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Abstract

Older adult populations are at risk for zinc deficiency, which may predispose them to

immune dysfunction and age-related chronic inflammation that drives myriad diseases and

disorders. Recent work also implicates the gut microbiome in the onset and severity of age-

related inflammation, indicating that dietary zinc status and the gut microbiome may interact

to impact age-related host immunity. We hypothesize that age-related alterations in the gut

microbiome contribute to the demonstrated zinc deficits in host zinc levels and increased

inflammation. We tested this hypothesis with a multifactor two-part study design in a C57BL/

6 mouse model. The two studies included young (2 month old) and aged (24 month old)

mice fed either (1) a zinc adequate or zinc supplemented diet, or (2) a zinc adequate or mar-

ginal zinc deficient diet, respectively. Overall microbiome composition did not significantly

change with zinc status; beta diversity was driven almost exclusively by age effects. Micro-

biome differences due to age are evident at all taxonomic levels, with more than half of all

taxonomic units significantly different. Furthermore, we found 150 out of 186 genera were

significantly different between the two age groups, with Bacteriodes and Parabacteroides

being the primary taxa of young and old mice, respectively. These data suggest that modu-

lating individual micronutrient concentrations does not lead to comprehensive microbiome

shifts, but rather affects specific components of the gut microbiome. However, a phyloge-

netic agglomeration technique (ClaaTU) revealed phylogenetic clades that respond to mod-

ulation of dietary zinc status and inflammation state in an age-dependent manner.

Collectively, these results suggest that a complex interplay exists between host age, gut

microbiome composition, and dietary zinc status.
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Introduction

A hallmark of aging is a progressive increase in chronic inflammation. As this chronic inflam-

mation precedes the onset of myriad age-related disorders, researchers have sought to uncover

the factors that drive its development. Two such factors that have emerged in recent years and

which are known to interact and impact one another are micronutrient deficiency—especially

dietary zinc—and the gut microbiome. It is important to understand the factors that structure

the gut microbiome, as doing so clarifies the etiology of microbiome-mediated diseases, aids in

the appropriate contextualization of microbiome diagnostics, and improves consideration of

factors or processes that may confound the efficacy of microbiome therapeutics.

Extensive research clarifies how different exogenous and endogenous factors can shape the

microbiome. Aging has been shown to be an especially relevant endogenous dictate of the tem-

poral dynamics of the gut microbiome. Human infants display high intrapersonal variability

in their gut microbiome, with large scale diversification occurring between birth and 3 years of

age [1, 2]. Furthermore, bacterial diversity increases with age in individuals regardless of other

studied covariates [1]. In addition to its rapid and substantial diversification early in life, the

gut microbiome also experiences diversification, albeit more of a gradual form, amongst aged

individuals (e.g., over 65 years of age) [3]. With respect to exogenous factors, diet has been

shown to be one of the key determinants of microbiome composition [4, 5]. The gut micro-

biome has been shown to respond relatively quickly and strikingly to changes in diet, though

most of this work has focused on comparing the effects of fundamentally different composi-

tions of macronutrients on the gut microbiome [6, 7]. The limited work in response to micro-

nutrients, such as vitamins and minerals, tends to indicate that changes in micronutrient

composition can impact the gut microbiome, but with a far less substantial effect [8].

Research that has defined the impact of specific endogeneous and exogeneous factors on

the gut microbiome have largely done so without considering the potential interaction

between factors. Recent research demonstrates the importance of considering interactions:

combining factors can elicit alterations to the composition of the microbiome that do not

occur in isolation. For example, reducing dietary zinc sensitizes the mouse gut microbiome to

oral arsenic exposure [9]. Additionally, the use of genetically manipulated mice revealed that

the aryl hydrocarbon receptor (AHR) interacts with dietary macronutrient content to impact

gut microbiome composition in unique ways [10]. Furthermore, dietary fat content impacts

the mouse gut microbiome’s resistance to antibiotic exposure [11]. During pregnancy, zinc

deficiency may have additional effects on the gut microbiome [12]. These and other studies

point to the importance of considering how the combination of factors impact the micro-

biome, and doubly so when those factors are known to interact in a health-related context,

such as the case of age-related inflammation and micronutrient deficiency.

Extensive research has explored the link between aging, diet, and age-related phenotypes

like inflammation, but how age and diet interact to influence microbiome composition is

unknown. The value of proper nutrition to healthy aging is well established [13, 14]. Inade-

quate nutrition is a common risk factor to age-related diseases and the general decline in

health with age [15, 16]. Aged individuals are often more susceptible to micronutrient defi-

ciencies, particularly zinc, due to both decreased food intake, and reduced absorption of such

micronutrients, which compounds risk for micronutrient issues [17, 18].

In an effort to understand the susceptibility to micronutrient deficiencies, we hypothesize

that the microbiome is a potential source of age-related micronutrient variation, given that

aging has a measurable impact on the microbiome. For example, as microbes in the gut have a

metabolic requirement for zinc, the gut microbiome may contribute to changes in zinc avail-

ability as their hosts age. Additionally, modulating dietary zinc status has been shown to result
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in significant changes to the host gut microbiome [19]. As aged individuals have an increased

requirement for zinc and have a gut microbiome that is distinct from young adults, studying

the interaction between age, zinc status, markers of inflammation, and the microbiome is a

promising avenue for understanding the role of zinc in healthy aging.

To disentangle the link between the gut microbiome, aging and inflammation, and zinc sta-

tus, we conducted two mouse model experiments. Both experiments compared young and

aged mice, but varied in the amount of dietary zinc the mice were exposed to. Specifically, in

the first experiment, we compared individuals fed either a zinc adequate (ZA) or zinc supple-

mented (ZS) diet to determine how the effect of increasing dietary zinc impacts the gut micro-

biome and whether it does so differently as a function of age. In the second experiment, we

compared individuals fed either a ZA or marginal zinc deficient (ZD) diet, which allowed us to

evaluate how reducing dietary zinc impacts the gut microbiome and whether it does so differ-

ently as a function of age. Host metabolic and immune marker data were examined and

described in a recently published work, where we found significant increases in lipopolysac-

charide-induced interleukin-6 (IL-6) in ZD old mice compared to ZA old mice controls, and

significant reductions in several markers of inflammation, including plasma monocyte che-

moattractant protein-1 levels, T cell activation-induced Interferon-gamma, interleukin-17,

and tumor necrosis factor alpha response, and increased naive CD4+ T cell subset in ZS old

mice compared to the ZA old mice controls [20]. Here, we describe the microbiome results of

these experiments, as well as their integration, to clarify the impact of aging, inflammation

state (using IL-6 measurements), and dietary zinc state on the gut microbiome.

Methods

Animal husbandry and sample collection

Young C57Bl/6 male mice were purchased from Jackson Laboratories (Bar Harbor, ME). Old

C57Bl/6 male mice were obtained from the National Institute of Aging (NIA) aged rodent colo-

nies. To mitigate potential facility effects, mice were purchased from different NIA aged colony

locations (Kingston Division, Raleigh Division, Frederick Division), and from different rooms

(Jackson Laboratories mouse colonies). To control for the potential effects of switching from a

standard chow diet (irradiated PicoLab LabDiet 5053) to a purified AIN-93 rodent diet, all mice

were acclimated to the control zinc adequate diet (see diet details below) for 1 mo prior to the

beginning of the study. After acclimation, young mice (2 mo) and aged mice (24 mo) were ran-

domly assigned by animal handler to different dietary treatments for 6 wks. All mice were indi-

vidually housed in ventilated microisolater cages and kept in a temperature and humidity

controlled environment (72˚F, 50% humidity, 12-h light cycle). Upon researcher examination,

all aged mice had no obvious signs of illness, tumors, or lesions at the beginning of the study.

To study the effects of marginal zinc deficiency, groups of 10 young and old mice were fed a

purified diet containing either 30 mg/kg zinc (zinc adequate, ZA), or 6 mg/kg zinc (marginal zinc

deficient, ZD) for 6 wks. To study the effects of zinc supplementation, groups of 10 young and old

mice were fed a purified diet containing either 30 mg/kg zinc (ZA), or 300 mg/kg zinc (zinc sup-

plemented, ZS) for 6 wks. A total of 80 mice were used in this study (40 in marginal zinc defi-

ciency study, 40 in zinc supplementation study). The number of mice in each group was chosen

to result in 99% power to detect differences in gut microbiome community composition or ani-

mal mineral status between treatment groups (two-way ANOVA; alpha = 0.05). Additionally, this

group size results in 90% power to detect differences in the relative abundance of phylotypes in

the microbiome that differ by at least half an order of magnitude in relative abundance between

groups. Data from all mice were used (no exclusion) in data analyses. Additional clarification of

mouse handling, study design, and conclusions based on the host data can be found in S1
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Checklist. Adequate zinc levels aligned with recommended zinc levels in AIN-93G rodent diets

and marginal zinc deficiency and zinc supplementation models have been established previously

[9, 21]. Diets were formulated using a modified egg white-based AIN-93G diet wherein zinc was

provided as zinc carbonate as previously described. Purified ZA, ZD, and ZS diets were purchased

from Research Diets (New Brunswick, NJ). The ZD diet and ZS diet had previously been shown

to result in reduced zinc status and increased zinc status in mice, respectively [21, 22]. Food and

water were provided ad libitum, and food intakes and body weights of all mice were monitored

throughout the study. Fecal samples were collected every two weeks throughout the study dura-

tion, and were stored at -80C. At the beginning (week 0) and end (week 6) of study, whole blood

samples were collected from the submandibular vein in all mice using Goldenrod animal lancets

(Braintree Scientific, Braintree, MA) using BD Microtainer heparin blood collection tubes (BD

Biosciences, Franklin Lakes, NJ). Measurement of whole blood IL-6 has been previously described

[20]. Briefly, heparinized whole blood samples were stimulated with 10 ng/ml LPS for 24 h. Pro-

duction of IL-6 was measured using BD Cytometric Bead Array Mouse Inflammation Kit (BD

Biosciences). At the termination of the experiments, mice were euthanized by CO2 asphyxiation,

and sera and tissues were collected. All mice were monitored regularly for potential adverse

effects. Mice that exhibited signs of illness as defined in the approved animal protocol were

humanely euthanized and removed from the study upon consultation with the attending veteri-

narian. The animal use protocol was approved by the Oregon State University (OSU) Institutional

Laboratory Animal Care and Use Committee, and adheres to the international standards of ani-

mal care as established by the Association for Assessment and Accreditation of Laboratory Ani-

mal Care International. Host physiological data, including serum zinc and LPS-induced IL-6 (S6

Table), were measured as explained in Wong et al. 2021 [20].

Microbiome data generation

Fecal DNA was extracted using QIAamp PowerFecal DNA Kit according to the manufactur-

er’s protocol (Qiagen, Germantown, MD). Fecal samples at week 0 and week 6, and the cecum

and colon samples collected at week 6, post humane euthanasia, were used for targeted 16S

DNA sequencing; fecal sample data was analyzed in the current study and cecum and colon

data were deposited into the NCBI database for recording purposes. Following our prior work,

the rDNA 16S V4 region was targeted for amplification and sequencing, following the Earth

Microbiome Project (EMP) library preparation and sequencing protocol; the 515F-806R

primer pairs were used [9, 23]. The 16S libraries were sequenced at the Center Quantitative

Life Sciences at OSU on the Illumina MiSeq platform with the 2x300 sequencing reaction, with

mean sequencing depth of 130,000 reads per sample (Illumina, Inc. San Diego, CA). The EMP

16S Read 1, Read 2, and Indexing primers were used during the sequencing reaction, leading

to exclusion of the 16S primer sequence in the raw sequencing reads.

Amplicon sequence variant (ASV) calling

Initial sequence quality was checked using FastQC (v0.11.3) [24] (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Forward read and reverse read average read qualities

dropped below Q30 at approximately position 240 and 200, respectively. Forward and reverse

reads were processed using the DADA2 (v1.8) pipeline from Bioconductor (v3.7) in R (v3.5)

[25, 26]. Non-default settings for the filterAndTrim() function were truncLen = c(240, 200),

maxN = 0, maxEE = c(2, 2), rm.phix = TRUE. As the EMP protocol sequencing primers were

used, no PCR amplicon primers were identified at the 5’ ends of the R1 and R2 reads; trunca-

tion during the filterAndTrim() step removed any primers and/or adapters present at the 3’

ends. Sequences were restricted to a final length of 250-256bp after merging.
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Taxonomy and species assignment for each ASV was done using the Silva (v132) training

and species identification datasets with the naive bayesian classifier built-in to dada2 [27–29].

Mitochondrial and chloroplast sequences, if present, were removed. A prevalence threshold of

five samples (half an experimental unit [n = 10]) was used to filter low prevalence ASVs, which

yielded 361 ASVs remaining in the analysis. Unknown taxonomic assignments at the genus

level (i.e. ‘NA’) were assigned placeholder taxonomic names with the form of FamilyName_-

Genus_ASV# such that we balance overgrouping (i.e. grouping all ASVs of a particular family

designation at the genus level) and excluding data (i.e. discarding any ASVs that have no

genus designation). The practical effect of this is that each ASV with an unknown genus is con-

sidered its own genus when doing genus level comparisons.

Microbiome data analysis

ASV and taxonomy tables were imported into a phyloseq object for filtering and analysis [30].

UpSetR v1.4.0 was used to generate the upset plots showing shared ASVs by group [31].

Stacked bar plots were generated using phyloseq and modified using ggplot2 [30, 32].

Robust principal component analysis (rpca) from DEICODE was done in standalone mode

with default parameters [33]. Permutational multivariate analysis of variance (PERMANOVA)

comparing the centroids and permutation tests comparing the group dispersions were done

using the adonis() and permutest.betadisper() functions of vegan v2.5–7, respectively [34].

Non-parametric tests (i.e. Wilcoxon Rank Sum tests and Kruskal-Wallis tests), were done in R

v4.1.2 using the wrapper functions wilcox_test() and kruskal_test() from the rstatix v0.7.0 pack-

age [26, 35]. All tests were corrected for multiple comparisons using a false discovery rate (fdr)

p-value cutoff of 0.05 [36].

Phylogenetic tree construction and cladal analysis

As in our prior work [37–39], we assembled a phylogenetic tree from rarefied ASV sequences.

ASV sequences were aligned, alongside 100 phylogenetically diverse full length 16S rDNA gene

sequences (i.e., guide sequences) obtained from the SILVA all species living tree project v1.2.3,

to the SILVA reference alignment using the mothur v1.39.3 implementation of the NAST

aligner (flip = T). Previous work indicates that inclusion of full-length phylogenetically diverse

guide sequences improves phylogenetic accuracy of reconstruction [37, 40]. Phylogenetic tree

construction was performed using FastTree v2.1.10 (-nt -gtr) [41]. We used a custom R script

v4.0.3 to prune guide sequences from the resultant phylogenetic tree in order to provide a cus-

tom phylogeny with only ASVs in our study of interest (drop.tip()) using the ape R package

[42]. The resultant tree was midpoint rooted (midpoint.root()) using the phytools v0.7.70 R

package [43]. We used the Cladal Taxonomic Unit (ClaaTU) algorithm to determine clades of

microbes which manifested significant statistical relationships with diet and physiologic covari-

ates [37]. In brief, the ClaaTU algorithm performs a root-to-tip tree traversal of the phylogenetic

tree. For each monophyletic clade within the tree, all descendent tips are summed to result into

a matrix ctu where an entry ctu[i,j] corresponds to the abundance of clade j within sample i.
We ran linear regressions to identify significantly differential abundances, one for age (a

generalized linear model under the negative binomial distribution) and one for diet (a general-

ized linear mixed model, also under the negative binomial distribution). The rarefied abun-

dance counts for each node in the fecal week 0 and week 6 samples were tested using the glm.

nb(formula(‘Abundance ~ Age’)) for age (from MASS) and the glmer.nb(formula(‘Abundance ~
Diet + (1 | Host)’) for diet (from lme4) function in R [26, 44]. For the diet models, to control

for age and study effects, one model was run for each age by diet by study group (four total

models). Additionally, we ran two generalized linear models (negative binomial distribution as
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in the MASS package [26]) to identify differential abundances correlating with inflammation

marker IL-6 in the week 6 samples using glm.nb(formula(’Abundance ~ wk6_WB_LPS_IL6’)).
To control for differences in response to inflammation between age groups, and to look at

effects at the end of the study, we only examined the week 6 abundances, and generated one

model for each age group. Significant coefficients in all regressions were identified using the

Wald test. Wald test p-values were corrected for multiple testing by using the Benjamini &

Hochberg false discovery rate correction at a 0.05 significance level [36]. Significant nodes

were excluded if the predicted model had a negative value for the Intercept as count-based

methods have zero as a lower bound.

Results

Age is the most important factor distinguishing gut microbiome content of

mice

To examine the effect of zinc supplementation and deficiency on gut microbiome content, we

fed C57Bl/6 (young = 2mo, old = 24mo) mice food containing differing zinc concentrations

(deficient [ZD] = 6mg/kg, adequate [ZA] = 30mg/kg, supplemented [ZS] = 300mg/kg zinc).

Due to limits on acquiring aged mice, the supplementation and deficiency studies were con-

ducted separately, with ZA mice present as controls in both studies (supplementation and defi-

ciency studies will be referred to as zinc and aging mouse 1 and 2 [ZAM1 and ZAM2,

respectively]). Fecal samples were taken at week 0 and week 6 of the study and the microbiome

content was determined using 16S amplicon sequencing.

Analysis of beta diversity using robust Aitchison principal component analysis (rpca) indi-

cated that the majority of the variance in the gut microbiome can be explained by mouse age.

This result was replicated in both studies and when the two studies were combined (Fig 1, pan-

els A-C). PERMANOVA confirmed statistical significance between centroids (R2 = 0.918,

p = 0.001); a permutation test of the beta dispersions showed evidence for differences in vari-

ance between the two age groups in the combined data set, while there was no difference

found in interstudy variance when examining all samples simultaneously (p = 0.002 and

p> 0.05, respectively). However, a more refined beta dispersion analysis focusing on each age

group within each study individually did indicate that there are differences in dispersion, with

the ZAM2 samples having less dispersion than those from ZAM1 (S1 Fig, p = 0.001,

p = 0.018). Despite the significant differences in dispersion, we opted to analyze the combined

ZAM1 and ZAM2 datasets together for the remainder of the analysis, while implementing

controls in testing that allowed for us to account for the inter-study differences.

These beta-diversity results indicated that specific taxa stratify young and aged mice, possibly

even in ways that are robust to dietary variation. These differences are visualized in the stacked bar

chart with ASVs agglomerated at the genus level, and grouped by study and diet (Fig 1D). At the

genus level, we found a stark difference between the young and old mice, with Bacteroides and

Parabacteroides as the primary genera in young and old mice, respectively, making up around 50%

of the gut microbiome content on average. A Wilcoxon Rank Sum test between old and young

mice confirmed the difference (adjusted p< 0.05) in both Bacteroides and Parabacteroides. Fur-

thermore, of the 186 total genus level groups in the dataset, including the Bacteroides and Parabac-
teroides, 150 were significantly different between the age groups (S1 Table). The top 12 most

abundant genera, limited to those averaging> 0.5% relative abundance and totaling 75–100% of

abundance per sample, are shown in Fig 2. These data suggest that while the most abundant com-

ponents of the gut microbiome are dependent on age, many of the less abundant taxa vary in

response to age as well. Moreover, evaluation of these age effects across the taxonomic hierarchy

indicates that these effects are not relegated to a specific taxonomic rank or unit (S2 Table).
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Given the strong effect of age on the composition of the gut microbiome and absence of an

age-robust effect of dietary variation, we next asked if there exist taxa that appear to be sensi-

tive to dietary variation in an age-dependent manner. We used a Kruskal-Wallis test to deter-

mine if specific taxa differed in their relative abundance across diet groups while blocking on

age. Further, to examine the differences that may have occurred over the study period, we

restricted the comparisons to the week 6 fecal samples only. Applying this test to each genus

resolved no significant differences in either age group (all fdr adjusted p-value > 0.05). Collec-

tively, these results indicate that specific phylotypes are not evidently sensitive to dietary zinc

status regardless of analytical controls on age.

Having exhausted the non-parametric tests for significant differences within and between

age and diet groups, we opted to use a phylogenetic agglomeration method to further examine

the data. In this way, we may avoid any biases imposed by using a predefined taxonomic

grouping and instead use the phylogenetic groups found in our own dataset.

Phylogenetic aggregation reveals clades that vary with age and dietary zinc

status

We next considered that the effects of age and dietary zinc status on gut microbes may be sub-

ject to phylogenetic redundancy, in such that close evolutionary relatives manifest shared traits

that are sensitive to these changes in the host or diet. Because such taxa may displace one

Fig 1. The majority of the variance in the mouse gut microbiome can be explained by age. Robust principal component analysis results are shown for

ZAM1 (zinc supplemented), ZAM2 (zinc deficient) and combined, respectively (A-C). Age explains the majority of the variance in beta diversity in both

studies. Relative abundances of ASVs agglomerated at the genus level are shown (D). Bacteroides and Parabacteroides are the most abundant genera in young

and old mice, respectively. n = 69 for ZAM1, n = 73 for ZAM2, and n = 142 for combined beta diversity and stacked barplot analysis of week 0 and week 6 fecal

samples.

https://doi.org/10.1371/journal.pone.0275352.g001
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another in the gut, traditional phylotyping analysis may obscure our ability to resolve the asso-

ciation between these related groups of taxa (i.e., clades) and either age or dietary zinc status.

To explore this hypothesis, we used a phylogenetic agglomeration method, called Cladal Taxo-

nomic Unit (ClaaTU) analysis, which groups ASVs into monophyletic clades and subsequently

evaluates how the abundance of the clade associates with host covariates [37]. In particular, we

assembled a phylogenetic tree relating ASVs, determined the empirically derived phylogenetic

clades using ClaaTU, and calculated the rarefied abundances per clade as input for a general-

ized linear model (glm) under a negative binomial distribution.

We first evaluated how clades link to the two age groups. When regressing clade abundance

as a function of age, we find that of the 360 clades in the phylogeny, 240 of them have a signifi-

cant age term (S3 Table; Wald test; fdr adjusted p-value < 0.05). This observation is consistent

with the results when examining phylotypes as reported above (S1 Table); the clades that link

Fig 2. Eleven of the top 12 most abundant genera are significantly different between young and old mice. Boxplots display relative abundance of each of the

top twelve most abundant genera in the study, with the first, median, and third quartiles shown by the hinges, and the whiskers extend to no more than 1.5 x

inter-quartile range, with outliers plotted individually. Additionally, each data point is shown as a jittered point value. Boxplots and points are colored based on

age by diet by study groups, as shown. Significance values are shown based on a Wilcoxon Rank Sum test between young and old mice, with �, ��, ���, and ����

corresponding to p-values of 0.05, 0.01, 0.001, and 0.0001, respectively. ZAM1—supplementation study, ZAM2—deficiency study, OZD—old zinc deficient,

OZA—old zinc adequate, OZS—old zinc supplemented, YZD—young zinc deficient, YZA—young zinc adequate, YZS—young zinc supplemented. n = 75

young mice fecal samples, n = 67 old mice fecal samples, including week 0 and week 6 fecal samples.

https://doi.org/10.1371/journal.pone.0275352.g002
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to age are nested within higher order phylotypes that our Wilcoxon Rank Sum analysis

detected as being linked to age. Of the ten clades (count in parentheses) with the largest magni-

tudes of beta coefficients, those associated positively with young mice are all of the family Mur-

ibaculaceae (3). Clades negatively correlated with young mice are in family Lachnospiraceae

(2), genus Lachnospiraceae UCG-006 (1), family Ruminococcaceae (1), and genus Acetatifac-
tor (2). These observations indicate that a diverse collection of bacteria have traits that are sen-

sitive to host age and that the traits in question evolved at multiple and distinct points across

the bacterial phylogeny.

We next sought to uncover phylogenetic clades that link to dietary zinc status. In order to

disambiguate any effects of study, we took an approach that applied four individual general-

ized linear mixed models (glmm), wherein each model represented a specific age group within

a specific diet trial, that all followed the same form. Our model also leveraged the longitudinal

design of our study (week 0 and week 6 observations) by including a random effect that con-

trolled for repeated measures in the same mouse. This model design allowed us to compare the

zinc-adjusted diets to the control diet for each of the age groups. These models also ensured

that the discoveries they produce result from changes in relative abundance as a result of die-

tary intervention, rather than differences in pre-intervention relative abundance between

groups. We identified 39 significant clades through this approach, which are displayed on the

phylogenetic tree (Fig 3; S4 Table).

Our analysis points to 15 of the 39 significant clades varying as a result of zinc supplementa-

tion. We found that zinc supplementation is correlated with changes in two different clades

found within the Lachnospiraceae, which is the richest family in the phylogeny (Lachnospira-

ceae contains 169 of the 361 ASVs detected across both studies). These two clades manifest

opposing associations with zinc supplementation and age dependency. One clade, made up of

Fig 3. Associations between bacterial cladal abundance and dietary zinc supplementation and deficiency. The phylogenetic tree (identical for both A and

B) is based on alignment of ASVs to a reference 16S alignment. Clades are marked with host lifestage (circles for old and squares for young mice, respectively)

and type of association (blue for negative, orange for positive) with dietary zinc supplementation (A) and deficiency (B). Shaded clades are marked with the

respective shared taxonomic phylotype, and color coded based on association (green indicates variable association within a particular clade). Tree tips are

colored based on taxonomic phylum, regardless of dietary zinc status. α and β indicate Lachnospiraceae clades that associate with zinc supplementation in a

negative and positive way, respectively. n = 75 young mice fecal samples (37 in supplementation study, 38 in deficiency study), n = 67 old mice fecal samples

(32 in supplementation study, 35 in deficiency study), using both week 0 and week 6 fecal samples.

https://doi.org/10.1371/journal.pone.0275352.g003
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four total nested subclades, shows a positive correlation in old mice (indicated by β in Fig 3);

the other clade, made up of six total nested subclades, shows a negative correlation in young

mice (indicated by α in Fig 3). Moreover, we find that the young mice also experience a signifi-

cant increase in a single clade with members of the Muribaculaceae and a decrease in a clade

with members of the Clostridiales vadinBB60 group when fed zinc supplemented diets. Addi-

tionally, the aged mice fed zinc supplemented diets have significant increases in two nested

clades within Lactobacillus and a clade including members of the order Clostridiales.

Zinc deficiency resulted in more varied responses among 24 significant microbial clades.

Eleven clades within the Lachnospiraceae have a significant association with zinc deficiency.

Interestingly, a set of two nested clades have a positive association with zinc deficiency in aged

mice, yet two additionally nested clades show a negative association with zinc deficiency. This

effect potentially indicates a limited space in the microbiome for a particular functional niche

whereby an increase in one set of members of the Lachnospiraceae occurs with a decrease in

another clade that occupies that same functional niche. Two clades of the Acetitafactor genus,

itself a subclade of the Lachnospiraceae, have a positive correlation with zinc deficiency in the

aged mice. Four nested clades within Ruminococcaceae and a single clade within the Strepto-
coccus genus also positively correlate with zinc deficiency in the aged mice. Two clades of

Akkermansia and five clades that include multiple genera (Bacteroides as the most notable)

have a positive and negative association, respectively, with zinc deficiency in the young mice.

Clades of microbiota associate with a marker of inflammation

Chronic inflammation associated with age, coined “inflammaging”, is one of the hallmarks of

aging [45]. Increased inflammatory cytokines, including increased IL-6, has been shown to be

associated with age [46, 47]. In our previous work, LPS-induced IL-6 response in whole blood

increased with zinc deficiency, and was further increased with age [20]. Therefore, in order to

examine the effect of inflammation on the gut microbiome in young and old mice, we also

sought to identify gut microbes that link to IL-6. To do so, we generated a generalized linear

model for each clade, looking at only the week 6 abundances in young and old mice across die-

tary groups (Fig 4; S5 Table). We also identified clades that had an intersection between the

models for inflammation and the models for zinc dietary effects (Squares and Triangles, Fig 4).

We found many clades within Lachnospiraceae are correlated with IL-6 in both young and old

mice. Interestingly, the same clade that is negatively correlated with zinc supplementation in

young mice is positively correlated with IL-6 in young mice (see α in Figs 3 and 4). This evi-

dence supports the hypothesis that zinc supplementation can potentially mitigate the effects of

inflammation, albeit in young mice. Thirty-three clades of Lachnospiraceae, including ten

Acetatifactor, are positively associated with IL-6. Conversely, twenty-two Lachnospiraceae

clades, including five Acetatifactor clades, are negatively associated with IL-6. Moreover, three

clades of Muribaculaceae, including two shared between both young and old mice, are nega-

tively associated with IL-6; one clade is positively associated with IL-6 in old mice only. Muri-

baculaceae are found in higher abundances in young mice (Fig 2; S3 Table), so these results

indicate that Muribaculaceae may putatively mediate inflammation within young mice. Addi-

tionally, a clade of Faecalibaculum is negatively correlated with IL-6 in both old and young

mice (see β in Fig 4). Finally, three nested clades within the Clostridiales are positively associ-

ated with IL-6 in young mice, while three other nested clades within the Clostridiales, specifi-

cally members of Tyzzerella and ASF356, are negatively associated with IL-6 in old mice (see γ
in Fig 4).

We also observed clades that associated with IL-6 in either young or old mice alone. A clade

within the most dominant taxa in the young mice, Bacteroides, is negatively correlated with IL-
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6, which may indicate that loss of Bacteroides in the young mouse gut is indicative of a mouse

suffering from inflammation. In young mice, six clades of Ruminococcaceae and three clades

of Ruminococcaceae UCG-014 are negatively correlated with IL-6, with only two Ruminococ-

caceae being positively correlated with IL-6. Conversely, seven clades of Ruminococcaceae are

positively correlated with IL-6 in old mice, with only two clades showing a negative correla-

tion. These differences within a broader phylogenetic clade indicate that specific subclades

within a particular higher-order group may have age-specific effects in determining host

inflammatory response. In addition to the clade of Clostridiales mentioned above, two addi-

tional clades of Clostridiales, one from Dubosiella and two from Lactobacillus, are positively

correlated with IL-6 in young mice. Interestingly, the two clades of Lactobacillus are also posi-

tively correlated with zinc supplementation in old mice, not young mice, indicating a complex

interplay between host inflammation and zinc status. In old mice, four clades of Clostridiales

vadinBB60 group and a single clade of Akkermansia are negatively correlated with IL-6, while

no correlations with those clades were found in young mice. Collectively, these results under-

score the interaction between aging, inflammation, and the gut microbiome.

Discussion/Conclusions

Age effects shape the overall structure of the mouse gut microbiome

Many investigations that have surveyed the effect of diet on the microbiome have found that

diet is a major determinant of microbiome composition. But, these studies typically compare

diets that are fundamentally different in the macronutrient composition [5, 6, 48]. Here, we

evaluated how modulating a single dietary micronutrient—zinc—impacts the composition of

the gut microbiome in an aging mouse model. Our research focused on zinc in part because of

Fig 4. Associations between bacterial cladal abundance and inflammation marker IL-6. The phylogenetic tree (identical for both A and B) is based on

alignment of ASVs to a reference 16S alignment. Clades are colored for type of association (blue for negative, orange for positive) with IL-6 for young (A) and

old (B) mice, respectively. Nodes are marked with squares, triangles, and circles for overlap with significant associations with zinc deficiency, zinc

supplementation, and no overlap, respectively. Shaded clades are marked with the respective shared taxonomic phylotype, and color coded based on

association (green indicates variable association within a particular clade). Tree tips are colored based on taxonomic phylum, regardless of association with IL-

6. α indicates the most basal clade of Lachnospiraceae that is negatively correlated with zinc supplementation and positively correlated with IL-6. β indicates a

clade of Faecalibaculum that is negatively correlated with IL-6 in both young and old mice. γ indicates the basal node of three clades each that are positively and

negatively correlated with young and old mice, respectively. n = 35 young mice fecal samples, n = 34 old mice fecal samples, using only week 6 fecal samples

including from both supplementation and deficiency studies.

https://doi.org/10.1371/journal.pone.0275352.g004
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its role in immune health and the fact that zinc deficiency is relatively common among aged

individuals [14, 15]. Additionally, in a different model system (broiler chicken; Gallus gallus),
drastic changes in microbial composition were seen in zinc deficient hosts [19]. These changes

in Gallus gallus are similar to those seen in chickens with different physiological diseases [19].

Moreover, our prior work indicates that dietary zinc status sensitizes the gut microbiome to

secondary perturbations in ways that link to physiology, but does not necessarily correlate

with drastic rearrangements of the host microbiome [9]. We sought to build upon this back-

ground to ascertain if modulating dietary zinc status could normalize the effects of aging on

the gut microbiome or the microbiome-inflammaging axis.

We find that aging elicits a substantial effect on the composition of the mouse gut micro-

biome, more so than nutritional zinc status or study effects. Reasons for this variation could

include age-dependent changes in physiology that select for fundamentally different microbial

communities or that micronutrient variation may in general only have very modest impacts

on microbiome composition [8, 49]. Indeed, prior work has underscored the variation in the

composition of the microbiome across human lifespan and between young and aged mice [3,

50, 51]. Prior work also points to intestinal inflammation and gut barrier integrity as being an

age-dependent factor that drives the successional dynamics of the microbiome late in lifespan

[52, 53].

We show here that these age-specific differences may contribute to age-specific effects in

microbiome content independent of the immune modulating dietary micronutrient zinc, at

least over the range tested in our studies, and that age-related differences in the microbiome

are repeatable across multiple experiments. These observations suggest that mouse aging

serves as an important driver of the gut microbiome and that investigations on the impacts of

the diet on the gut microbiome may need to consider the age-dependent context of their

observations.

Age and dietary zinc status interact to affect specific gut microbiota

While age effects dominate the overall composition of the microbiome and variation at the

genus to phylum levels, phylogenetic aggregation revealed monophyletic clades of taxa that

vary as a function of dietary zinc status. However, the effect of zinc status on these taxa differed

across the two age groups, indicating that the effect of dietary zinc status on the microbiome

depends upon the context of host age. Many of the taxa that demonstrated these trends have

previously been linked to aging or inflammatory phenotypes, and several of these taxa also

associate with markers of inflammation in our study. For example, discrete clades of Lachnos-

piraceae responded to zinc status differently in aged mice versus young mice, and prior work

has linked changes in Lachnospiraceae to mammalian host aging, especially in humans [54,

55]. Previous work has also found significant changes in Lachnospiraceae when hosts (Gallus
gallus) are fed a zinc supplemented diet, and found unclassified Lachnospiraceae useful as a

biomarker for characterizing host zinc status [56, 57]. Additionally, clades within the Acetita-
factor genus are sensitive to dietary zinc, in an age-dependent manner, and also positively cor-

relate with markers of inflammation, which are observations that align with previous reports

with respect to modulations due to changes in dietary micronutrients and colonic inflamma-

tion [58, 59]. Furthermore, we observed an increase in Lactobacillus clades in response to zinc

supplementation in old mice, but not young mice, and prior work has found that some species

of Lactobacillus elicit immunomodulatory effects that improve immune response in the host

[60, 61]. Additionally, a subset of Ruminococcaceae spp. positively associated with zinc defi-

ciency in old mice, and positively associated with inflammation in old mice. A separate subset

of Ruminococcaceae was negatively associated with inflammation in young mice, consistent
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with previous work examining inflammation in humans [62]. These cladal differences within

the Ruminococcaceae taxonomic group reinforces the need to examine the empirically derived

phylogenetic groups within a microbiome dataset. Further, the results underscore the potential

difficulties when comparing data between studies that may have had different types of taxo-

nomic agglomeration.

While these associations cannot reveal cause and effect, the consistent link between these

taxa, aging, and in some cases the age-related phenotype of inflammation suggests that these

taxa may mediate how changes in dietary zinc status impact age-related inflammation, a

hypothesis that future work should explore. Moreover, the fact that these associations are

observed at the level of phylogenetic clades and not ASVs indicates that dietary zinc status

does not select for specific strains per se, but rather more diverse phylogenetic lineage that are

related through common descent, possibly because these lineages possess conserved genomic

functions that underlie their relationship with zinc. Regardless, our study’s multifactor design

ultimately enabled our discovery of these trends which collectively underscore the importance

of considering the interaction between factors that drive diversification of the gut microbiome.

The effect of aging on the mouse gut microbiome is robust to study effects

A major question that complicates the interpretation of microbiome research results and dis-

covery is whether patterns observed in an investigation are ultimately robust to experimental

or study effects. These effects, which largely amount to sources of technical variation, result

from experimental features that are often not explicitly controlled for, such as the impact of

the research facility and animal cohort, and which may impact how the microbiome responds

to the experimental variables being explored (e.g., exposure to dietary zinc) [63]. While these

effects are typically uniform across the individuals subject to a specific investigation, efforts to

integrate results across studies are confounded by these effects and it is frequently unclear if

the conclusions drawn in a single study are ultimately robust to these effects [64, 65]. In this

study, we applied a design that enabled quantitative assessment of study effects, in such that

we purchased aged mice from multiple vendors and replicated the age component of our study

across two different experiments. We generally find that study effects elicit minimal impact on

the gut microbiome, at least with respect to how age affects gut microbiome diversification. In

particular, we did not find any significant differences in overall beta diversity between the two

studies when using a PERMANOVA test. When we restricted the analysis to comparisons of

intra-age group beta dispersion, we did find a difference. These results indicate that, at least

with respect to age effects, the overall effects observed in a mouse study tend to be relatively

robust.

That said, one limitation to our investigation is that across both arms of the study, only a

single dietary zinc experimental group is present. This limitation to our design resulted from

the fact that suppliers of aged mice can only provide investigative teams with a limited number

of aged individuals at a time due to resource scarcity. To ensure a consistent control for age

while maintaining a sufficient sample size to facilitate discovery, we adopted the study design

described here in light of this resource limitation. Regardless, study and diet effects are

completely confounded, and consequently we are unable to assess whether the results of die-

tary micronutrient state on the gut microbiome are robust.

Overall conclusions

We have shown that age is a predominant factor in determining the gut microbial composition

in a mouse model. We found that over three-fourths of all genera had significantly differential

abundance between the young and aged mice. Because of this large-scale shift in composition,
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identifying specific gut microbiome components that correlate with either modulation of die-

tary zinc status or markers of host inflammation is a challenging task: the age status of an indi-

vidual so substantially redefines the context of microbiome biodiversity that dietary zinc

effects are unlikely to be consistent across age groups. This observation underscores the impor-

tance of considering multifactor designs when exploring microbiome sensitivity to endoge-

nous and exogenous agents, as do our results age-specific effects of zinc status on microbial

taxa. In total, these results indicate a complex interplay between host age, inflammation state,

diet, and the gut microbiome.
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