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Abstract

We propose a deep learning-assisted overscan decision algorithm in chest low-dose com-

puted tomography (LDCT) applicable to the lung cancer screening. The algorithm reflects

the radiologists’ subjective evaluation criteria according to the Korea institute for accredita-

tion of medical imaging (KIAMI) guidelines, where it judges whether a scan range is beyond

landmarks’ criterion. The algorithm consists of three stages: deep learning-based landmark

segmentation, rule-based logical operations, and overscan determination. A total of 210

cases from a single institution (internal data) and 50 cases from 47 institutions (external

data) were utilized for performance evaluation. Area under the receiver operating character-

istic (AUROC), accuracy, sensitivity, specificity, and Cohen’s kappa were used as evalua-

tion metrics. Fisher’s exact test was performed to present statistical significance for the

overscan detectability, and univariate logistic regression analyses were performed for vali-

dation. Furthermore, an excessive effective dose was estimated by employing the amount

of overscan and the absorbed dose to effective dose conversion factor. The algorithm pre-

sented AUROC values of 0.976 (95% confidence interval [CI]: 0.925–0.987) and 0.997

(95% CI: 0.800–0.999) for internal and external dataset, respectively. All metrics showed

average performance scores greater than 90% in each evaluation dataset. The AI-assisted

overscan decision and the radiologist’s manual evaluation showed a statistically signifi-

cance showing a p-value less than 0.001 in Fisher’s exact test. In the logistic regression

analysis, demographics (age and sex), data source, CT vendor, and slice thickness showed

no statistical significance on the algorithm (each p-value > 0.05). Furthermore, the esti-

mated excessive effective doses were 0.02 ± 0.01 mSv and 0.03 ± 0.05 mSv for each
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dataset, not a concern within slight deviations from an acceptable scan range. We hope that

our proposed overscan decision algorithm enables the retrospective scan range monitoring

in LDCT for lung cancer screening program, and follows an as low as reasonably achievable

(ALARA) principle.

Introduction

Although computed tomography (CT) technology has developed and achieved outstanding

diagnostic accuracy, there remains concerns regarding radiation-induced cancers driving an as

low as reasonably achievable (ALARA) movement [1–3]. The adoption of a low-dose CT

(LDCT) protocol and the scan range optimization are exemplary efforts to lower imaging doses

[4–10]. Particularly, LDCT has been popularly used in lung cancer screening program enabling

to detect cancers in early stage, thereby reducing mortality rates [11, 12]. While the LDCT pro-

tocol has been adopted with various aspects, to the best of our knowledge, scan range selections

still rely on a manual decision by the radiation technologist exhibiting intra- and inter-institu-

tion variations [13–19]. However, as a manual range selection is vulnerable to prevent excessive

patients’ doses, efforts should be made to provide optimal scan range and reduce inter-individ-

ual variability. Whereas excessive scan may increase unnecessary doses, the worse scenario is to

scan with insufficient coverages requiring additional examination [20–22]. Both situations

necessitate the scan range monitoring procedure either prospective or retrospective way.

According to the regulations for the operation of special medical equipment in South

Korea, CT scanners have to be inspected every three years in terms of image quality and ade-

quacy of the image acquisition method by an official CT certified agency such as the Korean

institute for accreditation of medical imaging (KIAMI) [23]. Among various inspection items,

an overscan audit is performed by an expert radiologist by visually inspecting scan ranges

whether they are excessive or deficient to the criterion landmarks, which is laborious and sub-

jective. Moreover, this manual auditing process could be performed for the only representative

single scan, and the current process could not be applied to all patients’ scan. Fully automated

decision program might help to reduce subjectivity, be applied to all CT scans, and save time,

human and cost resources. To evaluate the appropriateness of scan ranges, the objective crite-

ria to determine overscan and underscan should be reasonably established according to the

regions being scanned and clinical needs. In the audit process for lung cancer screening pro-

gram in South Korea, the vocal cords and the kidney are used as landmarks for the superior

and inferior limit, respectively.

Recent advancements in artificial intelligence (AI) technologies enabled to significantly

reduce the time and cost resources of radiologists in various radiology applications, such as

lesion classification, detection and segmentation [24–32]. Combining AI technology for organ

segmentation and experts’ decision rule-based logical operation, we developed automated

overscan decision algorithm in lung cancer screening program and demonstrated the perfor-

mances with internal and external dataset.

Materials and methods

Dataset

A total of 340 LDCT scans for lung cancer screening program was used for decision model

development and validation, of which 290 scans were from our institution, named as internal
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data, and 50 scans were collected from the 47 institutions, named as external data. While the

internal data were approved by an institutional review board (IRB) at Seoul National Univer-

sity Hospital (IRB No. 2012-187-1186), no IRB approval was obtained for external data. A sub-

mission and the approval of the external data were subject to the National CT Accreditation

Program conducted by the KIAMI. For both internal and external data, the informed consent

was waived because all CT scans were retrospectively obtained, and all personal information

tags in DICOM files were anonymized.

Among 290 internal data, 80 scans were used to develop landmark segmentation model as

they have ground truth of landmark structures manually delineated by the expert radiologist

with 21 years of experience. For details, 50 CT scans (Siemens 20 cases, GE 10 cases, Philips 20

cases) were used for model training and 10 CT scans (Siemens 4 cases, GE 2 cases, Philips 4

cases) were used for model tuning. The other 20 CT scans (Siemens 8 cases, GE 4 cases, Philips

8 cases) were used for its performance test. All internal data was reconstructed with a vendor-

specific iterative reconstruction algorithm. Demographics and scan parameters for the internal

data are described in Table 1. Note that the newly introduced tin filter technology was utilized

in Siemens Force scanner [33–35].

Table 1. Details on internal data. Demographics and scan parameters are presented according to the data usage.

Purpose Vendor Scanner name # of scans

(M/F)

Age kVp mAs aAEC Slice thickness

(mm)

Reconstruction

kernel

Note

Segmentation model

development

Siemens Definition

Flash

16 69±9 120 30 Off 1 B60f Segmentation

mask(16/0)

Force 16 70

±11

Sn100b 150 Off 1 Br59d\3

(14/2)

GE Revolution 16 64

±11

120 20±4 On 1.25 Standard

(14/2)

Philips Ingenuity 16 67

±10

120 30 Off 1 YC

(14/2)

ICT 16 63

±13

120 20 Off 1 YC

(14/2)

Decision model validation Siemens Definition

flash

30 64

±12

120 30 Off 1 I70f\3 Overscan tag

(17/13)

Force 30 61

±13

Sn100 150 Off 1 Br59d\3

(17/13)

GE Revolution 30 62

±13

120 23±3 On 1.25 LUNG

(21/9)

Discovery 30 61

±13

120 42 Off 1.25 LUNG

(15/15)

Philips Ingenuity 30 64

±14

120 30 Off 1 YC

(16/14)

IQon 30 65

±11

120 20 Off 1 YC

(18/12)

Canon Aquilion 30 71

±19

120 97

±26

On: 8 1 FC15-H

(15/15) 30 Off:

22

aAEC: Automatic exposure control,
bSn100: 100 kVp with tin filter attached.

https://doi.org/10.1371/journal.pone.0275531.t001
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The other 210 internal data and 50 external data were used to demonstrate the performance

of the overscan decision model. Fifty external data were obtained from 20 university hospitals

and 27 private hospitals, and were consisted of 26 different CT scanners with various low-dose

CT scan conditions. Due to their huge diversity, detailed information is presented in S1 Table.

All 260 data were marked with overscan tags established by the radiologist’s evaluation. Data

from internal and external sources with overscan tagging showed rates of 22.4% and 32%,

respectively.

Overscan decision criteria

We applied the KIAMI’s overscan decision criteria in lung cancer screening CT images in the

algorithm development [36]. In these criteria, the upper end of the vocal cords and the lower

end of the kidney were used as the reference landmarks to represent a superior and inferior

scan limit, respectively. However, vocal cords exhibit an irregular anatomical shapes and ambi-

guity in exact localization even by human observers (Fig 1A). Rather, we determined a thyroid

cartilage as a substitute to the vocal cord (Fig 1B) because a thyroid cartilage is easier to be seg-

mented presenting high contrast in CT images and covers the vocal cords in the longitudinal

direction [37]. A kidney was used as an inferior-direction landmark (Fig 1C).

Overscan decision algorithm

The development workflow consisted of three major stages: a deep learning-based fully auto-

mated landmark segmentation stages (thyroid cartilage or kidney), the rule-based logical oper-

ations for the landmark localization, and the final determination of the overscan direction and

its length (Fig 2).

AI based landmark segmentation. In the first stage, deep-learning-based fully automated

segmentation was implemented using a 2D-image based U-Net model [38]. Key imaging fea-

tures of the target object were automatically extracted by using concatenated encoding-decod-

ing architecture. The model was trained by using a supervised learning with manually labelled

landmarks. For efficient parameter learning with relatively small data, they were randomly

augmented by rotation (within 5 degrees) and translation (within 5 pixels) in each training

iteration. In addition, the binary cross-entropy loss for two classes (one for the background

and the other for the target object) was optimized with an iterative learning process, and an

optimal training iteration was determined by an early stopping method using the AI-model

Fig 1. Representative landmarks in overscan decision. (A) Vocal cord as an initial superior-side landmark, (B) Thyroid cartilage as a replaced superior-side landmark,

(C) Kidney as an inferior-side overscan landmark.

https://doi.org/10.1371/journal.pone.0275531.g001
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Fig 2. Schematic diagram of overscan determination process. Stage 1: AI-assisted landmark segmentation. Stage 2: Rule-based logical operations.

Stage 3: Final overscan decision and its alerts.

https://doi.org/10.1371/journal.pone.0275531.g002
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tuning dataset [39]. To maximize the performance, two separate U-Net based segmentation

models were trained for each landmark. When the lung cancer screening data were imported

to the model, landmark’s binary masks were generated and passed to the rule-based logical

operation stage.

Sub-algorithm for rule-based logical operation. In the second stage, there are two deter-

mination branches according to the landmark types. Each branch comprised of rule-based log-

ical operations, reflecting the human decision-making process. The identification information

(information A-D in Fig 2) of overscan/underscan was logically acquired for each determina-

tion branch, based on the information of predefined landmark presence and its relative posi-

tion to initial/last CT slice.

When the thyroid cartilage was localized, the existence of images prior to the thyroid car-

tilage was examined to decide the superior-side overscan. If the thyroid cartilage was not

detected, ROI patches were scanned for the ten-consecutive superior slices around the air-

way region to cope with false-negative cases of the landmark. The ROI patches had 64 × 64

pixels and the airway region was localized by thresholding CT numbers from -1000 HU to

-900 HU. The algorithm decided the overscan when the ROI patches detected the pyriform

sinus. In case of no pyriform sinus in the patch, the length of vocal cords being touched

each other or closed are examined. While the overscan decision was made when the length

exceeded the threshold (τsuperior), the algorithm further examined whether the patches con-

tained the lung parenchymal tissue if the length was less than the threshold. The decision

was made as appropriate scan range or underscan according to the existence of the lung

parenchymal tissue within the patches. The optimal τsuperior was empirically obtained by

using the internal data.

Similarly, in inferior-side determination, the inferior-side overscan was decided with rela-

tive location of the landmark organ, kidney. To cope with a real absence of the kidney or pre-

vent false-negative cases, ROI patches with a 64 × 64-pixel area were extracted around the

spine region within the ten-consecutive inferior-side CT slices. The spine region was detected

by thresholding CT numbers of 150 HU. If the range of CT scanning exceeded the location of

the last kidney, an inferior overscan was determined accordingly. An optimal inferior-side

threshold value (τinferior) for the exceeding length of the inferior-side scan was determined by

referencing a possible movement range of the kidney by intrinsic human motion (e.g., breath-

ing or peristalsis of digestive organs). As in the case of the superior underscan, the information

on lung parenchyma presence was used to filter out the inferior underscan. If the last inferior-

side ROI patch included the region of the lung parenchyma, it was concluded as the inferior

underscan. Scan range identification information (Fig 2, information A-D), as the results for

logical operation stage, were set as ‘False’ at default. When the overscan or underscan

occurred, the Boolean value was converted from ‘False’ to ‘True’. The final Boolean values in

information A-D were transmitted to the last decision stage.

Final decision and its alerts. In the last stage, the final determination of the overscan

direction and its length was made through the identification information resulted from

rule-based logical operations for both superior-side and inferior-side. When the identifica-

tion information on the overscan (Fig 2, information A or information B) and the under-

scan (Fig 2, information C or information D) were given as the Boolean-type data (e.g.

‘True’ or ‘False’), the overscan/underscan direction was determined by the logical OR gate.

After finishing each detection process, the algorithm alerted scan range status. While the

underscan detection is limited to alerting the scan status, overscan detection further

includes the overscan length calculation. The overscan length was calculated by multiplying

the slice thickness of the reconstructed CT image and the number of slices determined as

the overscan.
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Evaluation design

Segmentation model evaluation. The segmentation performance was evaluated with

dice similarity coefficient (DSC) for each patient [40]. The DSC ranged from 0 to 1 corre-

sponding to no-overlap and complete overlap, respectively. The evaluation was with AI-

model tuning and test data of the development dataset for thyroid cartilage and kidney,

respectively. Mean and standard deviation of DSC for those data were calculated.

Optimal threshold cut-off. The optimal τsuperior was heuristically determined as 9 mm

according to the receiver operating characteristic (ROC) analysis with internal data. In con-

trast, the τinferior was determined as 3 mm by considering the intrinsic movement range of the

kidney [41].

Metrics for decision model validation. The area under the receiver operating charac-

teristic (AUROC) metric was used to assess the overall algorithm performance with the

linear approximation of ROC curves. At the given optimal τsuperior and τinferior, the accu-

racy, sensitivity, and specificity were calculated by using the standard logit method, and

their corresponding 95% confidence intervals (CI) were calculated with the Clopper-Pear-

son’s method [42–45]. The Cohen’s kappa was calculated by using McHugh’s formula

[46]. All metrics ranged from 0 to 1 and are expressed as percentages except for kappa and

AUROC. Fisher’s exact test was used to test whether the developed algorithm could distin-

guish overscan cases [47]. A significance level was set at 0.05. All performance metrics

were calculated by using MedCalc software (Version 20.023, MedCalc Software Ltd., Mar-

iakerke, Belgium).

Evaluation procedure. First, the AUROC was calculated using each decision model

validation data, and the optimal threshold was selected as a cut-off value under the best

algorithm performance while maintaining conservative determination criteria (e.g., the

shorter the CT scan range became, the lower the radiation exposure that could be

achieved.) through ROC analysis using the internal data. Second, based on the selected

cut-off value, as evaluation metrics, accuracy, sensitivity, and specificity were calculated

on the validation data. Finally, a univariate logistic regression analysis was used to assess

the generalizability of the developed algorithm, as well as its accuracy on each independent

variable [48].

Univariate logistic regression analysis. The univariate logistic regression was per-

formed to demonstrate statistical significances of the algorithm according to the patient’s

characteristics (e.g. age and sex), data source, CT vendor, and slice thickness. The analysis

was conducted based on the confusion matrix of rearranged data with respect to the five

independent variables using both internal and external data (S2 Table). The dependent vari-

able was the correctness of the overscan decision. It evaluated the accuracy with respect to

the components of each variable and calculated their odds ratios (ORs) with 95% CIs. The

IBM SPSS Statistics software (version 25.0; IBM Corp., Armonk, NY, USA) was used, and

the statistical significance was set as p-value < 0.05.

Excessive effective dose estimation for overscan. The excessive effective dose was esti-

mated by multiplying volume CT dose index (CTDIvol), overscan length and the tissue

conversion factor (k). The CTDIvol was obtained from either CT DICOM header or a

structured dose report. The k value was referenced from the report of American Associa-

tion of Physicists in Medicine (AAPM) and was 0.0059 and 0.015 for the superior and

inferior-side overscan, respectively, which corresponds to neck and abdomen region

[49]. The detailed scan parameters and the excessive effective dose was provided in

S3 Table.
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Results

Segmentation model evaluation

The DSCs of landmark segmentations on LDCT AI-model tuning data were 0.76 ± 0.09 and

0.88 ± 0.14 for thyroid cartilage and kidney, respectively. On LDCT testing data, the DSCs for

thyroid cartilage and kidney were 0.79 ± 0.25 and 0.93 ± 0.09, respectively. Except for slices of

the superior-side overscan (Fig 3A), the AI-assisted segmentation showed DSCs over 90% with

manual delineation within a general scan range (Fig 3B and 3C). In the superior-side scanning,

90% of the overscan data were scanned up to position of the pyriform sinus level.

Decision model validation

Fig 4 shows the ROC curves of the overscan decision algorithm. The AUROC values were

0.976 (95% CI: 0.925–0.987) and 0.997 (95% CI: 0.800–0.999) for the internal and external

data, respectively. For the optimal τsuperior and τinferior, calculating from 2x2 contingency table

(Table 2), all evaluation metrics showed greater than 90%. In decision model validation, the

accuracy of the algorithm was 96.67 (95% CI: 93.25%-98.65%) and 96.00 (95% CI: 86.29%-

99.51%) for internal and external data, respectively. While the sensitivity was shown as 97.87%

(95% CI: 88.71%-99.95%) and 93.75% (95% CI: 69.77%-99.84%), the specificities were 96.32%

(95% CI: 92.16%-98.64%) and 97.06% (95% CI: 84.67%-99.93%) for internal and external data,

respectively. The Fisher’s exact test between our decision algorithm and the experienced radi-

ologist showed statistical significances (p< 0.001).

Fig 3. Sample landmark segmentation comparison between AI-assisted model and the experienced radiologist. The results were

visualized at different scanning position; (A) segmentation result of superior-side scan at overscan position, (B) that of superior-side

scan at acceptable scan position, (C) that of inferior-side scan at acceptable scan position, and (D) inferior-side scanning example at

overscan position. Ground truth label and AI-model’s prediction result were displayed with red and green lines, respectively. (W/L:

400/40).

https://doi.org/10.1371/journal.pone.0275531.g003
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Univariate logistic regression analysis

Table 3 shows the results of univariate logistic regression analysis. The univariate analysis

revealed that age, sex, data source, CT vendor, and slice thickness had no statistically signifi-

cant influence on the algorithm’s decision. The individual accuracy of the algorithm for the

rearranged data according to the five independent variables was above 95%.

Excessive effective dose estimation for overscan

Detailed scan parameters and estimated excessive effective doses for overscan data were pro-

vided in S3 Table. The mean CTDIvol of overscan cases was 2.42 ± 1.69 mGy and 2.54 ± 0.65

mGy, and the mean overscan length was 1.59 ± 0.7 cm and was 1.66 ± 1.41 cm for internal and

external data, respectively. The estimated effective doses caused by the overscan increased

about 0.02 ± 0.01 mSv and 0.03 ± 0.05 mSv for internal and external data, respectively.

Discussion

The purpose of our study was to develop a deep learning-assisted algorithm to discriminate

the overscan cases of lung cancer screening program in LDCT scan. Most of the previous stud-

ies on overscan determination [10, 18] in chest CT scans mainly focused on scan range

Fig 4. ROC curve and AUROC values for internal (A) and external data (B), respectively.

https://doi.org/10.1371/journal.pone.0275531.g004

Table 2. Contingency table of decision model validation with internal and external data.

Contingency table of internal data Gold standard by an audit-experienced

radiologist

Overscan None

Algorithm prediction Overscan 46 6

None 1 157

Contingency table of external data Gold standard by an audit-experienced

radiologist

Overscan None

Algorithm prediction Overscan 15 1

None 1 33

https://doi.org/10.1371/journal.pone.0275531.t002
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delimitation in topograms, but not in axial CT slices. Automatic scan range delimitation in the

topogram domain would be a meaningful approach because the topogram defined the regions

being scanned prior to actual scans. In these regards, scan range recommendations in topo-

gram stage enable to reduce the workload and inter-operator variability, and there have been

various related researches. However, it is challenging and premature because there are opaque

shadings and intensity variation across CT vendors in topograms, and even AI-assisted

approaches are still hard to localize key landmarks [22]. Furthermore, localization comparison

between scout and axial images should be preceded for their clinical routine [50]. Although

optimal scan range recommendations prior to CT scans is meaningful, we mainly focused to

establish more objective system to retrospectively assess the overscan length and its corre-

sponding excessive doses, and there are no previous related studies.

Our proposed algorithm presented remarkable performances showing values greater than

95% and 97% of accuracy and AUROC, respectively. The developed algorithm showed almost

perfect agreement with experienced radiologists, with kappa values of 0.907 and 0.908 for

internal and external dataset, respectively. Furthermore, the Fisher’s exact test demonstrated

that the proposed algorithm had an ability to detect the overscan similar to the audit-experi-

enced experts. The logistic regression analysis showed no statistical significances with various

potential variables in LDCT, such as age, sex, data source, CT vendor, and slice thickness.

These results suggest that the algorithm has a decision-making ability similar to that of a radi-

ologist, and it has a high potential for generalizability in LDCT. In other words, despite differ-

ences in LDCT protocols between hospitals, the proposed algorithm could be generalized for

the majority of patients taking lung cancer screening in LDCT, and this can be applicable to

hospitals’ independent quality control practice.

Considering the mean effective dose being about 0.02 mSv in case of plain PA chest radio-

graph, the estimated excessive effective dose in our study are equivalent or 1.5 times greater

than those in chest PA on average [51]. In the worst overscan case of the study, the excessive

effective dose caused by overscan could reach up to 11 times of those by plain PA chest radio-

graph. However, all those effective dose levels were much below the possible chromosomal

damage level (5 mSv) by the X-ray radiation [52]. In the case of slight deviations from the

Table 3. Univariate logistic regression analysis. The internal and external data were rearranged to satisfy pre-defined univariate condition for each variable.

Independent variable Univariate analysis Performance

ORa 95% CIb p-value Accuracy (%) 95% CI

Age (n = 210) age� 64 yr (n = 106) 1 - - 98.1 [93.4, 99.8]

age > 64 yr (n = 104) 0.381 [0.07, 2.01] 0.255 95.2 [89.1, 98.4]

Sex (n = 210) Male (n = 119) 1 - - 95.8 [90.5, 98.6]

Female (n = 91) 1.952 [0.37, 10.30] 0.431 97.8 [92.3, 99.7]

Data source (n = 260) Internal (n = 210) 1 - - 96.7 [93.3, 98.7]

External (n = 50) 0.828 [0.17, 4.11] 0.817 96.0 [86.3, 99.5]

CT vendor (n = 260) Siemens (n = 83) 1 - - 96.4 [89.8, 99.3]

GE (n = 71) 0.85 [0.17, 4.35] 0.845 95.8 [88.1, 99.1]

Philips (n = 65) 1.181 [0.19, 7.29] 0.858 96.9 [89.3, 99.6]

Canon (n = 41) 1.5 [0.15, 14.88] 0.729 97.6 [87.1, 99.9]

Slice thickness (mm, n = 260) 1� t < 2 (n = 238) 1 - - 96.6 [93.5, 98.5]

2� t� 5 (n = 22) 0.73 [0.09, 6.12] 0.772 95.5 [77.2, 99.9]

aOR: Odds ratio,
bCI: Confidence interval

https://doi.org/10.1371/journal.pone.0275531.t003
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acceptable scan range, especially for LDCT scan, it is thought that excessive effective dose is

not a concern.

This study had a few limitations. First, a subjective bias could affect the gold standard, even

though it was created by an experienced radiologist. In the future study, it might better to

secure an objectivity by utilizing records of more than two experts. Second, in the AI model

segmentation stage, there might exist segmentation errors for both superior and inferior direc-

tion (S1 Fig). The main reasons were extreme quantum-noise of LDCT and lack of a diversity

of trained data distribution. However, despite the segmentation errors, the developed algo-

rithm minimized its vulnerability to error cases by aggregating the 2D segmented landmark

information into 3D volumetric information. Furthermore, several segmentation errors could

be filtered out and improved by the logical operation of the second-stage. Third, analyzing the

contingency table in both internal and external data, the algorithm still had a few false-nega-

tives (algorithm = none, radiologist = overscan) and false-positives (algorithm = overscan,

radiologist = none). The reason for false-negative occurrences in both data was that the length

of the transition area in superior-side scan was not over the pre-defined overscan cut-off

threshold. In most of the false-positive cases, the partial segmentation failure of the landmark

at the initial or last slice position was considered as a main reason in our algorithm. Although

our algorithm could coordinate false-positives and false-negatives by adjusting the cut-off

threshold (τsuperior or τinferior), the optimal threshold might require a large scale and multi-cen-

tre investigation. Fourth, we could not prospectively suggest the optimal scan range prior to

CT scan while other topogram-based approaches did. As stated above, the further thorough

demonstration of its clinical appropriateness between topogram and axial slices retrospectively

with large amount of dataset enable to reliably suggest the optimal scan range, thereby achieve

fully automated scan range suggestion practice in lung cancer screening. Lastly, there exists

only few underscan cases (0.4%), and the separate study to evaluate the underscan is necessary

as a future research topic. Also, the demonstrations were limited to LDCT, it could be applied

to standard-dose CT as applications work better in standard dose CT than LDCT.

Beyond limitations, by using the developed algorithm, the radiologists only need to pay

attention to the alerting cases by the overscan/underscan. The less overscan rate, the less radi-

ologist’s workload could be accomplished. In comparison with every single patient audit pro-

cedure, as the overscan occurred in internal and external datasets at a frequency of 22.4% and

32%, it was estimated that the developed algorithm could reduce the workload of overscan

range check by 68% and 77.6% for each dataset. We also expect that combinations of our algo-

rithm with radiation dose and image quality monitoring could establish the fully automated

and integrated CT quality system for every patient [53–57]. By reducing human and time

resources with full automation, it is available to equip high throughput and objective quality

monitoring platform for the entire CT scans.

Conclusions

We developed the deep learning-assisted overscan decision algorithm including three stages of

AI-based landmark segmentation model, rule-based logical operation, and final determina-

tion. In the demonstration with 210 and 50 lung cancer screening cases for internal and exter-

nal dataset, the algorithm showed values of greater than 96.0% and 97.6% of accuracy and

AUROC, respectively. For LDCT chest screening, the excessive effective dose is not a concern

within the slight deviations from the acceptable scan range. We hope that the combination of

the proposed algorithm along with multi-parametric image quality assessment, and radiation

dose monitoring program will lead the scan range and protocol optimization, and contribute

patients’ radiation safety by following ALARA principle. Furthermore, hospitals enable to
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establish an independent quality monitoring platform and this automated system will allow

high throughput and objective quality control to improve the entire CT practice.
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