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Abstract

Introduction

Children infected with COVID-19 are susceptible to severe manifestations. We aimed to

develop and validate a predictive model for severe/ critical pediatric COVID-19 infection uti-

lizing routinely available hospital level data to ascertain the likelihood of developing severe

manifestations.

Methods

The predictive model was based on an analysis of registry data from COVID-19 positive

patients admitted to five tertiary pediatric hospitals across Asia [Singapore, Malaysia, Indo-

nesia (two centers) and Pakistan]. Independent predictors of severe/critical COVID-19

infection were determined using multivariable logistic regression. A training cohort (n = 802,

70%) was used to develop the prediction model which was then validated in a test cohort

(n = 345, 30%). The discriminative ability and performance of this model was assessed by

calculating the Area Under the Curve (AUC) and 95% confidence interval (CI) from final

Receiver Operating Characteristics Curve (ROC).

Results

A total of 1147 patients were included in this analysis. In the multivariable model, infant age

group, presence of comorbidities, fever, vomiting, seizures and higher absolute neutrophil
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count were associated with an increased risk of developing severe/critical COVID-19 infec-

tion. The presence of coryza at presentation, higher hemoglobin and platelet count were

associated with a decreased risk of severe/critical COVID-19 infection. The AUC (95%CI)

generated for this model from the training and validation cohort were 0.96 (0.94, 0.98) and

0.92 (0.86, 0.97), respectively.

Conclusion

This predictive model using clinical history and commonly used laboratory values was valuable

in estimating the risk of developing a severe/critical COVID-19 infection in hospitalized children.

Further validation is needed to provide more insights into its utility in clinical practice.

Introduction

Since the beginning of COVID-19 pandemic in late 2019, the infection rate and overall disease

severity was reported to be low in children [1,2]. Up to January 2022, in the United States,

more than 8.5 million children have been infected with an estimated hospitalization rate of

1.7% - 4.3% and a low mortality rate of 0.02% [3]. However, reports of children developing

severe COVID-19 infection requiring hospitalization and pediatric intensive care unit (PICU)

care are increasing worldwide [4–7]. Children infected with COVID-19 are susceptible to seri-

ous manifestations such as acute respiratory distress syndrome (ARDS), shock, stroke, and

multisystem inflammatory syndrome in children (MIS-C) [5,8–11]. The reported mortality of

these severe phenotypes ranges from 3.5% - 7% [7,12].

Many countries have approved the use of COVID-19 vaccines for children above 12 years

of age [13,14] and clinical trials are ongoing to assess its safety and efficacy in adolescents and

even younger children (NCT04796896) [15]. However, until these vaccines are approved and

made readily available for younger children, they will continue to be at risk of severe infection.

Additionally, infants and children with underlying comorbid conditions have been found to

be at increased risk for developing severe manifestations of COVID-19 infection [16–18].

In Asia, children may be especially prone to develop severe COVID-19 infection and associ-

ated mortality. This susceptibility to severe disease and high mortality rate may be a reflection

of socioeconomic factors, cultural factors, hospital admission criteria, management factors

and low vaccine coverage [5]. In previous studies from Pakistan and India, children hospital-

ized with COVID-19 infection or MIS-C had a high mortality (10–20%) [19,20]. Literature

also reported various risk factors found to be associated with severe COVID-19 infection and

mortality in children; these included: age less than one year, associated comorbid conditions,

evidence of acute inflammation and presence of organ dysfunction [21–23]. An early predic-

tive model to identify patients who may progress to severe COVID-19 infection can help strat-

ify patients who may benefit from closer monitoring and admission to a higher level of care. In

this study, we aimed to develop and validate a predictive model for severe/ critical pediatric

COVID-19 infection utilizing routinely available hospital level data.

Materials and methods

Study design

We developed and validated a prediction model based on an analysis of registry data of

patients admitted to five tertiary pediatric hospitals across Asia [Singapore, Malaysia,
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Indonesia (two centers) and Pakistan]. These were centers contributing data to the Pediatric

Acute and Critical Care COVID-19 Registry of Asia (PACCOVRA), which is a registry (clini-

caltrial.gov registration NCT04395781) within the Pediatric Acute and Critical Care Medicine

Asian Network (PACCMAN). This study was approved by the respective institutional ethics

boards [Singhealth Centralized Institutional Review Board (2020–2873), Ethics Review Com-

mittee, Aga Khan University (2020-4987-11134), Institutional Review Board, Harapan Kita

Women’s and Children’s Hospital (IRB/45/11/ETIK/202), Persetujuan Komite Etik Pelaksa-

naan Penelitian Kesehatan (1173/KEP/USU/2021) and Medical Research Ethics Committee,

University Malaya Medical Centre (2020527–8682)] and informed consent was waived at all

centers.

Inclusion criteria for patient data were (1) confirmed COVID-19 infection defined by a

positive nasopharyngeal aspirate for COVID-19 nucleic acid reverse transcriptase polymerase

chain reaction (RT-PCR); or (2) confirmed MIS-C defined by the Centers for Disease Control

and Prevention (CDC) criteria [24]; and (3) admitted to participating hospitals from Novem-

ber 2019 to November 2021. Epidemiological, clinical, laboratory and outcome data were

extracted retrospectively at participating sites and anonymized data was entered into a secure

centralized database set up using Research Electronic Data Capture system (REDCAP) by the

main coordinating center in Singapore [25]. Outcome data was captured upon discharge from

the hospital. The primary outcome was severe/ critical COVID-19 infection. Severity of

COVID-19 infection was classified into four groups based on the World Health Organization

(WHO) definition (mild, moderate, severe and critical) [26]. Secondary outcomes included

hospital length of stay, final respiratory related diagnosis, respiratory support, supportive ther-

apies and organ dysfunction. Organ dysfunction was defined by the International Pediatric

Sepsis Consensus Conference criteria [27]. The management of patients with COVID-19

infection at each participating site was at the discretion of the managing team and no standard-

ised protocol was utilised. The criteria for admission to intermediate care and intensive care

was also at the discretion of the managing team.

Statistical analysis

Primary outcome, COVID-19 infection severity, was categorized as binary data with categories

mild/ moderate or severe/ critical infection. All variables were summarized based on COVID-

19 infection severity. Categorical and continuous variables were presented as counts (percent-

ages) and median (interquartile range (IQR)), respectively. Chi-Square test and the Mann-

Whitney U tests were used to compare categorical and continuous variables, respectively, with

respect to COVID-19 infection severity.

The eligible sample (n = 1147) was randomly split into a training (n = 802, 70%) and a vali-

dation cohort (n = 345, 30%). Data was randomly split to avoid selection bias for any of the

variables in training and validation cohort. The prediction risk model was created using the

training cohort. Univariate and multivariable logistic regression model were used to find inde-

pendent predictors of severe/critical COVID-19 infection. Generalized linear mixed model

(GLIMMIX) approach for binary data with site as random effects was used for regression anal-

ysis. Covariates considered for inclusion in the model were identified a priori without knowl-

edge of the outcome data based on clinical judgement and potential confounders identified in

the univariate logistic regression. Variables with p value < 0.2 in the univariate logistic regres-

sion model were chosen for multivariable model. Backward, forward and stepwise variable

selection were used to determine final predictors of severe/critical COVID-19 infection. The

adjusted β coefficient with standard error (SE) and corresponding odds ratio (OR) with 95%

confidence intervals (CI) were reported for each predictor. The model constant and β
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coefficient for each predictor were used to generate the predicted probability equation. The

prediction model was assessed by the calibration plot.

The discriminative ability and performance of the model was assessed by calculating the

Area Under the Curve (AUC) from final Receiver Operating Characteristics Curve (ROC).

Laboratory tests results were incorporated in order to assist clinicians in identifying patients

who may develop severe/critical COVID-19 infections. The logistic regression model yields a

score based on linear combination of the selected variables. These scores were also reported

for full and reduced set of variables. This score can be converted to an estimated probability of

severe/critical COVID-19 infection using the relationship: estimated probability = escore/ (1+-

escore), where e is the natural exponential. Because laboratory tests (e.g., C-reactive protein,

pro-calcitonin) were not mandatory for each center, we expected missing data in these values.

For patients who had no admission laboratory data, the first available laboratory data within

that admission were used. In our sensitivity analysis, we applied the final multivariable model

in two randomly selected sites (KKH and UMMC and again with AKUH and MTMH), and a

separate analysis excluding MIS-C patients from both training and validation data to check

robustness of the model.

All tests were two sided and statistical significance was set at p value <0.05 unless otherwise

stated. Analysis was conducted in R (R Core Team, 2020) and SAS version 9.4 software (SAS

Institute; Cary, North Carolina, USA).

Results

Study population

A total of 1147 patients met inclusion criteria for this analysis. The epidemic curve of the pan-

demic in children from the participating sites is shown in Fig 1. The median (IQR) age was 6

(2, 11) years (Table 1). 982/1147 (85.6%) and 165/1147 (14.4%) patients were in the mild/

moderate and severe/ critical categories, respectively (S1 Table). The most common respira-

tory diagnosis was upper respiratory tract infection 98/1147 (8.5%) (Tables 2 and S2). Pneu-

monia and ARDS occurred in 78/1147 (6.8%) and 24/1147 (2.1%) patients respectively, which

accounted for the majority of the severe/critical group (S2 Table). Oxygen supplementation,

non-invasive ventilation and invasive ventilation was required in 84/1147 (9.5%), 40/1147

(3.5%) and 25/1147 (2.8%) patients, respectively. Ninety-eight of 165 (59.4%) patients in the

severe/critical group received systemic corticosteroids, whereas, only 29/165 (17.6%) received

intravenous immunoglobulin (IVIG). Empirical use of antibiotics was common especially in

the severe/ critical group [151/165 (91.5%)]. Cardiovascular dysfunction occurred in 79/1147

(6.9%) of patients and 58/1147 (5.1%) required vasoactive agents–of these, 14/79 (17.7%) had

cardiovascular comorbidities. Respiratory dysfunction occurred in 94/1147 (8.2%)–of these, 9/

94 (9.6%) had respiratory comorbidities. MIS-C was diagnosed in 36/1147 (4.3%) of patients.

One hundred fifteen of 1147 (12.2%) patients required ICU admission and 33/1147 (2.9%)

died–of these, 76/118 (64.4%) had underlying comorbidities.

Risk score model development and validation

The training and validation dataset were indifferent in all demographic, clinical, laboratory

and outcome data, except for a lower lymphocyte count and presenting symptom of diarrhea

(Tables 1 and 2). In the multivariable model, infant age group, presence of comorbidities, sei-

zures, vomiting, fever and higher absolute neutrophil count were associated with an increased

risk of developing severe/critical COVID-19 infection. The presence of coryza at presentation,

hemoglobin and platelet count was associated with a decreased risk severe/critical COVID-19
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infection. The severe/critical COVID-19 infection score based on final multivariable model

was as follows (Table 3):

Score = 4.29 + 1.87 (comorbidity) + 2.18 (infant) + 3.34 (seizure) + 1.80 (vomiting) + 1.19

(fever)– 1.77 (coryza) + 0.07 (absolute neutrophil count)– 0.57 (hemoglobin)– 0.01 (platelet

count)

NB: The β coefficient for each variable indicates the magnitude of effect, whereas the +/-

sign indicates the direction of effect. Absolute neutrophil count and platelet count are

expressed in 109/L and haemoglobin in g/dL.

The AUC (95%CI) generated for this model from the training and validation dataset was

0.96 (0.94, 0.98) and 0.92 (0.86, 0.97), respectively (Fig 2). The calibration plot for the training

and validation dataset is found in the supplementary material (S1 Fig). This predictive model

had a sensitivity and specificity of 53.2% (43.4 to 62.8) and 94.1% (92.1 to 95.7), respectively

(S3 Table). In the sensitivity analysis, we applied the predictive model to two random sites to

ensure its predictive ability was maintained across sites. The AUCs were satisfactory [0.99

(0.99 to 1.00) and 0.79 (0.71 to 0.86)] (S2 Fig). Calibration plots are provided in the supple-

mentary material (S3 Fig). Excluding the 36 MIS-C patients from analysis also yielded satisfac-

tory training and validation AUCs 0.95 (95%CI 0.92, 0.98) and 0.92 (0.87, 0.96), respectively

(S4 Fig).

Discussion

Utilizing early hospital admission data from a multicenter network, we generated a simple

clinical predictive model to identify children who may progress to develop severe/critical

Fig 1. Stacked bar chart of COVID-19 cases from respective sites over the duration of the pandemic. KKH–KK Women’s and

Children’s Hospital. UMMC–University Malaya Medical Center. HKCWH–Harapan Kita Women’s and Children’s Hospital. AKUH–

Aga Khan University Hospital. MTMH–Murni Teguh Memorial Hospital.

https://doi.org/10.1371/journal.pone.0275761.g001
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Table 1. Demographic, clinical and laboratory data for the patients in the training and validation dataset.

Variables Total

(n = 1147)

Training dataset (n = 802) Validation dataset (n = 345) P value

Demographic

Age, years 6 (2 to 11) 6 (2 to 11) 6 (2 to 11) 0.397

Infant 117 (10.2) 84 (10.5) 33 (9.6) 0.641

Male gender 622 (54.2) 418 (52.1) 204 (59.1) 0.029

Weight, kg 19.4 (10.1 to 35.6) 19.4 (10 to 35) 20 (10.6 to 36.6) 0.458

Appropriate development 844 (92.2) 601 (93.2) 243 (90.0) 0.101

Comorbidity 0.218

Cardiovascular 21 (1.8) 18 (2.2) 3 (0.9)

Respiratory 42 (3.7) 31 (3.9) 11 (3.2)

Gastrointestinal 12 (1.0) 9 (1.1) 3 (0.9)

Hematology oncology 37 (3.2) 28 (3.5) 9 (2.6)

Neurology 37 (3.2) 23 (2.9) 14 (4.1)

Others 44 (3.8) 32 (4.0) 12 (3.5)

Clinical

Fever 527 (45.9) 371 (46.3) 156 (45.2) 0.745

Cough 266 (23.2) 182 (22.7) 84 (24.3) 0.543

Coryza 183 (16.0) 130 (16.2) 53 (15.4) 0.719

Sore throat 109 (9.5) 79 (9.9) 30 (8.7) 0.541

Cyanosis 28 (2.4) 20 (2.5) 8 (2.3) 0.860

Wheezing 29 (2.5) 19 (2.4) 10 (2.9) 0.600

Crepitations 3 (0.3) 2 (0.2) 1 (0.3) 0.902

Other respiratory symptoms 73 (6.4) 44 (5.5) 29 (8.4) 0.063

Headache 38 (3.3) 23 (2.9) 15 (4.3) 0.199

Myalgia 14 (1.2) 12 (1.5) 2 (0.6) 0.195

Irritable 13 (1.1) 8 (1.0) 5 (1.4) 0.507

Feed refusal 17 (1.5) 12 (1.5) 5 (1.4) 0.952

Diarrhea 85 (7.4) 50 (6.2) 35 (10.1) 0.020

Vomiting 97 (8.5) 69 (8.6) 28 (8.1) 0.786

Impaired consciousness 23 (2.0) 17 (2.1) 6 (1.7) 0.673

Seizures 26 (2.3) 20 (2.5) 6 (1.7) 0.431

Others non-respiratory symptoms 143 (12.5) 94 (11.7) 49 (14.2) 0.243

Laboratory

Hemoglobin, g/dL 12.8 (11.9 to 13.7) 12.8 (11.9 to 13.7) 12.8 (11.5 to 13.7) 0.394

WBC, x10/L 7.2 (5.2 to 9.4) 7.3 (5.2 to 9.8) 7.0 (5.4 to 8.7) 0.217

Lymphocyte, x10(9)/L 3.0 (2.0 to 4.6) 3.1 (2.2 to 4.9) 2.9 (1.8 to 4) 0.004

Neutrophil, x10(9)/L 2.9 (1.9 to 4.5) 2.8 (1.8 to 4.5) 3.1 (2.0 to 4.5) 0.298

Platelets, x10(9)/L 294 (230 to 361) 296 (233 to 369) 284.5 (218 to 348) 0.109

APTT, seconds� 32.3 (26.8 to 38.5) 32.2 (27 to 36.8) 32.4 (24.9 to 42.2) 0.912

PT, seconds� 13.3 (11.9 to 14.7) 13.3 (11.9 to 14.7) 12.7 (11.7 to 14.8) 0.928

INR� 1.1 (1 to 1.3) 1.13 (1 to 1.3) 1.1 (1.07 to 1.2) 0.944

D-dimer, FEU� 2.3 (0.5 to 4.5) 2.2 (0.5 to 4.3) 2.5 (0.76 to 4.53) 0.636

Total bilirubin, g/dL� 5 (4 to 7) 5 (4 to 7) 5 (4 to 8) 0.428

AST, U/L� 30 (24 to 38) 29.5 (24 to 38) 30 (23 to 37) 0.534

ALT, U/L� 18 (13 to 25) 17 (13 to 24) 18 (13 to 27) 0.586

Sodium, mmol/L 139 (136 to 142) 140 (136 to 142) 139 (136.5 to 142) 0.446

Potassium, mmol/L 4 (3.5 to 4.4) 4 (3.5 to 4.4) 3.9 (3.5 to 4.4) 0.324

(Continued)
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COVID-19 disease. Having satisfactory AUC and calibration plots, this model identified the

infant age group, presence of comorbidities, fever, vomiting, seizures and a higher absolute

neutrophil count to be associated with developing severe/critical COVID-19 disease. The pres-

ence of coryza, high hemoglobin and platelet count was, in contrast, protective.

Initial studies have shown that children with COVID-19 infection may not demonstrate the

same degree of disease severity compared to adults [11]. However, subsequent studies seem to

suggest that there is a bimodal severity peak: The first peak occurs in young infants

(<3months) and the second in adulthood. [23,28–30]. Similar to these prior studies conducted

in United States and United Kingdom, our predictive model identified infants as a group with

increased risk of developing severe COVID-19 disease. The exact reason for this susceptibility

remains unclear, though maternal vaccination and breastfeeding practices most likely play a

role. The maternal IgG humoral response to vaccination (or infection) has been demonstrated

to transfer across the placenta into the fetus, conferring protection to the newborn [31].

Hence, cohorts with a low vaccination rate in expectant mothers (or prior to vaccine approval

in pregnancy) may result in inferior protection to the newborn. Although COVID-19 antibod-

ies (SARS-CoV-2 spike RBD-specific IgG1, IgA and IgM antibodies) were detected in breast

milk, these were absent in the infants’ serum [32]. On the other hand, other studies, such as a

multicenter multivariable Bayesian modeling study conducted in Spain reported that age

<2years to be protective against critical COVID-19 infection [33]. The infant age group was

therefore included as a discriminatory factor associated with severe COVID-19 infection in

our model.

The presence of complex comorbidities increases the risk of hospitalization and severe

COVID-19 disease [21,22]. In particular, in a large cross-sectional pediatric study (n = 43,465),

cardiovascular diseases, type I diabetes, obesity and prematurity were shown to be associated

with severe COVID-19 infection [34]. This is not surprising given that majority of mortalities

due to COVID-19 infection occur in patients with underlying metabolic and cardiovascular

disease [35]. The predisposition of adult patients with metabolic and cardiovascular comorbid-

ities to COVID-19 disease is recognized to be associated with their pro-inflammatory and

hypercoagulopathic tendencies [36]. Obesity also results in altered respiratory mechanics pre-

disposing to severe respiratory infections [37]. It is plausible that these mechanisms also apply

to the pediatric patient. Though our study identified the presence of comorbidities to be asso-

ciated with 6-fold increased odds of severe COVID-19 disease (Table 3), we were not able to

Table 1. (Continued)

Variables Total

(n = 1147)

Training dataset (n = 802) Validation dataset (n = 345) P value

Creatinine, umol/L� 35.4 (26.5 to 53.0) 35.3 (21 to 50) 40 (26.5 to 56) 0.050

C-reactive protein, mg/L� 9.6 (3.1 to 62.1) 8.9 (3.0 to 57.0) 18.5 (4.8 to 74.2) 0.674

Viral co-infection 14 (1.2) 11 (1.4) 3 (0.9) 0.151

Bacterial co-infection 37 (3.2) 24 (3.0) 13 (3.8) 0.337

�High proportion of missing data and were not considered for inclusion in the predictive model

Chi-Square test and the Mann-Whitney U tests were used to compare categorical [counts (%)] and continuous [median (interquartile range)] variables, respectively.

WBC–white blood cell.

APTT–activated partial thromboplastin time.

PT–prothrombin time.

INR- international normalized ratio.

AST–aspartate aminotransferase.

ALT–alanine aminotransferase.

https://doi.org/10.1371/journal.pone.0275761.t001
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Table 2. Diagnosis, complications, therapies and outcomes for patients in the training and validation dataset.

Variables Total

(n = 1147)

Training dataset (n = 802) Validation dataset (n = 345) P value

Respiratory diagnosis

URTI 98 (8.5) 64 (8.0) 34 (9.9) 0.298

Bronchiolitis/bronchitis 5 (0.4) 4 (0.5) 1 (0.3) 0.622

Pneumothorax 7 (0.6) 4 (0.5) 3 (0.9) 0.460

Pleural effusion 22 (1.9) 13 (1.6) 9 (2.6) 0.263

Pneumonitis 5 (0.4) 3 (0.4) 2 (0.6) 0.628

Pneumonia 78 (6.8) 54 (6.7) 24 (7.0) 0.890

ARDS 24 (2.1) 14 (1.7) 10 (2.9) 0.211

Respiratory support

Oxygen 84 (9.5) 55 (8.9) 29 (10.8) 0.391

HFNC 16 (1.8) 11 (1.8) 5 (1.9) 0.943

CPAP 11 (1.2) 9 (1.5) 2 (0.7) 0.374

BiPAP 13 (1.5) 11 (1.8) 2 (0.7) 0.235

Mechanical ventilation 25 (2.8) 13 (2.1) 12 (4.5) 0.053

Other therapies

IVIG 29 (2.5) 17 (2.1) 12 (3.5) 0.179

Systemic corticosteroids 122 (10.6) 80 (10.0) 42 (12.2) 0.268

Antibiotics 242 (21.1) 160 (20.0) 82 (23.8) 0.146

Anti-viral 76 (6.6) 53 (6.6) 23 (6.7) 0.971

Anti-fungal 17 (1.5) 9 (1.1) 8 (2.3) 0.124

Vasoactive drugs 58 (5.1) 38 (4.7) 20 (5.8) 0.453

Organ dysfunction

Cardiovascular 79 (6.9) 50 (6.2) 29 (8.4) 0.183

Respiratory 94 (8.2) 64 (8.0) 30 (8.7) 0.685

Neurological 26 (2.3) 16 (2.0) 10 (2.9) 0.346

Hepatic 8 (0.7) 4 (0.5) 4 (1.2) 0.218

Renal 19 (1.7) 11 (1.4) 8 (2.3) 0.249

Hematological 30 (2.6) 17 (2.1) 13 (3.8) 0.109

Others

MIS-C 36 (4.3) 22 (3.8) 14 (5.5) 0.265

Highest level of inpatient care 0.314

General ward 792 (84.2) 557 (85.2) 235 (81.9)

Intermediate care 31 (3.3) 19 (2.9) 12 (4.2)

Intensive care 115 (12.2) 75 (11.5) 40 (13.9)

Hospital duration, days 7 (3 to 12) 7 (3 to 12) 6 (2 to 12) 0.147

Mortality 33 (2.9) 19 (2.4) 14 (4.1) 0.214

Chi-Square test and the Mann-Whitney U tests were used to compare categorical [counts (%)] and continuous [median (interquartile range)] variables, respectively.

URTI–upper respiratory tract infection.

HFNC–high flow nasal cannula.

CPAP–continuous positive airway pressure.

BiPAP–bilevel positive airway pressure.

IVIG–intravenous immunoglobulins.

MIS-C–multisystemic inflammatory syndrome in children.

https://doi.org/10.1371/journal.pone.0275761.t002
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replicate with granularity, the contribution of each type of comorbidity due our smaller sample

size. Nevertheless, the frequency of cardiovascular, respiratory, gastrointestinal, hematology-

oncology and neurology comorbidities were higher in the severe group (S1 Table). The types

of hematology-oncology comorbidity and treatments received at the time of study which

could have affected outcomes were also not captured.

Symptoms associated with severe COVID-19 infection identified in our study included

fever, vomiting and the presence of seizures. Considering that respiratory related COVID-19

disease was more frequent in children [33], it is interesting to note that the presence of non-

Table 3. Final multivariable model predicting severe/ critical COVID-19.

Variables Adjusted β (SE) Adjusted OR (95%CI) P value

Intercept 4.29 (1.48)

Comorbidities (ref: none) 1.87 (0.46) 6.46 (2.62–15.94) <0.001

Haemoglobin, g/dL -0.57 (0.11) 0.57 (0.45–0.70) <0.001

Infant (ref: not infant) 2.18 (0.58) 8.84 (2.82–27.72) <0.001

Neutrophil, x10(9)/L 0.07 (0.02) 1.08 (1.04–1.11) <0.001

Seizures (ref: none) 3.34 (1.54) 28.27 (1.39–575.10) 0.030

Vomiting (ref: none) 1.8 (0.54) 6.02 (2.10–17.27) <0.001

Platelet, x10(9)/L -0.01 (0.002) 0.99 (0.99–1.00) <0.001

Coryza (ref: none) -1.77 (0.84) 0.17 (0.03–0.89) 0.036

Fever (ref: none) 1.19 (0.52) 3.28 (1.19–9.02) 0.021

SE–standard error.

OR–odds ratio.

CI–confidence interval.

https://doi.org/10.1371/journal.pone.0275761.t003

Fig 2. Receiver operating characteristic curve of the training (left) and validation (right) dataset. ROC–Receiver operating characteristic. CI–Confidence

interval.

https://doi.org/10.1371/journal.pone.0275761.g002
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respiratory symptoms was associated with severe disease. These symptoms potentially indicate

systemic involvement. Viral particles have been demonstrated in bronchial and alveolar epi-

thelium, myocardium, intestinal, hepatic, splenic, renal, as well as, brain tissue [38]. Reactive

microglia, neuronal ischemia and congestion are among the pathologic findings reported in

children with COVID-19 infection who presented with acute encephalopathy and seizures

[38]. Our study identifies seizures as a symptom associated with the highest β coefficient for

severe disease. It is possible this symptom reflects direct central nervous system (CNS) infec-

tion, is part of a systemic syndrome (e.g., shock, cytokine storm, electrolyte imbalance) or part

of underlying epilepsy [39]. In contrast, symptoms indicating a mild upper respiratory tract

infection (coryza) was evidently protective against severe COVID-19 disease.

Our predictive model included routinely available laboratory variables. Neutrophilia was

associated development of severe disease, whereas, higher hemoglobin and platelet were pro-

tective. Neutrophilia or relative lymphopenia has been shown to be a feature of both severe

respiratory disease and MIS-C [18,19,21,40]. Though less studied, low hemoglobin (anemia)

has been associated with an increased risk of respiratory failure, ICU admission, mechanical

ventilation and death [41,42]. This hemoglobin effect may be a reflection of disease severity,

underlying comorbidity, or malnutrition [42]. Studies have associated thrombocytopenia with

critical illness and death in adult COVID-19 infections [43,44]. Interestingly, a trend towards

less critical illness was also observed in adult patients with high platelet counts [>400x109/L],

though this has not been previously demonstrated in children until our study [43,45]. The

mechanism responsible for the protective effect of platelets are unclear but postulated to be

related to a protective role of platelets towards the lung parenchyma and improved viral clear-

ance [45].

Though predictive models for severe COVID-19 infection in children have been previously

proposed [21,40], these were generated from single countries. Our study utilized data from a

network of hospitals across Asia including a population of children with diverse socioeco-

nomic, cultural and biological background which may increase its generalizability. We used

routinely available demographic, clinical and laboratory data which is likely relevant in most

pediatric admissions to generate the model. However, there were several limitations in this

study. Firstly, the diagnosis of MIS-C which requires a recent laboratory confirmed SARS--

CoV-2 infection within the prior 4 weeks was challenging in regions where routine PCR or

serological evidence of previous infection was not available for patients who had mild symp-

toms/ asymptomatic primary infections. Some cases may have been missed due to this criteria.

Conversely, clinical MIS-C features (e.g. fever, gastro-intestinal symptoms, hypotension and

high inflammatory markers) may also be present in acute COVID-19 infection [24,46]. As

such, even though the immune-pathology associated with sub-acute/post-acute MIS-C is

unique from the cytokine storm of acute COVID-19 infection, the clinical presentation may

not be easy to differentiate [47]. We excluded all patients who fulfilled MIS-C criteria in our

sensitivity analysis to ensure the predictive model performed satisfactorily regardless of this

challenging diagnosis. This limitation also precluded analysis to differentiate patients with/

without COVID-19 immunity. Secondly, we were not able to account for circulating variants

of concern which were dominant at the different time periods at each of the sites. For example,

the Delta variant (B.1.617.2) of SARS-CoV-2 was dominant in Singapore by May 31st 2021,

whereas in Indonesia and Malaysia, it became dominant by July 8th and 23rd 2021, respectively

[48–50]. Moreover, availability of sequencing data in some regions was limited and may be

subject to sampling bias [51]. Due to the retrospective nature of data collection, the perceived

severity of disease may be biased and there was no standardized reporting, laboratory testing

or management protocol. As such, we could not investigate other commonly used laboratory

tests such as C-reactive protein, procalcitonin and lactate dehydrogenase in the model [52].
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Further external validation is needed to evaluate the performance of this predictive model in

the clinical setting and in other geographical regions. Lastly, we did not explore other impor-

tant outcomes including mortality (due to the small sample size, n = 33) and the cause of mor-

tality reported in this study may or may not be directly due to COVID-19 infection.

Conclusion

In summary, we created a predictive model to identify children who may develop severe/criti-

cal COVID-19 infection using routinely available hospital level data. This novel model should

be validated further in other settings and potentially useful to hospitalists in helping stratify

patients into those may benefit from closer monitoring in a higher level of care.
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