therefore,
the goal of this study was to expand on genome-wide association studies by using publicly
available data to characterize transcriptomic similarities between these disorders through anal-
ysis of genes and gene sets commonly differentially expressed between those suffering from
the diseases and healthy subjects.

Results
Exploration of commonly differentially expressed genes

The 3 exploration datasets first underwent hierarchical clustering analysis, but there were no
distinct clusters formed pertaining to diseased vs healthy subjects or along the lines of any
other collected meta data. Principal component analysis was then used to check that no known
variables could account for major differences that may arise during DE and GSEA analysis
(Fig 1). There was no apparent grouping along PC1 or PC2 for any of the datasets, including
for diseased vs healthy subjects (Fig 1). For the PTSD exploration cohort, 40.7% of the variance
was accounted for by PC1, and 10.6% by PC2; for MDD, 16.8% of the variance was accounted
for by PC1, and 6.2% by PC2; and for asthma, 22.7% of the variance was explained by PCl,
and 10.0% by PC2.

Differential expression analysis of each disease to control subjects from their respective
datasets reveals significant differences in both genes being up- and downregulated in all dis-
eases (Fig 2). The analysis identified 8,321, 208, 1,736, and 373 genes significantly upregulated
(adjusted p-value < 0.05; FC > 1.5) in PTSD, MDD, severe asthma, and moderate asthma
respectively, as compared to the corresponding controls. 7,062, 294, 2,735, and 901 genes were
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Fig 1. Principal component analysis. (PCA) showing PC1 and PC2 in each of the 3 disease exploration datasets.

https://doi.org/10.1371/journal.pone.0275864.9001

found to be significantly downregulated (adjusted p-value < 0.05; FC < -1.5) in the same com-
parisons respectively.
Significantly regulated (adjusted P-value < 0.05, [FC| >1.5) genes were compared between
the exploration datasets for each disease. Genes found commonly to be regulated in the same
direction in patients relatively to the healthy controls for multiple diseases were plotted in

(Fig 3).

Exploration of commonly regulated gene sets

To detect the biological effect of more nuanced changes in all disease groups, Gene Set Enrich-

ment Analysis (GSEA) was performed. GSEA compared expression of selected lists of genes
(here termed “gene sets”) between diseased and healthy subjects in each dataset (Fig 4). Gene
sets from the Hallmark, C2, and C7 collections were compared against. Hallmark gene sets are
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Fig 2. mRNA from the blood of subjects with a disease (PTSD, MDD, severe asthma, and moderate asthma) were compared to blood mRNA from non-
diseased subjects for each exploration cohort dataset. The vertical threshold denotes genes or transcripts that are statistically significant (adjusted p-

value < 0.05) while the horizontal threshold denotes genes or transcripts with an absolute fold change greater than 1.5. Genes or transcripts that meet none of
these criteria are black, one of these criteria are grey, and both are red. The red genes, found to be significant, are also shown next to their symbols.

https://doi.org/10.1371/journal.pone.0275864.9002

sets of genes that comprise 50 of the best studied signaling pathways in the body. The C2 gene
sets, or curated gene sets, in addition to the well understood and mapped ‘KEGG pathways’,
include other sets of genes found previously to be differentially expressed in literature. C7 gene
sets are immune signature gene sets found previously to be differentially expressed in
literature.

No Hallmark gene sets were enriched in the same direction between all 4 datasets. 3 C2
gene sets were found to be upregulated in all 4 groups: REN_ALVEOLAR_RHABDOMYO-
SARCOMA_DN, JISON_SICKLE_CELL_DISEASE_UP, TAKEDA_TARGETS_OF_NU-
P98_HOXA9_FUSION_8D_DN, and REACTOME_NEUTROPHIL_DEGRANULATION.
No C2 gene sets were commonly downregulated in all 4 groups. 65 C7 gene sets were com-
monly upregulated in all 4 groups, but nothing was commonly downregulated in all 4 of those

groups.
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Fig 3. The number of genes differentially expressed from healthy subjects in the same direction between different diseases. The numbers within the
different overlaps of the venn diagram are the number of genes significantly (adjusted P-value < 0.05) differentially expressed in both exploration datasets. For
example, in the left ‘up’ panel, there are 22 genes in the PTSD and MDD exploration sets that are similarly significantly overexpressed, and in the right ‘down’
panel, there are 2 genes commonly underexpressed in all disease exploration datasets compared to their respective healthy controls.

https:/doi.org/10.1371/journal.pone.0275864.9003

Validation of differentially expressed genes in independent transcriptomic
datasets

To challenge these findings, the ‘validation’ datasets for each of: MDD, PTSD, severe asthma,
and moderate asthma underwent DE analysis with limma. No genes were found to be signifi-
cantly regulated (adjusted P-value < 0.05) in the same directions for all 4 sets as no individual
genes were significantly differentially expressed in the MDD validation dataset. 2 genes were
validated as upregulated in PTSD and severe asthma: STX8 (Adjusted p-values in PTSD explo-
ration, PTSD validation, severe asthma exploration, severe asthma validation were: 1.6E-3,
1.8E-2, 2.6E-3, 3.7E-4) and ARHGAP24 (1.4E-2, 1.6E-2, 3.9E-2, 3.2E-2). Commonly downre-
gulated to PTSD and severe asthma were ORMDL3 (2.2E-2, 1.9E-3, 2.7E-3, 3.9E-3), PTP4A3
(2.6E-3, 2.3E-2, 4.5E-3, 5.2E-3), SHISA4 (1.1E-2, 4.4E-2, 9.8E-3, 6.2E-3), and TPPP3 (2.2E-2,
1.1E-2, 3.1E-3, 2.7E-2). No differentially expressed genes were validated between PTSD and
moderate asthma in either direction, however. 582 genes were validated as significantly down-
regulated between moderate and severe asthma while no upregulated genes could be validated.

Validation of regulated pathways in independent transcriptomic datasets

The same datasets used to validate differentially expressed genes were used to validate gene
sets and pathways identified as being commonly regulated in either direction in the explora-
tion datasets. Interestingly, despite no genes being significantly differentially expressed in
MDD patients vs healthy controls in the validation dataset, there were pathways identified as
being significantly altered in severe asthma patients as compared to their corresponding con-
trols (Table 1).

As may be expected, many pathways were found to be commonly modified between moder-
ate and severe asthma when comparing against the C2 and C7 gene sets and although they are
not the focus of this study on comorbidity, can be found listed in supplementary information
(S1 Table in S1 File). Barcode plots showing a more detailed cross-section of gene expression
from the sets in Table 1 can be found in supplementary information (S1-S6 Figs in S1 File).

Finally, we pooled all genes from each significantly differentially expressed set common to
MDD and severe asthma (Table 1) and performed a STRING cluster analysis for proteins to
determine if any other functional networks emerged. Two networks were examined, grouping
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identify the gene sets being compared to and in which direction (left = upregulated, right = downregulated).

https://doi.org/10.1371/journal.pone.0275864.9004

genes enriched in both MDD and severe asthma compared to healthy subjects, as well as genes
enriched in healthy subjects compared to MDD and severe asthma (Fig 5). Among many other
associations, STRING analysis found that proteins encoded by the disease-enriched genes of
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Table 1. Directionally validated pathway comparisons in the Hallmark, C2, and C7 collections.

Direction | Comparison

Up

Down

Down

MDD and
Severe Asthma
Cc7

MDD and
Severe Asthma
Cc7

MDD and
Severe Asthma
(07]

Enriched Gene Set

GSE4748_CYANOBACTERIUM_LPSLIKE_VS_LPS_AND_CYANOBACTERIUM_LPSLIKE_STIM_DC_3H_DN

GSE34205_HEALTHY_VS_RSV_INF_INFANT_PBMC_DN

GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_UP

GSE34205_HEALTHY_VS_FLU_INF_INFANT_PBMC_UP

GSE22886_NEUTROPHIL_VS_MONOCYTE_DN

JISON_SICKLE_CELL_DISEASE_DN

Adjusted P-Values

MDD1 - 1.58e-11,
MDD2 - 1.30e-2, S.
Asthmal - 5.49¢-14,
S.Asthma2 - 3.42e-
12

MDD1 - 7.69%¢-12,
MDD2 - 1.16e-2, S.
Asthmal - 1.79e-10,
S.Asthma2 - 6.29¢-
10

MDD1 - 1.30e-10,
MDD2 - 2.61e-3, S.
Asthmal - 4.41e-7,
S.Asthma?2 - 2.27¢-9

MDD1 - 4.69¢-3,
MDD2 - 2.26e-2, S.
Asthmal - 4.47e-3,
S.Asthma?2 - 9.99e-6

MDD1 - 3.37e-2,
MDD2 - 7.46e-8, S.
Asthmal - 3.74e-2,
S.Asthma?2 - 3.40e-3

MDD1 - 1.37e-8,
MDD2 - 4.42¢-2, S.
Asthmal - 4.44e-3,
S.Asthma2 - 9.13e-5

Directionally validated pathway comparisons in the Hallmark, C2, and C7 collections, following GSEA excluding comparison between severe and moderate asthma.

https://doi.org/10.1371/journal.pone.0275864.t001

the “GSE4748_CYANOBACTERIUM_LPSLIKE_VS_LPS_AND_CYANOBACTERIUM_LP-
SLIKE_STIM_DC_3H_DN,” and “GSE34205_HEALTHY_VS_RSV_INF_IN-
FANT_PBMC_DN?” gene sets have been previously identified in literature in various roles -
including modulation of immune function, cancer involvement, and more (Fig 5A). The com-
plete list of functional annotations can be found in S1 and S2 Data.

Likewise, proteins encoded by the healthy subject-enriched genes of the “GSE22886_
NAIVE_BCELL_VS_NEUTROPHIL_UP,” “GSE34205_HEALTHY_VS_FLU_INF_INFANT _
PBMC_UP,” “GSE22886_NEUTROPHIL_VS_MONOCYTE_DN,” and “JISON_SICKLE_
CELL_DISEASE_DN?” gene sets have been shown involved in several functional enrichments
including several facets of ribosome regulation, and MHC class II activity. The complete list of
functional annotations can be found in S1 and S2 Data.

Discussion

While it is widely accepted that psychosocial factors affect asthma pathobiology in children
and adults, there is little understanding of potential common biological pathways underlying
comorbidity between asthma and mental health disorders. Previous reports based on GWAS
studies were focusing on determination of shared genetic traits between Asthma, MDD and
PTSD or on circulating levels of specific inflammatory cytokines to explore potential shared
pathophysiology of these disorders. In an attempt to provide further insight into the comor-
bidity of these conditions and to identify target pathways for further investigation, we utilized
publicly available data to assess similarities between asthma, MDD and PTSD at the transcrip-
tomic level.
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Fig 5. STRING analysis for proteins coded by genes. Found A) enriched in the peripheral whole blood of both MDD and severe asthma patients compared to
healthy subjects, and B), enriched in healthy subjects compared to both MDD and severe asthma patients. Only high confidence interactions between proteins
are shown, and proteins that are not involved in a high confidence interaction do not appear.

https://doi.org/10.1371/journal.pone.0275864.9005

As expected, asthma, MDD and PTSD were associated with many differentially expressed
genes and gene sets, and, in comparing exploration cohorts, a number of these genes and gene
sets were significantly regulated in the same direction in all diseases. Upon validation, com-
monalities in transcriptomic changes were restricted to comparisons between severe asthma
and MDD or PTSD.

In keeping with literature indicating a close association with regards to comorbidity and
reciprocal enhancement of symptom severity [17, 18], our cross-disease comparisons found
the greatest transcriptomic level similarities between severe asthma and PTSD.

With regard to commonly differentially expressed genes we found ORMDL3 to be downre-
gulated in the blood of both PTSD and severe asthma subjects. ORMDL3 codes for a protein
called “ORMDL sphingolipid biosynthesis regulator 3” which resides in the endoplasmic retic-
ulum and is a regulator of sphingolipid synthesis [30]. ORMDL3 requires precise expression to
function correctly - under normal conditions it inhibits the rate limiting enzyme of sphingoli-
pid biosynthesis, serine palmitoyl transferase (SPT) [30]. Downstream of uninhibited SPT
activity, ceramide - the central sphingolipid metabolite - is produced and transported to the
golgi [31]. Therefore, a knockdown of ORMDL3 can result in an abundance of ceramide [32].
When slightly overexpressed, ORMDL3 leads to a dearth of ceramide, however, when highly
overexpressed, ORMDL3 increases ceramide biosynthesis through the alternate, recycling/sal-
vage pathway [33, 34].
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Numerous GWAS have identified ORMDLS3 as a potential susceptibility gene for asthma
and polymorphisms controlling ORMDLS3 expression have been associated with both asthma
occurrence and exacerbation [34-41].

However, the mechanistic contribution of ORMDL3 to the pathogenesis of asthma remains
unclear and experimental evidence suggests the relationship between ORMDL3 and asthma is
complex. Studies in animal models of allergic airway inflammation have indicated that overex-
pression of ORMDL3 leads to increased ceramide levels and the accompanying ER stress leads
to characteristic features of asthma including increased mucus production, an exacerbated
inflammatory response, and airway hyperresponsiveness. Correspondingly, downregulation of
ORMDL3 expression, and decreased ceramide levels, were demonstrated to significantly ame-
liorate asthmatic symptoms in a mouse model [33, 42-46]. Furthermore, the expression of
ORMDL3 in eosinophils seems to play a role in recruitment, attachment and activation of
eosinophils in asthma [47]. However, seemingly conflicting evidence suggests that decreased
expression of ORMDL3 can also promote asthma symptoms. Selective knockdown of
ORMDL3 in lung epithelial cells leads to airway hyperresponsiveness [48], while downregula-
tion of ORMDL3 in mast cells, cells key to asthma pathogenesis, enhances antigen mediated
expression of proinflammatory cytokines and production of prostaglandin D2 and promotes
mast cell driven inflammation in vivo [49].

While, to our knowledge there have been no studies associating ORMDL3 and PTSD, cer-
amide is a precursor for complex sphingolipids that are highly abundant in neural cellular
membranes and are regulators of brain homeostasis [50]. Ceramide has also been shown to
promote stress-induced depression-like behavior in mice, and intervention with drugs that
reduce hippocampal ceramide (amitriptyline and fluoxetine) rescued those behaviours [51,
52].

Upregulated in the blood of severe asthma and PTSD subjects were mRNA encoding Syn-
taxin 8 (STX8), and Rho GTPase Activating Protein 24 (ARHGAP24). STX8 is a t-SNARE pro-
tein (target soluble N-ethylmaleimide-sensitive factor attachment protein receptor) involved
in diverse vesicle docking and membrane fusion events. STX8 has been demonstrated to regu-
late the function of receptors and ion channels, including TrkA and CFTR. The TrkA receptor
is transported from the golgi to the plasma membrane by STXS, a process which with nerve
growth factor (NGF) stimulation promotes downstream TrkA signaling [53]. Interestingly,
higher levels of TrkA expression have been identified in patients with allergic asthma [54], and
although its role in asthma has not been fully elucidated, there are several proposed mecha-
nisms by which neurotrophin signaling exacerbates asthma [55]. Some evidence suggests neu-
rotrophin signaling may modulate airway hyperactivity and bronchoconstrictor release,
enhancement of airway contractility, as well as airway remodeling [55-57]. TrkA has also been
previously implicated in PTSD, as NGF signaling via TrkA alleviated stress induced PTSD-like
symptoms in mice [58]. In contrast to enhancing TrkA signaling, STX8 also interacts with
CFTR to inhibit function and trafficking to the cell surface [59]. CFTR is largely studied in
relation to cystic fibrosis, however, impaired function of this ion channel has been associated
with more severe or difficult to treat asthma [60-62]. While to our knowledge there has been
no suggested relationship between CFTR and PTSD, the ion channel is expressed throughout
the central nervous system [63].

ARHGAP24 converts the Rac-type GTPase into its inactive GDP-bound state which, down-
stream of Rho, suppresses actin remodelling [64]. Increased activation of RhoA/Rho-kinase is
associated with airway hyper-responsiveness and smooth muscle contraction in asthma [65].
Cerebral RhoA activation is known to enhance fear memory which may have implications for
PTSD [66]. So, in both asthma and PTSD, increased Rho activity is associated with increased
pathology. It is curious then, that we find an inhibitor of its downstream activity differentially
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overexpressed in the blood of the diseased subjects. The reason for this would have to be eluci-
dated by further research.

Other genes commonly downregulated in severe asthma and PTSD were Protein Tyrosine
Phosphatase 4A3 (PTP4A3), known for its role in stimulating progression from Gl1 to S phase
in mitosis [67]; Shisa Family Member 4 (SHISA4), a transmembrane scaffold/adaptor protein
[68]; and Tubulin Polymerization Promoting Protein Family Member 3 (TPPP3), a regulator
of microtubule dynamics [69]. To our knowledge, none of these proteins have previously been
associated with asthma or PTSD and their identification here may warrant further
investigation.

Neither ORMDL3, STX8, nor ARHGAP24 are discussed by Bigler et al., (2017) [70] in rela-
tion to the asthma datasets; nor are they identified in the PTSD dataset by Rusch et al., (2019)
[71]. ARHGAP24 is discussed briefly in regards to PTSD in the validation data set, (Kuan
et al., 2017) [72] as being a member of the PTSD-associated actin cytoskeleton pathway.

One of the gene sets “GSE34205_HEALTHY_VS_RSV_INF_INFANT PBMC_DN?” refers
to a list of genes found to be more highly expressed in peripheral blood mononuclear cells
(PBMC) of infants with RSV (Respiratory syncytial virus) bronchiolitis [69] when compared
to those of healthy subjects. We also found that “GSE34205_HEALTHY_VS_FLU_INF_IN-
FANT_PBMC_UP,” a list of genes with decreased in expression infants with acute influenza
compared to PBMCs of healthy subjects, was downregulated in both MDD and severe asthma
[73]. These 2 congruent pieces of evidence suggest that the immune signature to respiratory
infection in infants is similar to the immune signature of both asthma and MDD whole blood.
In human airway epithelial cells Ioannidis et al., (2012) [73] found that comparing both influ-
enza and RSV treatment to control exhibited DE reminiscent of a type I interferon immune
signature and genes downstream of IFN-a/B were expressed abundantly in infected cells. Type
I interferon signaling is known to be a contributing factor in some cases of both depression
and asthma [74-77].

Two additional gene sets we found downregulated in both MDD and severe asthma:
“GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_UP,” and “GSE22886_NEUTRO-
PHIL_VS_MONOCYTE_DN” were both compiled by Abbas et al., (2005) [78] to identify pat-
terns in immune cell-specific expression in order to identify states of activation. The gene sets
we identified as being underexpressed in MDD and severe asthma can be congruently
explained by a reduction of neutrophil specific gene expression, or by an increase in naive B-
cell and monocyte specific gene expression. The latter is perhaps more likely as neutrophils
have been demonstrated to be activated in patients with MDD and asthma [79, 80]. Further-
more, B cell homeostasis is altered in individuals with MDD and B cells play a crucial role in
regulating the hyperactivity of airways in asthma [81-84]. Likewise, there is generally increased
activity and larger numbers of monocytes in MDD and asthma compared to healthy subjects
[85-88]. This highlights the possibility of enhanced B cell and monocyte activity playing a key
role in comorbid asthma and MDD.

JISON_SICKLE_CELL_DISEASE_DN, found downregulated in the blood for both MDD
and severe asthma, are genes previously found to be downregulated in peripheral blood mono-
nuclear cells (PBMCs) in sickle-cell disease patients compared with non-diseased counterparts.
Asthma is common in children with sickle cell disease and this comorbidity is becoming
increasingly well documented [89]. In sickle cell, nitric oxide consumption mediated by
plasma hemoglobin, ischemia-reperfusion injury, and the generation of free radicals activate
an inflammatory stress response [89]. Jison et al., (2004) [90], who discovered the gene set,
found many of the genes differentially expressed within PBMCs were linked to inflammatory
stress as well. To find these same genes underexpressed in two comorbid conditions suggests
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that the inflammatory stress response itself could be a driver behind comorbidity for sickle cell
disease, MDD, and severe asthma.

The STRING analysis for proteins translated from the individual genes in the gene sets
commonly regulated between MDD and severe asthma show that the genes upregulated in
each of these diseases have several functional associations. By combining curated gene sets
enriched in both diseases we gave the string analysis a more complete picture of all the systems
that may be modified downstream of these blood transcriptional changes. In addition to basic
biological processes, cellular compartments, molecular functions, and pathways, several
smaller literature-backed gene sets were found in common. Examining the top 5 in descending
order of strength our genes enriched in MDD and severe asthma, we observed matches to bio-
markers for severe influenza infection (Adj. P-value = 2.2E-5) [91], genes associated with
arthritis (Adj. P-value = 1.5E-3) [92], respiratory distress syndrome phenotypes (Adj. P-
value = 1.2E-2) [93], lung epithelial function in sepsis (Adj. P-value = 5.6E-6) [94], and myo-
cardial infarction and neutrophil degranulation (Adj. P-value = 2.6E-4) [95]. Looking at the
top 5 for genes enriched in healthy subjects compared to MDD and severe asthma we identi-
fied many matches associated with ribosomal regulation, and to a lesser extent immune func-
tion and anemia (Adj. P-values = 3.1E-9, 2.0E-4, 2.0E-4, 1.3E-3, 6.5E-3) [96-100]. This could
suggest that there is less ribosomal regulation in MDD and severe asthma, and further suggests
that immune involvement could drive the relationship between these disorders.

Despite MDD being a major comorbidity in PTSD, and 440 immune signature gene sets
commonly upregulated between the exploration datasets, no genes or gene sets were validated
in this study when comparing MDD and PTSD. However, the neurobiology of the link
between PTSD and MDD is unclear and it is entirely feasible that similarities in gene expres-
sion between the disorders is restricted to the CNS and are undetectable in the blood.

It is notable that there were no validated genes or gene sets in common between mild/mod-
erate asthma and either of the mental health disorders. This finding is consistent with the phe-
nomenon that mental health disorders such as PTSD and MDD are correlated with more
severe disease outcomes [101]. It may be that activation of specific genes or pathways that are
involved in MDD or PTSD are also factors that contribute to the development of more severe
asthma. In this regard, there is evidence to suggest that antidepressant treatment improved
asthma symptoms in severe but not mild asthmatics with co-morbid depression.

Opverall, with six parallel DGE analyses and GSEA on whole blood gene expression, we
identified genes and gene set expression that potentially links severe asthma to both PTSD and
MDD. The gene sets commonly regulated between asthma and MDD, support previously sug-
gested links between inflammation related immune factors and the two disorders [7]. Epide-
miological evidence indicating that PTSD has a stronger association with asthma than other
chronic inflammatory diseases [102, 103] suggests that the relationship is driven by more than
common immune factors. Here we identify 6 genes (2 upregulated in disease and 4 downregu-
lated) being differentially expressed in both PTSD and asthma. Of particular note, our results
identify mechanisms involving ceramide biosynthesis and SNARE regulated signaling path-
ways as potential targets for future research aimed at understanding both the relationship
between PTSD and asthma and the pathophysiology of the individual disorders.

Methods
Obtaining and preprocessing datasets

Data were downloaded from the Gene Expression Omnibus (GEO) repository and prepro-
cessed using the methods described by the respective authors associated with each dataset
(Table 2). Specific blood RNA datasets were chosen over others on GEO due to there being
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Table 2. List of datasets used in this paper.

GSE # Platform (GPL) Source and Normalization Purpose Associated # Samples # Genes /
Species Method Publication Variants

GSE81761 | GPL570 Human whole RMA* PTSD Exploration Rusch et al., 2019 | 27 - PTSD, 39 - No PTSD 44,134
(Array) blood mRNA

GSE97356 | GPL11154 Human whole T™MM PTSD Validation Kuan et al., 2017 | 82 - PTSD, 201 - No PTSD 15,112
(RNAseq) blood mRNA

GSE98793 | GPL570 Human whole RMA MDD Exploration Leday et al., 2018 | 64 - MDD, 32 - No MDD 44,134
(Array) blood RNA

GSE19738 | GPL6848 Human whole Quantile MDD Validation Spijker et al., 33 - MDD, 34 - No MDD 12,816
(Array) blood RNA 2010

GSE69683 | GPL13158 Human whole RMA Asthma Exploration Bigler et al., 2017 | After Split: 41,791
(Array) blood RNA and Validation

Exploration: 58 - Healthy, 58 -
Moderate, 216 - Severe.

Validation: 28 - Healthy, 20 -
Moderate, 128 - Severe

List of datasets used in this paper with a description of data type, preprocessing, number of genes and gene variants remaining in the dataset following preprocessing,
and associated publications.

* Robust multichip average (RMA) normalization.

https://doi.org/10.1371/journal.pone.0275864.1002

among the few datasets on GEO that met the specific criteria of whole blood (rather than
PBMC:s, or biopsy), the specific diseases in question, and focused on mRNA (rather than total
RNA or miRNA). Any remaining appropriate datasets on GEO were on different platforms.
We decided against pooling these datasets since attempts to correct for technical variation
forces data modification that can confound and obscure the true biological variation of inter-
est, and increase the likelihood of generating erroneous results. Therefore, we preferred to
select the largest available datasets that did not require pooling for a classic exploration and
validation analysis.

Rusch et al., (2019) [71] (preprocessed and raw data available at: https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE81761) measured blood mRNA military service members,
with and without PTSD. Only samples from the first time-point collection, rather than the fol-
low up collection, were selected for analysis. Other information collected on the subjects
included sex (63 male, 3 female), age (22-49), and race. Kuan et al., (2017) [72] (preprocessed
and raw data available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97356)
measured blood mRNA in World Trade Center responders with PTSD currently, never, and
in the past. Samples collected from subjects who never had PTSD or had PTSD at the time of
the collection were selected for further analysis. No other sample information was supplied
with the dataset. Leday et al., (2018) [104] (preprocessed and raw data available at: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98793) pooled human blood mRNA data
from two depression studies: the “Janssen-Brain Resource Company “study, and the “GlaxoS-
mithKline-High-Throughput Disease-specific target Identification Program” study into sub-
jects with MDD, and without. Batch 1 and batch 2 were originally found to generate distinct
groups in principal component analysis (PCA), and were batch corrected with the ‘remove-
BatchEffect’ function in limma package (Ritchie et al., 2015 [105]) in R. This dataset contained
additional information, such as including gender (144 female, 48 male), age (31-72), and anxi-
ety status (128 no, 64 yes). Spijker et al., (2010) [106] (preprocessed and raw data available at:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19738) collected blood from sub-
jects with and without MDD prior to and following stimulation with lipopolysaccharide (LPS),
data which we excluded. Additional information in the dataset was age (21-63), gender (41
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female, 26 male), and smoking status (20 non-smoking, 18 quit smoking, 29 smoking). The
Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED)
study dataset (Bigler et al., 2017) [70] (preprocessed and raw data available at: https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69683) measured blood mRNA in subjects with
moderate (lung function tests are 60-80% of expected value), severe (lung function tests are
<60% of expected value), and no asthma. The dataset also contained information on gender of
the patients (275 female, 223 male), smoking or non-smoking (410 non-smoking, 88 smok-
ing). We randomly divided this dataset into an exploration and a validation cohort at a 2:1
ratio. Low expressed genes were filtered out prior to trimmed mean of M-values (TMM) nor-
malization of the RN Aseq dataset as it is more sensitive due to its single nucleotide resolution
[107, 108]. This was performed using the edgeR packages ‘filterByExpr’ function [109]. Data
on race was only available in the Rusch et al., (2019), and Bigler et al., (2017) datasets and both
studies had predominantly white caucasian participants (66% and 90%, respectively).

Seeing as not all datasets contained the same background information on their respective
subjects, and because the purpose of this study was to detect commonalities between comorbid
diseases that may exist robustly in a particular disease regardless of other variables, demo-
graphic information such as age, race, gender, and smoking status was not taken into
consideration.

Principal component analysis (PCA) was done in base R and visualized using ggplot2 [110].
Venn diagrams were generated using the VennDiagram R package [111].

Differential gene expression

Each dataset, including the split asthma datasets for both severe and moderate asthma, under-
went differential gene expression analysis individually, comparing their disease to the respec-
tive control group (the non-disease group) from the same study. Analysis was performed using
the limma package with multiple hypothesis correction and Benjamini-Hochberg FDR
applied. Genes were considered to be differentially expressed with an adjusted p-value < 0.05
and [FC| > 1.5.

Gene set enrichment analysis. 3 MSigDB collections of gene sets (v7.4) were downloaded
from the GSEA website (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp): Hallmark -
well-defined biological states or processes, C2 - curated gene sets from PubMed publications
and online pathway databases (including KEGG), and C7 - immunologic signature gene sets
representative of immune and cell states.

Fold change values generated by the differential expression analysis of diseased subjects vs
healthy subjects were compared to each of the 3 collections via their entrez gene IDs using the
Gage package in R [112]. Gage uses the differential expression output of all genes, not just
those with significant fold change or p-value. Barcode plots were generated using barcodeplot
() function (limma package). Volcano plots were generated using the R package ‘Enhanced-
Volcano’ [113].
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