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Abstract

The entomopathogenic nematode, Heterorhabditis indica, is a popular biocontrol agent of

high commercial significance. It possesses tremendous genetic architecture to survive des-

iccation stress by undergoing anhydrobiosis to increase its lifespan—an attribute exploited

in the formulation technology. The comparative transcriptome of unstressed and anhydro-

biotic H. indica revealed several previously concealed metabolic events crucial for adapting

towards the moisture stress. During the induction of anhydrobiosis in the infective juveniles

(IJ), 1584 transcripts were upregulated and 340 downregulated. As a strategy towards anhy-

drobiotic survival, the IJ showed activation of several genes critical to antioxidant defense,

detoxification pathways, signal transduction, unfolded protein response and molecular

chaperones and ubiquitin-proteasome system. Differential expression of several genes

involved in gluconeogenesis - β-oxidation of fatty acids, glyoxylate pathway; glyceroneogen-

esis; fatty acid biosynthesis; amino-acid metabolism - shikimate pathway, sachharopine

pathway, kyneurine pathway, lysine biosynthesis; one-carbon metabolism—polyamine

pathway, transsulfuration pathway, folate cycle, methionine cycle, nucleotide biosynthesis;

mevalonate pathway; and glyceraldehyde-3-phosphate dehydrogenase were also

observed. We report the role of shikimate pathway, sachharopine pathway and glyceroneo-

genesis in anhydrobiotes, and seven classes of repeat proteins, specifically in H. indica for

the first time. These results provide insights into anhydrobiotic survival strategies which can

be utilized to strengthen the development of novel formulations with enhanced and sus-

tained shelf-life.
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1. Introduction

Nematode is a ubiquitous metazoan group which has evolved adaptations to survive the environ-

mental extremities in which they habituate. Soil environment especially agricultural fields are

exposed to different levels of moisture availability. The ‘anhydrobiosis’ term first proposed by [1],

is a strategy of an organism to survive extreme desiccation. It is a ‘state of suspended animation’

with little to undetectable metabolism [2, 3], governed by complex molecular mechanisms inter-

linking various physiological and biochemical cascade to keep the organism alive. Anhydrobiosis

was first described by [4] from bdelloid rotifer Philodina roseola and later described in different

taxonomic categories ranging from yeast to higher plants; from rotifers to sleeping chironomid

[5–7]. Depending on the degree of moisture stress several nematodes are also reported to possess

varied level of anhydrobiotic potential to survive. Entomopathogenic nematodes (EPN) colonize

in soil and have tremendous ability to kill a wide range of insect pests and regarded as an alterna-

tive for chemical pesticides [8, 9]. The third-stage juvenile or infective juveniles (IJ) of the EPN is

the only stage that survives outside the host often exposed to desiccation stress. They possess the

ability to withstand desiccation by entering into anhydrobiosis [10, 11] an attribute which has

been successfully exploited for the development of stable commercial formulations of EPN.

Numerous attempts have been made to decipher the mechanisms involved in anhydrobiosis

in various organisms including nematodes [12–21]. They adopt two set of strategies—one is to

prevent the water loss and the other is to repair the damage caused. Nematodes follow various

behavioral responses like coiling and clumping [22, 23]; physiological adaptation involving the

replacement of bound water and utilization of alternate pathways, like glyoxylate pathway, to

satisfy energy requirements during entry and exit of anhydrobiosis [12, 24]; and biochemical

adaptations like accumulation of sugars (trehalose), synthesis of heat-shock proteins (Hsps),

hydrophilic proteins and modification of fatty acid metabolism [13, 18, 25]. The success of sur-

vival not only depends on the capacity to enter and exit the desiccation, but also in the poten-

tial to repair the damages caused during dehydration and rehydration.

Heterorhabditis indica (Nematoda; Family: Heterorhabditidae) is an EPN native to the

Indian sub-continent having high commercial significance in the International biopesticide

market. Understanding the moisture stress tolerance is essential not only to improve the qual-

ity and shelf-life of the commercially available dry-formulations, but also to strengthen the

knowledge-base which can be applicable in related research fields. Though there are many

recent reports in other organisms with the advancements in sequencing technologies, compre-

hensive information on anhydrobiotic survival strategies adopted by EPN is lacking. In the

present study we used comparative transcriptomics between moisture stressed and unstressed

H. indica IJ to decipher the enigma of anhydrobiotic survival mechanism. We highlight the

uniqueness of certain metabolic pathways that are altered during anhydrobiosis.

2. Results

2.1 Transcriptome general description

A comparative transcriptome sequencing and assembly of unstressed and anhydrobiotic IJ of

H. indica resulted in 60,589,834 and 51,151,316 paired-end reads, respectively. The GC content

in the unstressed IJ was 41.7% compared to 40.1% in anhydrobiotic, while the read lengths in

both the samples averaged at 81bp (S1A and S1B Table). The trimmed reads further assembled

using Trinity yielded 93,932 transcripts from both the samples. The Phred score was above

Q30 (error-probability� 0.001) for ~85% of bases. All assembled transcripts were>200bp.

Maximum of 13.56% assembled transcripts were between 2000–3000 bp, followed by 11.16%

and 11.12% between 1000–1500 bp and 3000–5000 bp, respectively (Fig 1). The short
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transcripts ranged between 200 and 500 bp corresponding to 10.99% transcript assemblies and

longest size of>5000 bp were assembled for 4.98% of the transcripts. Further, we focused on

�200 bp for transcript expression estimation and downstream annotations (S2 Table).

2.2 Transcriptome quality analysis and completeness

The TransRate analysis metrics showed 93932 contigs and the transcript size ranged between

201 and 22658 nucleotides. The N50 value of the transcriptome was 2843 and no single contigs

shorter than 200 nucleotides (n_under_200 = 0) or ambiguous bases (N) were identified.

CEGMA (Core Eukaryotic Genes Mapping Approach) analysis yielded 230 complete and 18

missing transcripts out of 248 core eukaryotic genes indicating 92.74% recovery in the tran-

scriptome assembly, thus, confirming the high quality of the transcriptome. Eukaryota and

Nematoda were used as lineages for BUSCO (Benchmarking Universal Single-Copy Ortho-

logs) analysis which resulted in 79.2% complete BUSCOs, while the fragmented and missing

BUSCOs were 12.2% and 8.6%, respectively, for the eukaryote lineage. For the nematode line-

age, 72.2% complete BUSCOs were obtained, while fragmented and missing BUSCOs were

5.7% and 22.1%, respectively. The results of all three tools are given in (S3–S5B Tables).

Further, comparative analysis of our assembly with available omics data on H. indica
revealed it to be relatively superior. The values for N50, N60, N70, N80, N90 and N100 were

more than double; clean with no ambiguous bases; and without gaps as compared to 1670

ambiguous bases and 66 gaps reported by Somvanshi et al. (2016) [26] (S6 Table)

We aligned the raw data obtained for fresh and anhydrobiotic nematodes with the draft

genome of Bhat et al. (2022) [27] as the reference genome. Alignment reads using HISAT2 was

73.79% for the former and 90.29% for the latter as compared to 0.02% with Somvanshi et al.,
(2016) [26]. Bowtie2 resulted in 58.12% for fresh and 67.34% for anhydrobiotic samples

whereas only 0.05% for Somvanshi et al., (2016) [26].

Reference-based mapping with Bhat et al. (2022) [27] revealed 78,454 transcripts mapped

to it. Mapping the transcriptome of Somvanshi et al., (2016) [26] over Bhat et al., (2022) [27]

resulted in less than 1% mapping.

2.3 Gene Expression Estimation

The summary of read alignment and expression estimation are given in (S7 Table). Read align-

ment using Bowtie 2 showed about 86.0% of the filtered reads (paired-end) from both samples

Fig 1. Assembled transcript length distribution of H. indica transcriptome.

https://doi.org/10.1371/journal.pone.0275342.g001

PLOS ONE Transcriptome of anhydrobiotic Heterorhabditis indica

PLOS ONE | https://doi.org/10.1371/journal.pone.0275342 October 27, 2022 3 / 28

https://doi.org/10.1371/journal.pone.0275342.g001
https://doi.org/10.1371/journal.pone.0275342


were aligned to the assembled transcriptome, wherein unstressed IJs provided 88.82% align-

ment as compared to 84.23% in anhydrobiotic IJ. Further, based on the Fragments Per Kilo

Million bases (FPKM) value, 52,678 unique transcripts out of 93932 had >1 FPKM, and these

transcripts were used for further downstream analysis. Individually 39996 transcripts from

unstressed IJ and 48007 transcripts from anhydrobiotic IJs had>1 FPKM. Out of which 38.3%

and 36.6% ranged between 2 and 5 FPKM, followed by 35.3% and 30.4% between 1–2 FPKM

in unstressed and anhydrobiotic IJ, respectively (Fig 2; S8 Table).

2.4 Characterization of H. indica transcripts

The assembled H. indica transcripts were compared with NCBI non-redundant protein database

using BLASTX program. Matches with E-value� 10−5 and similarity score� 40% were retained

for further annotation. We found ~ 44,787 (85.02%) of assembled transcripts had at least one sig-

nificant hit in NCBI database. A maximum of 36,880 gene ontology terms were identified for

molecular functions, 18,378 for cellular components and 17,584 for biological functions. Around

74% had confidence level of at least 1e-5, while ~68% had similarity of> 60% at protein level with

the available proteins in the NCBI database. The top hit matched with an animal-parasitic nema-

tode, Ancyclostoma ceylanicum (Phylum: Nematoda, Order: Strongylida). The top 10 hits included

four species of Caenorhabditis genus and Pritionchus pacificus (Order: Rhabditida), close associ-

ates of H. indica which also belongs to the same Order (Fig 3)

Fig 2. Transcript expression distribution of (A) unstressed and (B) anhydrobiotic H. indica IJ.

https://doi.org/10.1371/journal.pone.0275342.g002
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2.5 Functional annotation

Among the top 15 gene ontology (GO) terms with respect to biological processes, the transla-

tion [GO:0006412], DNA templated transcription [GO:0006351], and transmembrane trans-

port [GO:0055085] occupied the top 3 positions with 604 (3.43%), 427 (2.42%) and 407

(2.31%) transcripts, respectively, while signal transduction including small GTPase mediated

[GO:0007264] and transport [GO:0055085, GO:0016192, GO:0006886, GO:0015031,

GO:0006810] were predominant. In molecular functions, ATP binding [GO:0005524] (2006),

nucleic acid binding [GO:0003676] (1306) and metal ion binding [GO:0046872] (1208) were

the top hits with 5.43%, 3.54% and 3.2% of transcripts, respectively. The genes for binding

related activity [GO:0005524, GO:0003676, GO:0046872, GO:0008270, GO:0003700,

GO:0003677, GO:0043565, GO:0000166] were most frequent, followed by protein kinase

[GO:0004672], integral component of membrane [GO:0016021] and catalytic activity

[GO:0003824]. The top 3 GO terms related to cellular components were represented by the

genes involved with integral component of membrane [GO:0016021], nucleus [GO:0005634],

and membrane [GO:0016020] with transcript numbers 2836 (15.43%), 958 (5.21%) and 485

(2.63%), respectively; while the G-protein coupled receptor activity [GO:0004930], ribosome

[GO:0005840], intracellular [GO:0005622] and cytoplasm [GO:0005737] were the other most

frequent cellular component GO terms (Fig 4, S1 File). Comparison between anhydrobiotic

and unstressed IJ revealed ATP binding [GO:0005524] (193), integral component of mem-

brane [GO:0016021] (101) and nucleus [GO:0005634] (88) as the top 3 upregulated GO terms,

while structural component of ribosome [GO:0003735] (73), translation [GO:0006412] (70)

and ribosome [GO:0005840] (61) were the top 3 downregulated gene ontologies (Fig 5, S2

File). Gene enrichment analysis of differentially expressed transcripts through Blast2GO

revealed that 1202 GO terms were enriched in total with p-value and FDR value <0.05 (S9

Table, Fig 6.).

Fig 3. Top ten BLASTX hits of H. indica with other nematodes.

https://doi.org/10.1371/journal.pone.0275342.g003
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2.6 Differential expression analysis

Differential gene expression analysis was performed using DESeq program. Transcripts having

read count� 1 for both samples were chosen for differential expression analysis. Out of 93,933

1,924 (1584 upregulated and 340 downregulated) transcripts were differentially expressed

(Fig 7).

2.7 Identifying desiccation stress response genes in anhydrobiotic H. indica
The moisture stress induced a cascade of 5 stress responsive pathways in anhydrobiotic IJ

(Table 1, S3 File). These were represented by 15 upregulated transcripts involved in anti-oxi-

dant defenses. We identified DNA damage-inducible protein-1 transcripts which did not sig-

nificantly get upregulated in anhydobiotic IJ, although showed relatively higher FPKM value

as compared to unstressed IJ (S1 Fig).

There were 27 upregulate and 6 downregulated transcripts within the detoxification path-

ways. In Phase I, 2 transcripts, each, of SDR were significantly upregulated and downregulated,

while in Phase II, UGT was downregulated and GST was upregulated, with further upregula-

tion observed in ATP-binding cassette (ABC class transporters) (S2 Fig). For signal transduc-

tion 94 upregulated and 10 downregulated transcripts were observed. There was a significant

Fig 4. Top 15 gene ontology terms with respect to (A) biological processes (B) molecular functions (C) cellular components in the transcriptome of H. indica.

https://doi.org/10.1371/journal.pone.0275342.g004
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upregulation in phosphatidylinositol signal regulating genes wherein two transcripts each for

plc-1 gene, diacylglycerol kinase, protein kinase C and 1 for calcium ion binding protein

encoding genes were upregulated. One transcript for mitogen-activated protein kinases

(MAPK/p38), 41 upregulated small GTPases and 2 downregulated and 45 upregulated and 8

downregulated kinases and phosphatases were observed (S3 Fig).

For unfolded protein response and molecular chaperones, 34 upregulated transcripts were

observed, predominated by TCP-1 chaperonin family (9), followed by protein glycosylation

(7), Cyclophilin type of peptidyl-prolyl cis-trans isomerase (6), pqn-95 and signal recognition

particle (3 each). We identified significant upregulation in at least one transcript of hsp60 and

four of hsp70 (A comprehensive discussion on the HSPs and sHSPs has been dealt in a separate

manuscript). A single downregulation was observed for protein disulfide isomerase (S4 Fig).

Overall there were 32 upregulated transcripts observed in the ubiquitin-proteasome system.

Significant upregulation in 4 transcripts involved in the ubiquitin tagging process namely—

ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligases

Fig 5. Top 15 gene ontology terms for transcripts differentially expressed in anhydrobiotic H. indica (A) Upregulated (B) Downregulated.

https://doi.org/10.1371/journal.pone.0275342.g005
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(E3); and 23 transcripts involved in 26S proteasome including the alpha-subunits like pas-1,

pas-2, pas-3, pas-4, and beta- subunit pbs-2 of 20S proteasome core and Rpn1 and Rpt5 of 19S

proteasome regulatory subunits. Upregulated protein sorting transcripts comprised of AAA

ATPase (4), cdc-48.2 (1) and Cation transport ATPase (3) (S5 Fig).

2.8 Repeat proteins

Seven different classes of repeat proteins were upregulated. The predominant ones were

HEAT class and Spectrin repeat-containing domain proteins (4 transcripts each), followed by

WD-40 and Ankyrin class proteins (2 transcripts each) (Table 2, S6 Fig).

2.9 Identifying transcripts of biochemical pathways that are differentially

expressed during desiccation stress

The moisture stress induced significant upregulations in several stress responsive biochemical

pathways in anhydrobiotic IJ (Table 3, S4 File, S7–S13 Figs, and S1 Plate). These were

Fig 6. Top 50 GO enriched terms for differentially expressed genes in anhydrobiotic H. indica.

https://doi.org/10.1371/journal.pone.0275342.g006
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represented by Fatty acid anabolism (9 upregulated, 1 downregulated); Gluconeogenesis (27

upregulated), primarily involving Beta-oxidation of fatty acids, Glyoxylate pathway and Gly-

ceroneogenesis; Glyceraldehyde-3-phosphate dehydrogenase (1 upregulated, 4 downregu-

lated); Mevalonate pathway (3 upregulated); Amino acid metabolism (9 upregulated)

primarily involving Lysine biosynthesis, Saccharopine pathway, Shikimate pathway and

Kynurenine pathway; and One-carbon metabolism primarily involving Folate cycle, Methio-

nine cycle, Transsulfuration pathway, Polyamine pathway and Nucleotide biosynthesis show-

ing 16 upregulated and 4 downregulated transcripts. Among the downregulated transcripts, 3

were observed in Cysteine synthase/cystathionine beta-synthase. Genes involved in polyamine

synthesis viz., odc-1 (ornithine decarboxylase) and spds-1 (spermidine synthase) were upregu-

lated which upon validation through RT-PCR showed up to 6 folds (after 24 h) and 14 folds

(after 36 h) increase, respectively (Fig 8).

2.10 Validation of putative differentially expressed genes by qRT-PCR

A subset of transcripts that are differentially expressed during anhydrobiotic stress of H.indica
was created. In total, 9 genes were chosen for expression profiling based on the earlier reports.

The genes and their expression pattern with respect to FPKM value is represented in Fig 8.

The genes involved in glyoxylate pathway, polyamine synthesis, heat shock proteins (hsp), cit-

rate synthase and elongase genes were validated using quantitative realtime-PCR at 0 h, 24 h,

36 h and 48 h of anhydrobiotic induction. Out of the 3 hsp’s, hsp70 and hsp60 showed signifi-

cant up regulation at 36 h of desiccation with ~20- and 10-fold changes, while hsp1 was

Fig 7. Fold change and mean plot between unstressed and anhydrobiotic H. indica IJ using DESeq program

(transcripts with p-value< 0.01 in red).

https://doi.org/10.1371/journal.pone.0275342.g007
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Table 1. Differentially expressed desiccation stress response transcripts identified in anhydrobiotic H. indica.

Stress related pathway No. of transcripts (Upregulated) No. of transcripts

(Downregulated)

Antioxidative defense

Superoxide dismutases (Mn) 3 -

Superoxide dismutases (Cu-Zn) 1 -

Glutathione peroxidase 1 -

Glutathione s-transferase (gst) 2 -

Glucose-6-phosphate dehydrogenase 1 -

Peroxiredoxins (1-cys peroxiredoxin) 3 (2) -

Thioredoxins reductase 1 -

Thioredoxin peroxidase (TPx) 1 -

Peroxisomal biogenesis factors (pex) 2 -

Detoxification pathway

ABC transporters 11 1

Multi-drug resistance protein (mrp/cdr)

mrp-8 2 -

cdr-1 1 -

Other ABC transporters 9 1

Short chain dehydrogenase/reductase (SDRs) 2 2

Nuclear hormone receptors (NHRs) 2 -

UDP-glucuronosyltransferase - 2

Signal transduction

Small GTPases 20 1

ARF 5 1

Rho 12 -

Rab 3 -

Ran 1 -

Others

plc-1 2 -

Protein Kinase C 2 -

Diacylglycerol kinase 2

Calcium ion binding protein 1

MAPK/P38 1 -

Other Kinases 45 8

Unfolded protein response and Molecular Chaperones

TCP-1 chaperonin family 9 -

dnj-13 1 -

peptidyl-prolyl cis-trans isomerase
FKBP type 1 -

Cyclophilin type 6 -

protein disulfide isomerase 1 1

gfat-1 1 -

alpha-1,2-mannosidase 1 -

nsf-1 1 -

pqn-95 3 -

signal recognition particle 3 -

protein glycosylation 7 -

Heat shock proteins

(Continued)
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significantly up regulated at both 36 h and 48 h. Two genes involved in polyamine synthesis,

odc-1 (ornithine decarboxylase) and spds-1 (spermidine synthase) were upregulated up to 6

folds (24 h) and 14 folds (36 h), respectively. Genes encoding isocitrate lyase, malate synthase

and citrate synthase involved in the glyoxalate pathway, showed upregulation of more than 20,

60 folds and>60 folds, respectively, at 36 h. The elongase gene elo-7 showed ~45-fold changes

at 36h of desiccation (Fig 9).

Table 1. (Continued)

Stress related pathway No. of transcripts (Upregulated) No. of transcripts

(Downregulated)

hsp60 family 1 -

hsp70 family 4 -

Ubiquitin-proteasome system

Serine-type carboxypeptidase 2 -

Vacuolar ATPase (vha-4, vha-14) 2 -

Cathepsin D-like aspartic protease 1 -

20S core proteasome core
Proteasome subunit alpha type (pas-1) 1 -

Proteasome subunit alpha type (pas-2) 1 -

Proteasome subunit alpha type (pas-3) 1 -

Proteasome subunit alpha type (pas-4) 1 -

Proteasome subunit alpha type 1 -

Proteasome subunit beta type (pbs-2) 1 -

Proteasome subunit beta type 3 -

19S proteasome regulatory particle
rpn-1 1 -

rpt-5 1 -

Others 4 -

Ubiquitin tagging enzymes
ubiquitin-activating enzyme (E1) 1 -

ubiquitin-conjugating enzyme (E2) 2 -

ubiquitin ligases (E3) 1 -

Protein sorting
AAA ATPase 4 -

cdc-48.2 1 -

Cation transport ATPase 3 -

https://doi.org/10.1371/journal.pone.0275342.t001

Table 2. Differentially expressed repeat protein class transcripts identified in anhydrobiotic H. indica.

Repeat protein No. of transcripts (Upregulated) No. of transcripts (Downregulated)

HEAT_class 4 -

WD-40 class 2 -

Repeating small protein class 1 -

Tetratricopeptide class 1 -

Ankyrin 2 -

Spectrin repeat-containing domain protein 4 -

M protein 1 -

https://doi.org/10.1371/journal.pone.0275342.t002
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Table 3. Differentially expressed transcripts encoding key enzymes of metabolic pathways altered in anhydrobiotic H. indica.

Altered metabolic pathways No. of transcripts upregulated No. of transcripts downregulated

Fatty acid

Fatty acid biosynthesis 5 1

elo-7� 1 -

Production of free fatty acid 3 -

Gluconeogenesis

Beta-oxidation of fatty acids

Lipase 2 -

Acyl-CoA dehydrogenase 1 -

Ketothiolase 2 -

Carnitine acetyltransferase 2 -

Glyoxylate pathway

Citrate synthase� 3 -

Bifunctional enzyme (isocitrate lyase / malate synthase) � 7 -

Aconitase 1 -

Malate dehydrogenase 3 -

Glyceroneogenesis

Glutamate dehydrogenase 1 -

Phosphoenolpyruvate carboxykinase—PEPCK (ATP binding) 1 -

Phosphoglycerate dehydrogenase 1 -

Glycerol-3-phosphate dehydrogenase 3 -

Mevalonate pathway

HMG-CoA reductase 1 -

Diphosphomevalonate decarboxylase 1 -

Squalene synthase 1 -

Glyceraldehyde-3-phosphate dehydrogenase

Glyceraldehyde-3-phosphate dehydrogenase 1 4

Amino-acid metabolism

Lysine biosynthesis

Aspartate semialdehyde dehydrogenase 1 -

Saccharopine pathway

Saccharopine dehydrogenase (SDH) 1 -

Pyrroline-5-carboxylate reductase (P5CR) 1 -

Shikimate pathway

DAHP synthase 2 -

Chorismate synthase 1

Anthranilate synthase 1 -

Tryptophan synthase 1 -

Kynurenine pathway

Tryptophan 2,3-dioxygenase 1 -

Quinolinate phosphoribosyltransferase 1 -

One-carbon metabollism

Folate cycle

Serine hydroxymethyltransferase 2 -

Methylene tetrahydro folate dehydrogenases 1 -

Methionine cycle

S-adenosylmethionine-dependent methyltransferase 1 -

S-adenosylmethionine synthase 1 -

(Continued)
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Table 3. (Continued)

Altered metabolic pathways No. of transcripts upregulated No. of transcripts downregulated

S-adenosylhomocysteine hydrolase 1 -

Transsulfuration pathway

glutathione-disulfide reductase 1 -

hydroxyacylglutathione hydrolase 1 -

S-(hydroxymethyl) glutathione dehydrogenase 1 -

Cysteine synthase/cystathionine beta-synthase - 3

cystathionine γ- lyase 1 -

Polyamine pathway

ornithine decarboxylase� 1 -

sperimidine synthase� 1 -

Nucleotide biosynthesis

phosphoribosylglycinamide formyltransferase 1 -

phosphoribosylaminoimidazolecarboxamide formyltransferase 2 -

Nucleoside diphosphate kinase 1 1

� The transcripts encoding these enzymes were validated using real-time PCR

https://doi.org/10.1371/journal.pone.0275342.t003

Fig 8. Expression profile of genes selected for qRT-PCR study based on FPKM value (values are log transformed).

https://doi.org/10.1371/journal.pone.0275342.g008
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3. Discussion

3.1 Molecular alterations in H. indica to overcome desiccation stress

3.1.1Antioxidant defense. Reactive oxygen species (ROS) is a major constraint during

anhydrobiosis due to its damaging effects in the biomolecules [24]. The antioxidant defense

strategy is universal among anhydrobiotes as they act as scavengers to the ROS which is medi-

ated by a repertoire of genes [28]. Upregulation of antioxidant enzymes in anhydrobiotic H.

indica are in conformation with previous reports on cryptobiotic midge Polypedilum vander-
planki, anhydrobiotic nematode Panagrolaimus superbus and cryptobiotic tartigrades Echinis-
coides cf. sigismundi and Richtersius cf. coronifer [17, 29, 30]. Higher FPKM value of DNA

damage-inducible protein-1 in anhydrobiotic IJs signifies its importance in desiccation stress

tolerance as they are reported to play a crucial role in DNA repair pathways in C. elegans [31–

32] and Arabidopsis [33].

3.1.2 Detoxification mechanisms for anhydrobiotic survival. The detoxification

enzymes eliminate toxic products through membrane transporters like ATP-binding cassette

[34]. Unlike as reported in anhydrobiotic nematodes Plectus murrayi, C. elegans and Aphe-
lenchoides fragariae [18, 24, 34], the Phase II detoxification enzyme UGT was downregulated

in anhydrobiotic H.indica. Since the detoxification is a metabolically exorbitant process, we

speculate that to compensate the UGT downregulation, anhydrobiotic H. indica recruits the

other Phase II enzyme GST with a dual role in the antioxidant defense and detoxification pro-

cess, as evident from its upregulation.

3.1.3 Signal transduction in anhydrobiotic stress response. The onset of stress activates

signal transduction pathways generating secondary messengers like ROS, calcium, and inositol

phosphates which activate stress transcription factors and responsive genes through kinases/

phosphatases [35]. As in the anhydrobiotic H. indica the genes involved in phosphatidylinosi-

tol signaling were also essentially responsible for dehydration stress tolerance in red seaweed

Gloiopeltis furcate [36] and several other stresses in higher plants [35]. Likewise, the role of plc-

Fig 9. Temporal expression pattern of genes during induction of anhydrobiosis in H. indica validated using

qRT-PCR.

https://doi.org/10.1371/journal.pone.0275342.g009
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1 was crucial in osmotic stress tolerance [37] and cell growth in S. cerevisiae [38] and regulat-

ing ovulation in C. elegans [39]. Upregulation of MAPK/p38, known to transduce the stress

signals to protective genes, has also been examined in few other nematodes viz., C. elegans,
Aphelenchus avenae, and Panagrolaimus superbus [40] while small GTPases, regulating JNK

and p38 MAPKs in C. elegans [41], and stress response mechanisms in plants [42–44]. Upregu-

lation of a single transcript encoding casein kinase II was also reported in another EPN Steiner-
nema feltiae [11] and anhydrobiotic free-living nematode P. superbus [29].

3.1.4 Unfolded protein response and molecular chaperones. The unfolded protein

response (UPR) is a cell-signaling system that readjusts the endoplasmic reticulum (ER) fold-

ing capacity to restore protein homeostasis [45–47]. Anhydrobiotes are equipped with an arse-

nal of molecular chaperones to mitigate the ER stress through ER stress response or UPR. The

heat shock proteins (HSPs) prevent misfolding of protein and aggregation during moisture

stress in nematodes [18, 24, 29, 34]. Upregulated single transcript of Dnj-13 in anhydrobiotic

H. indica, which is a class B J-protein belonging to hsp40 family and a co-chaperone of hsp70 is

also an ortholog of human DNAJB 1 working synergistically in human and nematode HSP70

systems, and exhibits efficient protein disaggregation activity [48]. In C. elegans the FKBP

assists in cold-sensitivity and secretion of the extracellular matrix [49], while in Scenedesmus
sp., a thermophilic microalga, it is responsible for thermal and salinity stress tolerance [50]. Its

upregulation in anhydrobiotic H. indica may have an analogous role in the moisture stress

tolerance.

Upregulation of PDI which helps to catalyze the formation and rearrangement of cysteine

residues and post-translational modification for proper folding of protein [46, 48] was also

reported from the free-living anhydrobiotic nematode, P. superbus [29]. We also report a

downregulated PDI transcript. PDI attenuates the UPR signaling by acting as a modulator

IRE-1, an activator of UPR signaling [45]. Thus, it can be concluded that the upregulated PDI

transcripts mediate proper protein folding while the downregulated might assist in mainte-

nance of UPR signaling during prolonged stress conditions. Human NSF (N-ethylmaleimide

sensitive factor) is predicted to be involved in IRE-1 mediated UPR [51], thus, upregulation of

Nsf 1 in anhydrobiotic H. indica supports our hypothesis of protein homeostasis in anhydro-

biotic IJ.

Upregulation of the signal recognition particle (SRP) which recognizes the newly formed

nascent polypeptides and enables its insertion into ER, alongside microtubule forming genes

T-complex protein 1, α, and β-tubulin in anhydrobiotic H. indica have been reported in anhy-

drobiotic P. superbus [29]. Interestingly, the upregulation of UPR genes alpha 1, 2- mannosi-

dase and gfat-1 in anhydrobiotic H. indica, which parasitizes insect, have also been reported

from anhydrobiotic plant-parasitic nematode A. fragariae [34]. Three upregulated pqn-95
were found to be homologous to C. elegans abu-14 (activated in blocked UPR) protein assisting

its innate immunity [52]. Protein glycosylation and ER-associated functions are essential for

cellular homeostasis during desiccation stress [53] which has been corroborated by the upre-

gulation of transcripts involved in protein glycosylation, glycoprotein quality control and pro-

tein folding in anhydrobiotic H. indica.

3.1.5 Misfolded protein degradation by ubiquitin-proteasome system. The ‘ubiquitin-

proteasome system’ (UPS) is the major selective protein degradation pathway among eukary-

otes which degrades the damaged proteins and maintains protein homeostasis. Expression of

several UPS genes in anhydrobiotic H. indica with found parity with another anhydrobiotic

nematode P. superbus [29]. During the polyubiquitination process, the ubiquitin-binding fac-

tors like cdc48 provide the necessary driving force to determine the direction of transport for

retro-translocation [54, 55], also reported by us.
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3.1.6 Repeat proteins. The importance of repeat proteins in nematode stress survival is

poorly understood. However, the repeat proteins upregulated in our studies consisted of Tetra-

tricopeptides, known to mediate protein interactions with partner proteins involved in plant

stress and hormone signaling [56]. We also report WD40 having an important role in signal

transduction in drought stress tolerance of Arabidopsis [57] and abiotic stress tolerance of Tri-
ticum aestivum [58]. It is quite evident that many of the repeat protein gene family members

have a significant role in plant stress response and its upregulation in anhydrobiotic H. indica
provides an insight on the evolutionary role for variable adaptations to moisture stress. This is

the first report on the repertoire of repeat proteins and their expression in anhydrobiotic nem-

atodes, though previously reported in unstressed P. superbus [29]. Two upregulated ankyrin

repeats in anhydrobiotic H. indica also plays a role in C. elegans subjected to ionizing radiation

[32].

3.2 Altered metabolism in anhydrobiotic H. indica to meet energy demand

during desiccation stress

Gluconeogenesis is a preferred pathway in moisture stress tolerance wherein glucose produced

is metabolized to stress-protectant trehalose [11]. The β-oxidation of fatty acid essentially pro-

vides substrates for gluconeogenesis via breakdown of non-carbohydrate precursors [59]. An

increase in lipolysis followed by β-oxidation of fatty acids was reported in C. elegans during the

onset of anhydrobiosis. Both, in C. elegans and unrelated yeast, the glyoxylate shunt (GS)

enables the synthesis of trehalose from acetate, a critical factor for preconditioning to anhydro-

biotic survival, while its inhibition dramatically decreases the potential to tolerate moisture

stress [60]. The role of the GS has been reported in anhydrobiotic A. avenae [12], Plectus mur-
rayi [24], dauer stage C. elegans [61], and Romanomermis sp., [62]. All the 5 key enzymes of GS

[59] showed significant upregulation in the anhydrobiotic H. indica IJ. The transcripts encod-

ing glycogen synthase kinase 3 (gsk-3) and casein kinase 2 (CK2) were significant upregulated;

which negatively regulate the expression of glycogen synthase gene, thus, inhibiting glycogen

synthesis [63]; while gsk-3 positively regulate the genes encoding gluconeogenic enzymes

PEPCK–a key enzyme in glyceroneogenesis and glucose-6-phosphatase [64]. Glyceroneogen-

esis is deployed to produce glycerol as stress protectant [65–67]; or to produce triglyceride pos-

sibly to participate in gluconeogenesis [11]; or an important role in the synthesis of serine

which is a key source of carbon in the one-carbon metabolism [68] from non-glucose precur-

sors like glutamine [65]. Transcripts encoding the glutamate dehydrogenase and PEPCK were

significantly upregulated in anhydrobiotic IJ, wherein, the former produces oxaloacetate from

glutamine while the latter produces phosphoenolpyruvate from oxaloacetate. The transcript

encoding NAD+-dependent glutamate dehydrogenase showed upregulation. In yeast, it cata-

lyzes the conversion of L-glutamate to alpha-ketoglutarate, while NADP dependent catalyzes

the synthesis of glutamate from alpha-ketoglutarate [66]. The H. indica may deploy glycero-

neogenesis to produce glycerol-3-phosphate which then dephosphorylated into glycerol by

gpdh. Stress-induced expression of gpdh has been reported in Osmerus mordax, S. mansoni, C.

elegans [68] and yeast [69].

We observed a significant upregulation in the transcript encoding HMG-CoA reductase, a

rate-limiting enzyme in the isoprenoid/mevalonate pathway, that produces sterols [70], and

squalene synthase gene to help catalyze the initial step in cholesterol synthesis [71], although

the squalene synthase gene was reportedly absent in C. elegans [72]. The role of mevalonate

pathway and cholesterol in the moisture stress response of H. indica needs further investiga-

tion as the nematode is in a symbiotic association with the bacterium Photorhabdus
luminescens.
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The Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a metabolic switch

during oxidative stress to generate more NADPH to aid NADPH-dependant antioxidant

enzymes like thioredoxin and glutaredoxin [73], alongside a few other non-metabolic roles

[74–76]. In C. elegans the role of GAPDH in hypoxia or anoxia stress tolerance and survival

has been reported [77]. Our studies similarly reveal differential expression of transcripts

encoding GAPDH which suggests that H. indica, as an evolutionary backup, switches off its

metabolic role and recruits GAPDH to take up non-metabolic roles.

The Saccharopine pathway catabolizes the amino acid lysine into proline and pipecolate,

enabling the plants to tackle abiotic stress [78–80], while supplementation of proline and trypto-

phan increased thermotolerance in C. elegans [81]. A transcript encoding aspartate semialdehyde

dehydrogenase showed significant upregulation in anhydrobiotic H. indica, suggesting that the

nematode may deploy the Aspartate pathway for lysine biosynthesis to produce stress protectants

proline and pipecolate through Saccharopine pathway. To best of our knowledge, this is the first

report of the upregulation of Saccharopine pathway in moisture stress tolerance of H. indica.

The Shikimate pathway is present across bacteria, fungi, plants but not in animals, who

obtain the aromatic amino acids essentially from their diet and nutritional support from sym-

biotic organisms [82]. Interestingly, we observed significant upregulation of 2 transcripts that

encode for 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHP) in anhydrobiotic

H. indica which initiates the Shikimate pathway. However, there was no significant upregula-

tion in the transcript homologous to aro-1, which catalyzes the intermediate steps of this path-

way [83]. The chorismate produced via Shikimate may act as a precursor for tryptophan

biosynthesis. The first step in the biosynthesis of tryptophan from chorismate is catalyzed by

anthranilate synthase and tryptophan synthase which were upregulated in anhydrobiotic H.

indica. Probably this is the first report on the role of Shikimate pathway genes in moisture

stress tolerance. To check the presence of Shikimate pathway genes in nematodes, a standalone

blast was performed. Of all the available EPN genomes, we found homolog of DAHP synthase

transcript only in S. glaseri, but not in the model nematode C. elegans. Since H. indica is symbi-

otically associated with P. luminescens, it might have acquired it through horizontal gene trans-

fer; however, revalidation is essential to confirm the presence of Shikimate pathway genes in

this nematode. Transcripts encoding TDO and quinolinate phosphoribosyltransferase (QRPT)

involved in the kynurenine pathway which catabolizes tryptophan into NAD+ was upregulated

in anhydrobiotic H. indica, as also reported in other animals [84].

Polyamines (spermidine and putrescine) are essential for desiccation tolerance in dauer C.

elegans as the spds-1 and odc-1 mutants were extremely sensitive to moisture stress [18]. Simi-

lar observation was made in anhydrobiotic H. indica. Glutathione (GSH) is biosynthesized

from its precursor cysteine through homocysteine degradation in the transsulfuration pathway

acting as antioxidant to maintain redox homeostasis [28, 85]. Detoxification process in anhy-

drobiotic H. indica was assisted via upregulated transcripts encoding hydroxyacylglutathione

hydrolase/glyoxalase II, and S-(hydroxymethyl) glutathione dehydrogenase, wherein, the for-

mer is part of the methylglyoxal detoxification system and the latter a part of the formaldehyde

detoxification system [86, 87].

The EPN H. indica along with its symbiotic bacteria P. luminescens is a golden fleece to

manage the crop pests’ pandora box. This nematode possesses remarkable insecticidal poten-

tial, with significant commercial success globally, based on its unique ability to survive mois-

ture stress. Our study has provided crucial insights on many unknown molecular events

adopted by this nematode to withstand unfavorable environment. This information can pro-

vide critical inputs for developing stable, durable and effective products. The results also open-

up new avenues to understand and inter-link the process of desiccation stress tolerance among

unrelated organisms.
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4. Materials and methods

4.1 Rearing and induction of anhydrobiosis in the infective juveniles

The EPN Heterorhabditis indica strain KX601067 was originally isolated from the agricultural

farms of IARI, New Delhi [88] and routinely cultured in vivo on the Greater wax moth, Galle-
ria mellonella, larvae [89], using the White’s Trap [90]. Anhydrobiosis was induced by incubat-

ing the freshly emerged IJs for two days in 97% relative humidity chambers maintained by

means of water-glycerol solution [91, 92]. Approximately 1x105 IJs of H. indica concentrated

in sterile distilled water were slowly released, in the centre of a 2 cm diameter Qualitative Filter

paper disc (Grade 1; Retention 2.5 μm; HIMEDIA 6010-900-100C) using a micro-pipette. The

discs were placed on a wire-mesh which was suspended and held at 3 cm from the top of a 500

ml glass beaker. The beaker was filled with 300 ml glycerine-water solution (10.32: 89.68 ml

ratio). The beaker was sealed airtight and kept at 27˚C for 48 h. Thereafter, the discs were

removed which contained the anhydrobiotic IJs of H. indica (S2 Plate). For validation of genes

by RT-PCR, the IJs were removed from the experimental set-up at 3 time-lines (24h, 36h, 48h)

during the course of inducing anhydrobiosis with 0 h (unstressed IJ) serving as control. The IJ

collected at different time-lines were flash frozen in liquid nitrogen and stored at -80˚C.

4.2 RNA isolation, RNA-seq and bioinformatics data analysis

4.2.1 Isolation of total RNA and RNA-Seq. The IJ of H. indica were subjected to 97% rel-

ative humidity chamber for 0h (unstressed) and 48h (anhydrobiotic), and samples (approxi-

mately 3,000 IJ) were taken from five independent sets for each treatment and flash frozen in

liquid nitrogen [10, 21, 93]. Total RNA was isolated from each pooled sample (approximately

15,000 IJs) using TRIzol reagent (Invitrogen, USA) as per manufacturer’s instructions. The iso-

lated total RNA was treated with DNaseI to remove any traces of DNA. Quality and quantity

of isolated RNA was measured using NanoDrop-1000 and agarose gel electrophoresis (1.2%).

Libraries were produced by generating cDNA from RNA and then adding adapters to the

cDNAs and sequenced on Illumina HiSeq 2500 platform. The sequencing depth is ~50x and

the resulted raw paired-end sequences were subjected to standard quality filtering procedures

such as removal of adapter sequences; removal of poor quality reads based on phred score etc.

The raw sequence data has been submitted in GenBank NCBI under BioProject ID.

PRJNA789679, Bio sample No. SAMN24146495 and SRA IDs. SRR17284459, SRR17284460.

4.2.2 Bioinformatics data analysis. 4.2.2.1 De novo transcriptome assembly. The fastq files

were trimmed using Cutadapt [94] to remove adapter sequences before performing the assem-

bly. The fastq files were subjected to quality check before and after adapter removal, and the

poor quality reads were filtered and assembled using Trinity [95] with default options. Tran-

scripts of length� 200 bp were focused for expression, estimation and downstream annota-

tions. Assembly stats of Trinity was used to carry out a comparative study between our

assembled data with Somvanshi et al. (2016) [26] and Bhat et al., (2022) [27] in terms of the

quality check. We also carried out an alignment using Bowtie 2 [96] and HISAT 2 [97], and ref-

erence-based mapping using Gmap [98].

4.2.2.2 Transcriptome annotation. The assembled transcripts were annotated using in-

house pipeline of SciGenom Labs Pvt Ltd. CANoPI (CANoPI–Contig Annotator Pipeline).

Briefly, the assembled transcripts were compared with NCBI non-redundant protein database

using BLASTX program. Matches with E-value� 10−5 and similarity score� 40% were

retained for further annotation. The top BLASTX hit of each transcript was studied and the

organism name was extracted. The predicted proteins from BLASTX were annotated against

NCBI, UniProt, Pathway and other databases. The gene ontology (GO) terms for transcripts
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were extracted wherever possible. The total numbers of different GO terms were identified

with respect to molecular function, biological process and cellular component category. The

differentially expressed transcripts have been subjected to gene enrichment analysis using the

Blast2GO software with filtering parameters set to FDR value <0.05 [99].

ORF prediction. TransDecoder [100] bioinformatics was used with default options to pre-

dict longest Open Reading Frames (ORFs) and amino acid sequences from the assembled

transcripts.

Transcriptome completeness. TransRate [101] was used for assessing the quality of tran-

scriptome and CEGMA (Core Eukaryotic Genes Mapping Approach [102]) and BUSCO
(Benchmarking Universal Single-Copy Orthologs [103]) to evaluate the completeness of the

assembly.

4.2.2.3 Differential expression analysis. The trimmed reads from unstressed and anhydro-

biotic IJ were aligned to the assembled transcriptome using Bowtie 2 program [96]. Up to

1-mismatch in the seed region (length = 31bp) and all multiple mapped position were

reported. Differential gene expression analysis was performed using DESeq Bioconductor

Package [104]. Transcripts having read count� 1 for both samples were chosen for differential

expression analysis. Transcripts showing two folds change with p-value <0.01 were considered

as differentially expressed.

Heatmaps. Heatmaps were generated using pheatmap [105] an R package for—i) tran-

scripts chosen for validation using quantitative-PCR, and ii) anhydrobiosis specific pathway-

wise transcripts. The heatmaps were generated based on log-transformed FPKM value.

4.3 Validation of transcripts using quantitative-PCR analysis

The transcripts involved in molecular chaperone activity of hsp 70, hsp 60, and hsp 1; metabolic

pathways viz. glyoxylate pathway, polyamine biosynthesis pathway, fatty acid biosynthesis

Table 4. List of primers used for the differential expression analysis through Real Time PCR.

Sl. No. Transcript id Gene name Sequence

1 c6506_g1_i1 hsp70 GTATGATGACGGTTACGACTCC-f

TGCCAAATAACGGCCTCTAATA-r

2 c6846_g1_i1 hsp60 TCTACGATGAGCCTGAGTTCTA-f

ACCTTGAATGGGTCGATGATAC-r

3 c10862_g1_i1 hsp1 TGACGAGACCATTGCTTGG-f

GAGATGATTGGGTTGGCCTTA-r

4 c19020_g1_i1 spds1 CTCTAAGAACCCAAACGTCACT-f

CGTGGATCTGCTTGTTGTAGTA-r

5 c29864_g1_i1 odc-1 GGCGAATCACAAGGGAAGAA-f

CAACATCGTGCGTCAAATGG-r

6 c14078_g1_i10 Isocitrate lyase CAGCAGTGAGGATGAGGAAATA-f

TGATGAATCGGAGAGCATCAG-r

7 c22574_g1_i1 Malate synthase AAGTCTGCTAAGGCTGGTAAC-f

GGTGGTCACATCGTCGTAAA-r

8 c4014_g1_i1 Citrate synthase GAGAAAGACCGACCCAAGATAC-f

AGCGACCTCGTAGATGTTAGA-r

9 c29552_g1_i1 elo-7 GACACTACGGTGAGAGCTAGAA-f

GCCGCTTCGTTGCTTAGATTA-r

10 18srRNA Reference gene CTGCATAGCAGATCCAGTGATT-f

CCCATGAGGGTAGAGCATAGA-r

https://doi.org/10.1371/journal.pone.0275342.t004
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pathway were chosen for validation using quantitative-PCR based on earlier reports [17, 18,

24, 29, 106]. The RNA was isolated from the IJ exposed to relative humidity chambers for 0h,

24h, 36h and 48h IJs using TriZol method as mentioned in 4.2. Further, one μg of DNase I

(NEB,USA) treated RNA was used for the first strand cDNA synthesis using superscript III

Reverse transcriptase (Invitrogen) kit. Quantitative Real Time PCR was done in Step One Plus

instrument (ABI) using three biological and three technical replicates for each treatment. Each

reaction contained 5 μl 2X SYBR Master mix reagent (Takara), 1μL cDNA and 400 nM of gene

specific primers in a final volume of 10 μl. Each pair of primers was designed using Primer-
Quest tool of IDT with an amplicon size of 100–130 bp. The specificity of reaction was ana-

lysed in melting curve analysis. The relative transcript level of the mRNA was determined by

ΔΔCT values in comparison with unstressed IJ and 18S rRNA gene was used as internal refer-

ence gene [21, 93]. For the analysis at different time points, Ct values of control was taken as

one and fold change in other time points were calculated by similar method. The primers used

for the expression analysis of H. indica genes are given below (Table 4):
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