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Abstract

Background

Inconsistent conclusions in past studies on the association between poor glycaemic control

and the risk of hospitalization for heart failure (HHF) have been reported largely due to the

analysis of non-trajectory-based HbA1c values. Trajectory analysis can incorporate the

effects of HbA1c variability across time, which may better elucidate its association with

macrovascular complications. Furthermore, studies analysing the relationship between

HbA1c trajectories from diabetes diagnosis and the occurrence of HHF are scarce.

Methods

This is a prospective cohort study of the SingHealth Diabetes Registry (SDR). 17,389

patients diagnosed with type 2 diabetes mellitus (T2DM) from 2013 to 2016 with clinical rec-

ords extending to the end of 2019 were included in the latent class growth analysis to extract

longitudinal HbA1c trajectories. Association between HbA1c trajectories and risk of first

known HHF is quantified with the Cox Proportional Hazards (PH) model.

Results

5 distinct HbA1c trajectories were identified as 1. low stable (36.1%), 2. elevated stable

(40.4%), 3. high decreasing (3.5%), 4. high with a sharp decline (10.8%), and 5. moderate

decreasing (9.2%) over the study period of 7 years. Poorly controlled HbA1c trajectories

(Classes 3, 4, and 5) are associated with a higher risk of HHF. Using the diabetes diagnosis

time instead of a commonly used pre-defined study start time or time from recruitment has

an impact on HbA1c clustering results.

Conclusions

Findings suggest that tracking the evolution of HbA1c with time has its importance in assess-

ing the HHF risk of T2DM patients, and T2DM diagnosis time as a baseline is strongly
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recommended in HbA1c trajectory modelling. To the authors’ knowledge, this is the first

study to identify an association between HbA1c trajectories and HHF occurrence from diabe-

tes diagnosis time.

Introduction

The relation between heart failure and type 2 diabetes mellitus (T2DM) has been extensively

studied, with the vast majority coming to the consensus that those diagnosed with T2DM are

at elevated risk of heart failure [1, 2]. The driving force behind the pathogenesis of T2DM-

induced heart failure remains unclear, as acknowledged by recent reviews and studies, even

though several mechanisms have been postulated [3]. Furthermore, certain glucose-lowering

therapies have attributed to an increased risk of heart failure, as evidenced by clinical trials on

certain medications such as thiazolidinediones and dipeptidyl peptidase-4 (DPP-4) inhibitors,

notably the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes

Mellitus (SAVOR)-Thrombolysis in Myocardial Infarction (TIMI) 53 trial, adding another

dimension of complexity to the treatment of T2DM [4] since glycaemic control is still priori-

tised as primary treatment for T2DM patients.

In randomized trials or large-scale studies, glycated haemoglobin (HbA1c) levels are often

averaged or taken at a few discrete points over a period of follow-up. As such, improved gly-

caemic control via reduced HbA1c levels is to have little to no significance in minimizing the

risk of macrovascular complications [5]. These results have prompted questions about the

validity of the role averaged HbA1c measures have on cardiovascular events, suggesting glycae-

mic variability as a preferred measure [6]. Recognition of the lack of information from stand-

alone or averaged HbA1c values has also led to the search for innovative ways to model and

analyse glycaemic control over time for prolonged periods. However, such methods face issues

on interpretability [7]. Extracting trajectories from a cohort gives individual subjects insight

on the progression of their condition and potential generalized outcomes, ultimately providing

motivation for greater self-management based on observable trends apparent in the larger

population. The advancement towards personalized treatment is also timely, where standard-

ized approaches to treating T2DM and preventing complications are evidenced to be no longer

effective [8].

A systematic review of longitudinal studies on HbA1c trends indicated that most of pre-

existing studies used the time from recruitment instead of diabetes diagnosis time as an inde-

pendent variable and these studies focused primarily on microvascular outcomes and/or mor-

tality [9, 10]. In other studies, HbA1c values were measured once a year which neglects the

potential effects of glycaemic variability on outcomes brought about by more frequent mea-

surements [10, 11]. Other studies modelled HbA1c trajectories via a linear relation to time

with Latent Class Growth Analysis (LCGA) across a number of years after diabetes diagnosis.

Although a prevalent association to microvascular outcomes was found, it was limited to the

follow-up period [11, 12]. Hence, such a sequential approach to trajectory analysis, whereby

trajectories are extracted before drawing associations to outcomes, is inefficient and expensive

which hinders early interventions. For example, the knowledge of the HbA1c trajectory start-

ing from the point of T2DM diagnosis may prompt physicians to select treatment more tar-

geted at heart failure prevention (such as SGLT2 inhibitors) versus just taking into

consideration the latest HbA1c.

This paper aims to extract trajectories of HbA1c to identify subgroups to study the associa-

tion between the HbA1c trajectories and the risk of heart failure right from the time of diabetes
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diagnosis, not missing out on the association presented at the early diabetes stage. The sub-

groups share a degree of homogeneity regarding their T2DM progression via HbA1c trends

without being constrained to a linear trend.

Material and methods

Data source, study population and study design

The SingHealth Diabetes Registry (SDR) is a database holding patient information ranging

from socio-economic demographics to laboratory test results which have been collected from

public health institutions [13]. The registry contains electronic health record data collected

from T2DM patients who visited any SingHealth institution for treatment purposes. More spe-

cifically, the SDR recorded casemix variables and outcome variables. Casemix variables include

demographic (birth date, gender, ethnicity, etc) and lifestyle factors, diagnosis profile, treat-

ment factors and anthropometric variables while outcome variables include laboratory results,

clinical episodes, surgical procedures and vaccinations. We have obtained written consent

from SingHealth Centralised Institutional Review Board (CIRB Ref: 2019/2414) and A�STAR

Institutional Review Board (IRB Ref: 2019–079) to waive further ethical deliberation because

this application involves analysis of anonymised datasets from the SDR at a

sandbox environment in the Health Services Research Centre.

This study is a longitudinal prospective cohort study from 2013 to 2019 with a focus on sub-

jects diagnosed with T2DM from 2013 to 2016. Out of a total 20,794 subjects, each subject is

required to have at least 5 HbA1c samples across the span of at least 3 years, which yields a final

sample size of 17,389 (100%) subjects. It was necessary to define a common baseline shared

across all subjects, which provides a basis for a fair comparison instead of using the first

recorded HbA1c specimen date of each subject as a baseline. This step comes as there are sub-

jects whose year of T2DM diagnosis differs from the year when the first HbA1c specimen was

taken. If the year of the first recorded HbA1c specimen is the same as the year of T2DM diag-

nosis, the Diabetes Diagnosis Date (DDD) would be assumed to be the date of the first

recorded HbA1c specimen. For subjects with a mismatch between their year of T2DM diagno-

sis and the year of their first recorded HbA1c specimen, DDD is set as a random variable

drawn from a uniform distribution between 0 and 365 in the year of T2DM diagnosis. The

total number of subjects who require random imputation of DDD is 3,248 (19%), which is still

a sizable percentage to be removed from the analysis completely. Hence random imputation is

preferred over dropping these subjects. The event of interest for this analysis is defined as the

onset of heart failure where hospitalization was required. With an estimated DDD as a starting

point, the first HHF after DDD is identified and only HHF as a primary diagnosis on discharge

is accepted as an event (ICD-10 codes I11, I13, and I50).

Statistical methods

Latent class growth analysis (LCGA), a model-based clustering technique, is used in this study

to cluster HbA1c trajectories, which falls under the category of unsupervised learning and

belongs to a broader family of models known as longitudinal Finite Mixture Modelling (FMM)

[14]. Within this cohort of patients, it is assumed that multiple latent classes of patients sharing

a degree of similarity in their HbA1c trajectories exist in the data and it is desired to minimize

within cluster heterogeneity while simultaneously maximizing heterogeneity between clusters.

The R package “lcmm” [15] was used to model and cluster HbA1c trajectories to obtain

probabilities of class membership for each subject. A linear, quadratic, cubic, logarithmic, and

exponential relation between HbA1c and the number of weeks from baseline was modelled

and up to and including 10 latent classes were run (1 latent class implies no clustering was
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done at all) for each modelled relation. A grid search method was implemented to ensure a

global maximum was found by generating 20 random sets of initial values.

For each model specification, the optimal number of latent classes was determined by two

conditions: the Bayesian Information Criterion (BIC) [16] and the lowest proportion of sub-

jects in a class. The proportion for each class was set at a threshold of 3%, given the large sam-

ple size used in this study [17]. A 10-fold cross-validation procedure [18] was applied to

further validate model fit. The Cox PH model is subsequently used to quantify the associations

between extracted trajectories and HHF after adjusting for demographic characteristics and

known prior microvascular and macrovascular complications.

Based on the extracted HbA1c trajectories, it was discovered that a particular trajectory falls

below another with distinctly different characteristics sometime after DDD. In order to study

the significance of setting DDD as a baseline for HbA1c extraction, a baseline other than the

DDD was implemented and differences in class membership was subsequently compared.

HHF risk of subjects who were re-grouped was further quantified by the Cox PH model. The

predictive ability of latent classes on risk of HHF is demonstrated as well by splitting the cohort

and predicting the posterior probability of class assignment for subjects in a testing set (20%)

using parameter estimates from the training set (80%). The risk of HHF is subsequently pre-

dicted for the subjects in the validation set.

All analyses were carried out using R version 3.6.0.

Results

Model selection

Model selection results are summarized in Table 1. For each model, the data was fit with the

increasing number of latent classes, and it was observed that BIC continually decreases with

the increase in the number of classes. Hence, the minimum proportion of subjects clustered in

a class has to be used to determine the optimal number of classes, which is reported in Table 1.

From Table 1, with 6 latent classes across all model specifications, the minimal proportion of

subjects falls below the threshold of 3% hence 5 latent classes are the optimal number of clas-

ses. A 10-fold cross-validation further confirmed the same results.

Table 2 shows that the logarithmic model specification has the lowest BIC value amongst

the linear, quadratic, cubic, and exponential model and hence the logarithmic model with five

classes is selected as the final model. The scaled entropy [14] for the logarithmic model is

0.858, and it has been shown that BIC is adequate as a model selection criterion for entropy

values larger than 0.8 [19].

The average posterior probability of assignment (APPA) [14] is reported in Table 3 for the

final model of 5 latent classes with a logarithmic model. It is the posterior probability of sub-

jects clustered to class k given that they have been assigned to the k-th respective class on aver-

age, which is interpreted as a measure of certainty. APPA would ideally be greater than 0.7 and

values close to 1 are measures which indicate a good model fit [14].

Table 1. Lowest proportion of subjects in a latent class for complete dataset.

Classes (#) Linear Quadratic Cubic Logarithmic Exponential

2 0.141 0.142 0.144 0.152 0.141

3 0.074 0.073 0.072 0.073 0.074

4 0.036 0.038 0.052 0.07 0.036

5 0.032 0.033 0.035 0.031 0.032

6 0.025 0.029 0.029 0.025 0.024

https://doi.org/10.1371/journal.pone.0275610.t001
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HbA1c trajectories

Fig 1A visualizes the five trajectories extracted from the logarithmic model, which can be classi-

fied into subgroups of subjects with: low stable (35.5%, “Class 1”), moderate low stable (41.1%,

“Class 2”), high decreasing (3.4%, “Class 3”), high with a sharp decline (10.7%, “Class 4”) and

moderate high decreasing (9.2%, “Class 5”). All five classes experienced a drop in HbA1c levels

of varying magnitudes within the initial weeks of T2DM diagnosis. Class 1 has the lowest HbA1c

levels followed by Class 2. Class 3 has the highest HbA1c levels. Class 4 starts with a very high

HbA1c level followed by a steep decline during the first approximate 30 weeks before transiting

to a more gradual decline. The HbA1c trajectory of subjects in Class 4 declines approximately to

that of subjects in Class 2 at about 25 weeks from baseline. Class 5 has moderately high HbA1c

levels. Variability of HbA1c in Class 3,4 and 5 are distinctly larger than Class 1 and 2.

Table 4 shows the baseline characteristics of the subjects in all 5 classes. Subjects in Class 1

and 2 are older at the time of diagnosis. Subjects in Class 3 have the highest HbA1c at baseline

whereas those in Class 1 have the lowest. There is also a slight shift in the composition of ethnic

demographics in Class 3, 4 and 5, with increased proportions of Malay subjects compared to

Class 1 and 2.

Association between HbA1c trajectories and risk of HHF

Kaplan-Meier curves of the five classes are shown in Fig 1B. Subjects in classes 1 and 2 share

similar event-free survival probabilities in approximately the first 125 weeks but increasingly

diverge thereafter with Class 2 having higher survival probabilities. Class 4 is associated with

poorer survival probabilities than Class 1 and 2 throughout the follow-up period. This is

despite the HbA1c levels of subjects in Class 4 being lower than those in Class 2 after approxi-

mately 150 weeks. A log-rank test indicated differences in survival between subjects in Class 4

and Class 2 (hazard ratio of 3.48 and p<0.01).

Table 5 summarises hazard ratios and their significance after adjusting for population char-

acteristics (age at diagnosis, ethnicity, and gender), established cardiovascular disease (CVD),

prior ischemic heart disease (IHD), prior peripheral arterial disease (PAD), prior ischaemic

stroke (IS), prior haemorrhagic stroke (HS), prior transient ischaemic attack (TIA), prior atrial

fibrillation (AF), neuropathy, diabetic peripheral angiopathy (DPA) and prior heart failure

(HF). Of the 17,389 subjects, information on prior complications at baseline were missing for

2,259 subjects, but they were included in the Cox PH model nonetheless for the sake of com-

pleteness. All subsequent analyses were adjusted for population characteristics and prior com-

plications at baseline.

Table 3. Average posterior probability of the 5 latent class, logarithmic model specification.

Class 1 Class 2 Class 3 Class 4 Class 5

Average Posterior Probability 0.914 0.87 0.977 0.916 0.948

https://doi.org/10.1371/journal.pone.0275610.t003

Table 2. Summary of model fit on all subjects for 5 latent classes across all model specifications.

Model Specification BIC Value

Logarithmic 790730.5

Linear 810598.1

Quadratic 805766.7

Cubic 801714.5

Exponential 812110.7

https://doi.org/10.1371/journal.pone.0275610.t002
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Subjects in Class 3, 4 and 5 have an elevated risk profile as reflected in the hazard ratios

when compared to Class 1. Compared to the Chinese ethnicity, all other ethnicities had higher

hazard ratios though it should be noted that sample sizes for other races are relatively small. Of

all the prior complications considered at baseline, subjects with established CVD, prior AF or

prior HF were at significantly higher risk of HHF compared to those without.

Of the 5 distinct trajectories, Class 4 stands out. Class 4 has a similar baseline to Class 3, but

it rapidly declines and even falls below the stable trajectory (Class 2). Analysing the proportion

of subjects in each class with specific prior complications, which are associated with a higher

risk of HHF in Table 4 at baseline, it is observed overall that subjects in Class 4 have a higher

proportion of subjects with these pre-existing prior complications, specifically, established

CVD, prior AF, prior neuropathy, prior DPA and prior HF.

Significant role of diabetes diagnosis time

In Fig 2A, after re-grouping the patient in the original Class 4 with a new baseline defined as

50 weeks after the estimated DDD, only 38% of subjects retained their class membership after

altering the baseline. 34% of subjects were re-grouped to Class 2 and 20% were re-grouped to

Class 1. In Fig 2B, survival curves of subjects who were originally clustered to Class 2 and of

Fig 1. (A) HbA1c trajectories of the 5 classes. (B) Kaplan-Meier curves of the 5 classes.

https://doi.org/10.1371/journal.pone.0275610.g001
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subjects who were originally in Class 4 but had been re-grouped to Class 2 due to a new base-

line are different. The latter group had a higher relative risk of HHF (HR = 2.1, 95% CI 1.19–

3.7) with a p-value of 0.01, when a different baseline other than the estimated DDD was used.

Adjusting for population characteristics and prior complications, the relative risk of HHF

remains elevated (HR = 2.83, 95% CI 1.53–5.24) and p<0.01.

Predictive ability of latent classes on HHF

To test the predictive ability of the latent class linear mixed model, the entire cohort of 17,389

(100%) subjects was split into a training and a test set. The optimal model was fitted on 13,911

subjects (�80% of the cohort), and parameter estimates obtained were used to calculate the

posterior probability of class memberships of the remaining 3,478 subjects (�20% of the

cohort). Classes were assigned to each subject in the validation set based on the highest calcu-

lated posterior probability of class membership and of the 3,478 subjects, approximately 94%

retained their original class assignments. Separately thereafter, a multivariate Cox PH model

considering all covariates in Table 5 as predictors of HHF, was fitted on the training set and

predictions of risk scores were generated for the validation set. To determine the goodness-of-

fit, a commonly used measure known as the concordance statistic [20] was computed to assess

the model’s discriminative ability.

The predictive ability of latent classes on HHF is also evident across time since it is expected

that more information on trajectorial values can converge to a more precise clustering of sub-

jects with less uncertainty as time progresses. Within the validation set of 3,478 subjects, the

sample was further divided into 7 disjoint time intervals, where each interval contained 50

weeks. After dividing the sample by time intervals, the sample size was reduced from 3,478 to

Table 4. Baseline characteristics of the five classes.

Class 1 Class 2 Class 3 Class 4 Class 5

N (%) 6,172 (35.5) 7,148 (41.1) 594 (3.4) 1,869 (10.7) 1,606 (9.2)

Mean age at diagnosis, years 61.6 ± 10.9 57.8 ± 10.7 49.2 ± 11.7 55.4 ± 10.5 53.2 ± 12.1

Male, % 49.0 51.7 54.2 57.6 53.5

Ethnicity, %

Chinese 77.0 71.4 41.7 64.1 52.4

Malay 13.7 16.2 34.1 22.6 27.5

Indian 6.1 8.7 16.8 9.6 13.3

Other 3.2 3.7 7.4 3.7 6.8

Mean HbA1c at diagnosis (SD), % 6.23 (0.59) 7.16 (0.86) 10.6 (2.14) 7.69 (1.81) 8.73 (1.7)

Mean HbA1c Frequency (SD) 13.5 (4.6) 16.3 (5.5) 13.5 (7.6) 16.5 (5.5) 16.3 (7.0)

Mean observational period (SD), weeks 239.9 (65.6) 252.5 (67.3) 244.6 (75.1) 233.9 (68) 252.8 (72.2)

HHF observed, % 1.43 1.05 3.37 2.89 3.55

Established CVD, % 16.1 13.36 7.74 10.05 11.96

Prior IHD, % 9.61 8.24 5.05 5.94 8.03

Prior PAD, % 0.37 0.32 0.84 0.695 0.31

Prior Haemorrhagic Stroke, % 0.57 0.35 0 0.268 0.44

Prior Ischaemic Stroke, % 5.2 3.27 1.01 2.68 1.99

Prior TIA, % 1.34 0.89 0.67 0.43 0.81

Prior AF, % 1.38 0.99 0.51 1.07 0.934

Prior Neuropathy, % 0.34 0.364 1.35 1.02 0.498

Prior DPA, % 0.292 0.238 1.35 1.50 0.56

Prior Heart Failure, % 0.437 0.504 0.673 0.59 1.18

https://doi.org/10.1371/journal.pone.0275610.t004
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3,099 since a baseline had to be set at time 0. Trajectories of these subjects were restricted from

time 0 to 50 weeks, where posterior probabilities of class memberships were computed based

on parameter estimates from the training set. A multivariate Cox model fitted with the training

set then predicted a risk score based on all covariates in Table 5, including latent class member-

ships as predictors of HHF, and a concordance index was obtained to reflect the goodness of

fit for these subjects. This process was repeated iteratively with cumulative time intervals (for

example, 0 to 100 weeks, 0 to 150 weeks etc.) and a trend of concordance with cumulative time

intervals is plotted in Fig 3. A concordance statistic of 0.814 was achieved within the first 50

weeks, and it increased to 0.846 as more trajectorial HbA1c values are included over the entire

duration of 350 weeks, demonstrating the utility of tracking HbA1c trajectories over time.

We also obtained the concordance statistic of 0.76 for a simpler Cox PH model, which con-

siders all covariates in Table 5 without the latent class memberships. It shows that the concor-

dance statistic increases (0.846–0.76)/0.76�11% when the latent class memberships are

included.

Discussion

In this study, the association between HbA1c trajectories and HHF is reported, with results not

reflected in previous studies. Low and stable HbA1c trajectories are associated with a relatively

lower risk of HHF. High mean HbA1c levels have been reported to be associated with an

increased risk of HHF [21–24], and the association between greater glycaemic variability and

an increased risk of HHF is consistent with previous findings in [25–27]. HbA1c trajectories

Table 5. Summary of associations between HbA1c trajectories and HHF after adjusting for multiple risk factors.

Hazard Ratio (95% CI) p-value

Class 1 (Base) 1 -

Class 2 0.79 (0.6 to 1.1) 0.15

Class 3 4.1 (2.4 to 6.7) <0.01

Class 4 2.75 (1.9 to 3.9) <0.01

Class 5 2.8 (2.0 to 4.0) <0.01

Female (Base) 1 -

Male 1.2 (0.94 to 1.5) 0.14

Chinese (Base) 1 -

Indian 1.5 (0.98 to 2.2) 0.06

Malay 1.82 (1.4 to 2.4) <0.01

Other races 1.9 (1.2 to 3.2) 0.01

Age at diagnosis 1.05 (1.04 to 1.06) <0.01

Baseline prior complications versus those without (Base) 1 -

Missing Prior Complications 1.5 (0.9 to 2.2) 0.06

With Established CVD 3.4 (2.0 to 5.8) <0.01

Prior IHD 1.5 (0.9 to 2.5) 0.096

Prior PAD 1.2 (0.5 to 3.2) 0.7

Prior Stroke, Haemorrhagic 0.86 (0.2 to 3.6) 0.83

Prior Stroke, Ischaemic 0.6 (0.32 to 1.1) 0.09

Prior TIA 0.78 (0.3 to 2.0) 0.6

Prior AF 3.1 (2.04 to 4.7) <0.01

Prior Neuropathy 2.5 (1.08 to 5.7) 0.03

Prior DPA 2.8 (1.2 to 6.2) 0.01

Prior Heart Failure 5.4 (3.5 to 8.3) <0.01

https://doi.org/10.1371/journal.pone.0275610.t005
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can provide more information than single HbA1c values. The HbA1c trajectories consist of

both HbA1c value and its changes along the time elapsed since diabetes diagnosis. The changes

along the time do provide more information, which has been demonstrated through the two

points addressed in this study. One is that the HbA1c level of some patients in Class 4 after 50

weeks looks similar to the HbA1c level of patients in Class 2. However, the risk of HHF of sub-

jects who were originally clustered to Class 2 and of subjects who were originally in Class 4 but

had been re-grouped to Class 2 due to a new baseline are different. The other one is that

predictability on the risk of HHF increases as longer HbA1c trajectories over the time were

included. From these observations, analysing HbA1c trajectories and its association to HHF

has its advantages since trend patterns have been considered. Initial values of HbA1c are inade-

quate in determining the risk of potential future HHF and using averaged HbA1c values within

a specified observation time window as most cross-sectional studies do, is of minimal value in

determining the future risk of HHF.

For subjects with a mismatch between the year of diabetes diagnosis and the year of first

recorded HbA1c specimen, randomness was injected into the determination of DDD. To

check if the randomness could affect the identification of trajectories, another set of DDD with

a different random seed was generated and compared with the current results. Of the 17,389

subjects, 17,254 (99.22%) subjects retained their class membership when a different set of ran-

domly drawn DDD was used as baseline. This is further quantified by a log-rank test compar-

ing the survival curves of subjects across all 5 classes between the 2 randomly determined

baselines. The Chi-Square test statistic returned 0 (p = 1) for all classes, thus concluding that

the set of randomly seeded DDD almost yielded identical results.

Fig 2. (A) Change in composition of subjects in the original Class 4 after altering baseline. (B) Survival curves of subjects in Class 2 after clustering from different

baselines.

https://doi.org/10.1371/journal.pone.0275610.g002
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With an estimated DDD as a baseline, compared to setting the date on which the first

recorded HbA1c specimen value was taken as a baseline can significantly affect results. A differ-

ent relative risk of HHF was observed when the baseline was changed. Using the latter

approach risks losing information on trajectories of subjects which would have otherwise been

clustered into another group. This finding is consistent with a previous study that also associ-

ated with macrovascular risk with diabetes duration at T2DM diagnosis [28] which modelled a

linear effect of diabetes duration on risk estimates. The use of an estimated DDD includes dia-

betes duration in this study without having to model it as a linear effect. Separately, the trajec-

tory model was fitted to subjects who did not require random imputation of the DDD and

95.2% of these subjects retained their original class assignment. This method of random impu-

tation does not drastically alter the stability of results, and it allows for more subjects to be

included in the cohort which improves the generalizability of the model.

Class based HbA1c trajectories based on individuals’ trajectories have their merits. A class

based HbA1c trajectory represents a subpopulation where the HbA1c trajectories share a simi-

lar trend. Associating longitudinal trajectories of biomarkers, such as HbA1c to a specific out-

come provides continuous, real-time tracking of class specific subjects on future risk of

cardiovascular events. It demonstrates the possibility of predicting future events for subjects

based on their historical trajectories (not only limited to HbA1c trajectories) and other relevant

status, which may potentially prompt early intervention, representing a step towards personal-

ized treatment. The current study allows for the analysis of concurrent associations between

Fig 3. Increase in concordance statistic with more HbA1c values of subjects on cumulative time intervals.

https://doi.org/10.1371/journal.pone.0275610.g003
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HbA1c trajectories and risk of HHF. Retrospective studies of HbA1c trajectories and complica-

tions are prone to sources of error which proves difficult to track and control. These sources of

error include confounding and bias, in turn affecting any and all estimates of relative risk, mak-

ing the interpretation of results difficult for clinicians to obtain any actionable insights [29].

Class 4 (high with a sharp decline class) is unique considering that its baseline value is simi-

lar to Class 3 (high decreasing class), but it rapidly drops and coalesces with Class 2 (moderate

low stable) when time evolves. With further study, we observed that patients in Class 4 had the

highest metformin prescription rate within the first 20 weeks after diabetes was diagnosed

among all groups. In detail, the rate across Class 1 to Class 5 is 25.1%, 46.2%, 74.2%, 81.8%,

and 65.6%, respectively. It could be a possible reason to explain Class 4’s rapid drop. On the

other hand, the HHF risk of Class 4 is similar to Class 3 but different from Class 2. A possible

reason is that subjects in Class 4 have a relatively high proportion of subjects with pre-existing

complications, specifically, established CVD, prior AF, and prior HF (see Table 4), which are

associated with a significantly higher risk of HHF according to Table 5.

Limitations in this study do exist. The observational period of this study is only for 7 years.

Since more data is being collected on a rolling basis, this study sets a foundation which allows

subsequent prediction of HHF risk for subjects in this study to observe the changes to their

risk level. The criteria used to obtain the sample size for this study, while strict, also ensures

completeness of the data used for analysis. Furthermore, HHF records were not available for

certain institutions after 2017 which indicates that the true incidence of HHF risk could poten-

tially be higher.

Conclusions

In conclusion, this paper uncovered distinct latent classes of HbA1c trajectories and analysed

its relation to survival probability of a first HHF based on a group of Southeast Asian popula-

tion. Generally, a low and stable HbA1c trajectory or stricter glycaemic control with minimal

variability leads to better survival prognosis as compared to high and unstable trajectories. The

importance of defining an appropriate baseline cannot be overstated, as it has the ability to

alter class memberships of pre-existing and new subjects. Nonetheless, this clustering frame-

work has the potential to allow the identification of patients who face higher risks in develop-

ing heart failure leading to a need for hospitalization, allowing clinicians to efficiently direct

resources for a more strategic approach in managing T2DM for each subgroup in order to

reduce risks of cardiovascular comorbidities.

Acknowledgments

We would like to express appreciation to SingHealth Diabetes Registry team for providing

data for this study.

Author Contributions

Conceptualization: Haiyan Xu, Xiuju Fu.

Data curation: Clarence Tee.

Formal analysis: Clarence Tee, Di Cui.

Funding acquisition: Yong Mong Bee.

Methodology: Haiyan Xu, Di Cui.

Resources: Yong Mong Bee.

PLOS ONE Longitudinal HbA1c trajectories and the association of HbA1c and risk of heart failure for T2DM patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0275610 January 20, 2023 11 / 13

https://doi.org/10.1371/journal.pone.0275610


Software: Clarence Tee.

Supervision: Xiuju Fu.

Validation: Di Cui.

Writing – original draft: Clarence Tee, Haiyan Xu.

Writing – review & editing: Clarence Tee, Haiyan Xu, Xiuju Fu, Di Cui, Tazeen H. Jafar,

Yong Mong Bee.

References
1. Kenny HC, Abel ED. Heart Failure in Type 2 Diabetes Mellitus. Circulation Research. 2019; 124: 121–

141. https://doi.org/10.1161/CIRCRESAHA.118.311371 PMID: 30605420

2. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the

European Society of Cardiology. Eur J Heart Fail. 2018; 20: 853–872. https://doi.org/10.1002/ejhf.1170

PMID: 29520964

3. Shaw JA, Cooper ME. Contemporary Management of Heart Failure in Patients With Diabetes. Diabetes

Care. 2020; 43: 2895–2903. https://doi.org/10.2337/dc20-2173 PMID: 33218978

4. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and Cardiovas-

cular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med. 2013; 369: 1317–1326. https://

doi.org/10.1056/NEJMoa1307684 PMID: 23992601

5. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year Follow-up of Intensive Glucose

Control in Type 2 Diabetes. New England Journal of Medicine. 2008; 359: 1577–1589. https://doi.org/

10.1056/NEJMoa0806470 PMID: 18784090

6. Jang J-Y, Moon S, Cho S, Cho KH, Oh C-M. Visit-to-visit HbA1c and glucose variability and the risks of

macrovascular and microvascular events in the general population. Scientific Reports. 2019; 9: 1374.

https://doi.org/10.1038/s41598-018-37834-7 PMID: 30718626

7. Wijngaarden RPT, Overbeek JA, Heintjes EM, Schubert A, Diels J, Straatman H, et al. Relation

Between Different Measures of Glycemic Exposure and Microvascular and Macrovascular Complica-

tions in Patients with Type 2 Diabetes Mellitus: An Observational Cohort Study. Diabetes therapy:

research, treatment and education of diabetes and related disorders. 2017; 8: 1097–1109. https://doi.

org/10.1007/s13300-017-0301-4 PMID: 28921256

8. Stolar M. Glycemic control and complications in type 2 diabetes mellitus. The American journal of medi-

cine. 2010; 123: 3–11.

9. Luo M, Tan KHX, Tan CS, Lim WY, Tai E-S, Venkataraman K. Longitudinal trends in HbA1c patterns

and association with outcomes: A systematic review. Diabetes/Metabolism Research and Reviews.

2018; 34: 3015.

10. Walraven I, Mast MR, Hoekstra T, Jansen APD, van der Heijden AAWA, Rauh SP, et al. Distinct HbA1c

trajectories in a type 2 diabetes cohort. Acta Diabetol. 2015; 52: 267–275. https://doi.org/10.1007/

s00592-014-0633-8 PMID: 25287012

11. Laiteerapong N, Karter AJ, Moffet HH, Cooper JM, Gibbons RD, Liu JY, et al. Ten-year hemoglobin A1c

trajectories and outcomes in type 2 diabetes mellitus: The Diabetes & Aging Study. Journal of diabetes

and its complications. 2017; 31: 94–100.

12. Luo M, Lim WY, Tan CS, Ning Y, Chia KS, Dam RM, et al. Longitudinal trends in HbA1c and associa-

tions with comorbidity and all-cause mortality in Asian patients with type 2 diabetes: A cohort study. Dia-

betes Research and Clinical Practice. 2017; 133: 69–77. https://doi.org/10.1016/j.diabres.2017.08.013

PMID: 28898713

13. Lim DYZ, Chia SY, Kadir HA, Salim NNM, Bee YM. Establishment of the SingHealth Diabetes Regis-

try. Clinical epidemiology. 2021; 13: 215–223. https://doi.org/10.2147/CLEP.S300663 PMID:

33762850

14. Nest G, Passos VL, Candel MJJM, Breukelen GJP. An overview of mixture modelling for latent evolu-

tions in longitudinal data: Modelling approaches, fit statistics and software. Advances in Life Course

Research. 2020; 43: 100323.

15. Proust-Lima C, Philipps V, Liquet B. Estimation of Extended Mixed Models Using Latent Classes and

Latent Processes: The R Package lcmm. Journal of Statistical Software, Articles. 2017; 78: 1–56.

16. Schwarz G. Estimating the Dimension of a Model. The Annals of Statistics. 1978. pp. 461–464.

17. Weller BE, Bowen NK, Faubert SJ. Latent Class Analysis: A Guide to Best Practice. Journal of Black

Psychology. 2020; 46: 287–311. https://doi.org/10.1177/0095798420930932

PLOS ONE Longitudinal HbA1c trajectories and the association of HbA1c and risk of heart failure for T2DM patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0275610 January 20, 2023 12 / 13

https://doi.org/10.1161/CIRCRESAHA.118.311371
http://www.ncbi.nlm.nih.gov/pubmed/30605420
https://doi.org/10.1002/ejhf.1170
http://www.ncbi.nlm.nih.gov/pubmed/29520964
https://doi.org/10.2337/dc20-2173
http://www.ncbi.nlm.nih.gov/pubmed/33218978
https://doi.org/10.1056/NEJMoa1307684
https://doi.org/10.1056/NEJMoa1307684
http://www.ncbi.nlm.nih.gov/pubmed/23992601
https://doi.org/10.1056/NEJMoa0806470
https://doi.org/10.1056/NEJMoa0806470
http://www.ncbi.nlm.nih.gov/pubmed/18784090
https://doi.org/10.1038/s41598-018-37834-7
http://www.ncbi.nlm.nih.gov/pubmed/30718626
https://doi.org/10.1007/s13300-017-0301-4
https://doi.org/10.1007/s13300-017-0301-4
http://www.ncbi.nlm.nih.gov/pubmed/28921256
https://doi.org/10.1007/s00592-014-0633-8
https://doi.org/10.1007/s00592-014-0633-8
http://www.ncbi.nlm.nih.gov/pubmed/25287012
https://doi.org/10.1016/j.diabres.2017.08.013
http://www.ncbi.nlm.nih.gov/pubmed/28898713
https://doi.org/10.2147/CLEP.S300663
http://www.ncbi.nlm.nih.gov/pubmed/33762850
https://doi.org/10.1177/0095798420930932
https://doi.org/10.1371/journal.pone.0275610


18. Grimm KJ, Mazza GL, Davoudzadeh P. Model Selection in Finite Mixture Models: A k-Fold Cross-Vali-

dation Approach. Structural Equation Modeling: A Multidisciplinary Journal. 2017; 24: 246–256. https://

doi.org/10.1080/10705511.2016.1250638

19. Diallo TMO, Morin AJS, Lu H. The impact of total and partial inclusion or exclusion of active and inactive

time invariant covariates in growth mixture models. Psychol Methods. 2017; 22: 166–190. https://doi.

org/10.1037/met0000084 PMID: 27643403

20. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating

assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996; 15: 361–387.

21. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The Incidence of Congestive Heart Failure in

Type 2 Diabetes. Diabetes Care. 2004; 27: 1879–1884.

22. Lin Y-T, Huang W-L, Wu H-P, Chang M-P, Chen C-C. Association of Mean and Variability of HbA1c

with Heart Failure in Patients with Type 2 Diabetes. Journal of Clinical Medicine. 2021; 10. https://doi.

org/10.3390/jcm10071401 PMID: 33915706

23. Blecker S, Park H, Katz SD. Association of HbA1c with hospitalization and mortality among patients

with heart failure and diabetes. BMC cardiovascular disorders. 2016; 16: 99. https://doi.org/10.1186/

s12872-016-0275-6 PMID: 27206478

24. Zhao W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and heart failure risk among

diabetic patients. The Journal of clinical endocrinology and metabolism. 2014; 99: 263–267. https://doi.

org/10.1210/jc.2013-3325 PMID: 24297797

25. Sun B, Luo Z, Zhou J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and

microvascular complications. Cardiovascular Diabetology. 2021; 20: 9. https://doi.org/10.1186/s12933-

020-01200-7 PMID: 33413392

26. Johnson EL. Glycemic variability in type 2 diabetes mellitus: oxidative stress and macrovascular compli-

cations. Advances in experimental medicine and biology. 2012; 771: 139–54. https://doi.org/10.1007/

978-1-4614-5441-0_13 PMID: 23393677

27. Martinez M, Santamarina J, Pavesi A, Musso C, Umpierrez GE. Glycemic variability and cardiovascular

disease in patients with type 2 diabetes. BMJ Open Diabetes Research and Care. 2021; 9. https://doi.

org/10.1136/bmjdrc-2020-002032 PMID: 33762313

28. Zoungas S, Woodward M, Li Q, Cooper ME, Hamet P, Harrap S, et al. Impact of age, age at diagnosis

and duration of diabetes on the risk of macrovascular and microvascular complications and death in

type 2 diabetes. Diabetologia. 2014; 57: 2465–2474. https://doi.org/10.1007/s00125-014-3369-7 PMID:

25226881

29. Meinzen-Derr J, Smith L. Sources of Error: Selection Bias, Information Bias, and Confounding. In: Ham-

mond FM, Malec JF, Nick TG, Buschbacher RM, editors. Handbook for Clinical Research. New York:

Springer Publishing Company; 2014. pp. 171–173.

PLOS ONE Longitudinal HbA1c trajectories and the association of HbA1c and risk of heart failure for T2DM patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0275610 January 20, 2023 13 / 13

https://doi.org/10.1080/10705511.2016.1250638
https://doi.org/10.1080/10705511.2016.1250638
https://doi.org/10.1037/met0000084
https://doi.org/10.1037/met0000084
http://www.ncbi.nlm.nih.gov/pubmed/27643403
https://doi.org/10.3390/jcm10071401
https://doi.org/10.3390/jcm10071401
http://www.ncbi.nlm.nih.gov/pubmed/33915706
https://doi.org/10.1186/s12872-016-0275-6
https://doi.org/10.1186/s12872-016-0275-6
http://www.ncbi.nlm.nih.gov/pubmed/27206478
https://doi.org/10.1210/jc.2013-3325
https://doi.org/10.1210/jc.2013-3325
http://www.ncbi.nlm.nih.gov/pubmed/24297797
https://doi.org/10.1186/s12933-020-01200-7
https://doi.org/10.1186/s12933-020-01200-7
http://www.ncbi.nlm.nih.gov/pubmed/33413392
https://doi.org/10.1007/978-1-4614-5441-0%5F13
https://doi.org/10.1007/978-1-4614-5441-0%5F13
http://www.ncbi.nlm.nih.gov/pubmed/23393677
https://doi.org/10.1136/bmjdrc-2020-002032
https://doi.org/10.1136/bmjdrc-2020-002032
http://www.ncbi.nlm.nih.gov/pubmed/33762313
https://doi.org/10.1007/s00125-014-3369-7
http://www.ncbi.nlm.nih.gov/pubmed/25226881
https://doi.org/10.1371/journal.pone.0275610

