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Abstract

Path planning is a major challenging problem for mobile robots, as the robot is required to

reach the target position from the starting position while simultaneously avoiding conflicts

with obstacles. This paper refers to a novel method as short and safe Q-learning to alleviate

the short and safe path planning task of mobile robots. To solve the slow convergence of Q-

learning, the artificial potential field is utilized to avoid random exploration and provides a pri-

ori knowledge of the environment for mobile robots. Furthermore, to speed up the conver-

gence of the Q-learning and reduce the computing time, a dynamic reward is proposed to

facilitate the mobile robot towards the target point. The experiments are divided into two

parts: short and safe path planning. The mobile robot can reach the target with the optimal

path length in short path planning, and away from obstacles in safe path planning. Experi-

ments compared with the state-of-the-art algorithm demonstrate the effectiveness and prac-

ticality of the proposed approach. Concluded, the path length, computing time and turning

angle of SSQL is increased by 2.83%, 23.98% and 7.98% in short path planning, 3.64%,

23.42% and 12.61% in safe path planning compared with classical Q-learning. Furthermore,

the SSQL outperforms other optimization algorithms with shorter path length and smaller

turning angles.

Introduction

Path planning is the calculation of a feasible path from a start node to a goal node in a map or

grid without colliding with obstacles on the way [1]. It requires mobile robots (MRs) to be

equipped with sensors, onboard computers, and motion systems to plan and move. Many cur-

rent algorithms can implement path planning for MR. The former approach includes search-

based planning algorithms: A� [2], D� [3], etc. A� algorithm is one of the popular heuristic

algorithms [4], which is widely used in the field of path optimization. Its unique feature is that

it introduces global information when checking each possible node in the shortest path, esti-

mates the distance between the current node and the end point. Derived from the traversal A�,

D� algorithm repairs the existing search information instead of reconstructing the whole

search graph [5, 6]. It is suitable for dynamic environment compared to A�. Due to their
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universality and ease of implementation, these algorithms achieve significant results in search-

ing for paths, but the search time grows exponentially with the resolution size and search

depth of the map; Sampling-based planning algorithms: rapidly random-exploring tree (RRT)

[7], probabilistic roadmap (PRM) [8], etc. The advantage of these algorithms is that they are

effective and fast in high-dimensional path search, and the disadvantage is that these algo-

rithms usually sample the environment for random search to find paths, the results are often

not optimal and it is difficult to find a feasible path in environments with narrow passages.

Artificial potential field (APF) [9] and BUG algorithm [10] are widely used in path planning

for local obstacle avoidance. Although these algorithms are computationally simple for

dynamic obstacle environments and fast in path search, the optimal path is often not obtained,

and the search path may be erroneous when the obstacles are large in a complex environment.

Another type of algorithm is the intelligent algorithms: it is an algorithm that people model by

nature-inspired or human mind to imitate solving problems [11]. Typical algorithms are parti-

cle swarm optimization (PSO) [12], ant colony optimization (ACO) [13], and other algo-

rithms. Intelligent algorithms play an effective role in solving complex dynamic environments,

but there are common problems such as slow computation speed, poor stability, poor real-

time performance, and easy to fall into local optimality.

Path planning can be divided into global and local path planning depending on the acquisi-

tion of the environment [14]. Global path planning is to plan a path for MR in a completely

known environment. The location and shape of obstacles in the environment are known to the

MR. The global path planning is often optimal or sub-optimal. As the robot travels along the

global path, if there are obstacles in the global path that are not modeled in the known environ-

ments, the robot will collide with the obstacles. This requires local path planning in completely

unknown or partially known environments. The local planning method integrates the model-

ing of the environment with the search, which provides real-time feedback and correction of

the planning results. However, the planning results may not be optimal due to the lack of

global environmental information. The two planning methods need to work together to allow

the robot to better plan its travel path from the start to the target position.

To solve global and local path planning problems, a common approach is to hybridize two

algorithms [15–18]. In [19], the authors proposed a method using the A� algorithm for global

path planning, and the APF for local path planning in unknown areas. It provides the best

solutions in less time when obtaining optimal path distance. [20] proposed an improved ACO

for a globally optimal path, and an improved APF is subsequently employed to avoid unknown

obstacles during navigation. The authors in [21] proposed an improved PSO for global path

planning and APF for local dynamic obstacle avoidance, to solve the local minimum problem.

The two algorithms are combined to solve the MR global and local path planning problem,

avoiding the defects of a single algorithm that is prone to get trapped in a local minimum [22].

All of the above-mentioned algorithms have their superiorities and limitations. Most of the

researches are environment-based precise modeling and positioning navigation. However, the

real environments are partially or completely unknown. It requires MR evasion of unknown

static and dynamic obstacles. Moreover, most of the papers treat MR as a mass point to plan

the path, resulting in the path being too close to the obstacle, which leads the MR to collide

with obstacles [23].

To solve the defects of the above path planning method, the proposed approach enables the

mobile robot to plan the path in two modes: short and safe path planning. The effectiveness,

superiority, and rapidity of the SSQL algorithm are demonstrated through simulation and

comparison experiments. The SSQL algorithm proposed in this paper is applied to solve the

path planning for MRs with the following main contributions:
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1. The SSQL is a novel proposal that can find short and safe condition for MR path planning,

outperforming motion planning proposals based on the state-of-the-art algorithms.

2. Two path planning schemes are proposed, one is to plan the shortest path length (Proximity

to obstacles), and the other is to plan the safe path length (away from obstacles) from the

starting point to the target point.

3. This paper hybridizes Q-learning with APF to initialize Q-table, avoiding the random

movement around the start point at the beginning of the algorithm.

4. The proposed algorithm changes the constant reward into a combination of static and

dynamic reward; speeds up the convergence of the algorithm and avoids the algorithm fall-

ing into a dead-end path blocked by obstacles.

5. By comparing with other algorithms, it is proved that the proposed algorithm in this paper

can solve the MR path planning problems for two modes: short and safe path planning.

Materials and methods

In this section, this paper first describes the MR path planning problem, then outlines classical

Q-learning, and at last proposes the SSQL algorithm.

Problem formulation

To better illustrate the planning problem using SSQL in this paper, path planning process is

shown in Fig 1. The schematic diagram of MR and the definition of safe distance are shown in

Fig 1A, where, xa and ya represent the earth-fixed frame, xb and yb represent the body-fixed

frame of MR, r represents the radius of the circular MR. It is assumed that the origin of the

body-fixed frame is located in the MR centre of mass. To plan the path away from obstacles,

this paper defines the MR safety radius as rsd, to avoid collision of the planned path with obsta-

cles. For better obstacle avoidance, this paper defines: when there are no obstacles around MR

can move to the adjacent eight directions (north, northeast, east, southeast, south, southwest,

west and northwest).

MR cannot cross the obstacles barrier diagonally. When the obstacles are located around

the MR, the movement directions of MR are shown in Fig 1B. In a Cartesian coordinate, the

MR aims to plan a feasible path from the start S (1,4) to the target T (7,4) without collision

Fig 1. Path planning problem formulation: (a) Schematic diagram of MR; (b) Direction of motion when there is an obstacle around the MR; (c) Short path

length condition; (d) Safe path length condition. (Circle for MR; white grid for Sfree; black grid for Sobs; solid black line is the path planned by SSQL).

https://doi.org/10.1371/journal.pone.0275100.g001
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with obstacles. Fig 1C and 1D show two models of planning path for a MR. Fig 1C is the short

path length mode, the MR can reach the target from the start with the short path length. Fig

1D is the safe condition mode, the MR always distance from obstacle 2rsd planning path.

Q-learning algorithm

Q-learning [24] is a value-based reinforcement learning algorithm proposed by Watkins in

1989. MR path planning can be expressed as follows: at each discrete time series (off-line strat-

egy temporal-difference) [25]. The MR interacts with the environment through continuous

feedback, generating more data (states and returns) and using the new data to further improve

its own behavior. Q-table is the expectation that Q(st,at) can gain by taking action at in state st,
updated by the Formula shown in Formula 1.

Qðst; atÞ  ð1 � aÞ � Qðst; atÞ þ a � ½rtþ1 þ gmax
a
Qðstþ1; atþ1Þ� ð1Þ

The above function can also be written as Formula 2 and Formula 3:

Qðst; atÞ  ð1 � aÞ � Qðst; atÞ þ a � ½rtþ1 þ gVðstþ1Þ� ð2Þ

VðstÞ  VðstÞ þ a � ½rtþ1 þ gVðstþ1Þ � VðstÞ� ð3Þ

where, α (0�α�1) is a learning rate parameter, γ (0�γ�1) is a discount rate parameter.

In this paper, the Q-learning is applied to MR path planning for the following reasons:

1. Reinforcement learning has good interaction with the environment without the need for

positive or negative labels [26]. MR gains current knowledge by exploring and learning

from the environment, and improve their operational strategies to adapt to the

environment.

2. The Q-learning algorithm is highly exploratory and is an iterative trial-and-error process,

where multiple attempts are made for each possible pair of state actions to obtain the opti-

mal policy as long as time allows.

3. Q-learning uses off-policy [27], the selection of actions according to the target strategy can

be used to control the distance between MR and the obstacle.

The proposed short and safe Q-learning algorithm

In this section, the proposed SSQL algorithm is elaborated in four stages for solving the short

and safe path planning. To better describe the studied content, the MR path planning problem

discussed in this paper has the following premises:

1. The MR and the obstacle environment are three-dimensional objects in practice. To sim-

plify the problem, this paper treats their motion space as two-dimensional coordinates.

2. The MR path planning studied in this paper is divided into two parts: short and safe path

length. The location, shape and size of obstacles in the environment are known in the path

planning.

3. The task of the MR is to reach the target from the start with the shortest and safe path

length.
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Q-table initialization

Classical Q-learning usually initializes the Q-table to zero or normally distributed random

numbers, which leads the MR to choose actions randomly in the exploration phase. Resulting

in slow convergence and long computing time of the algorithm. To optimize the problem, this

paper combines APF with Q-learning to optimize the initial Q-table. The reasons are: the APF

can be combined with the Q-learning both in global and local path planning; it is easy to

implement in grid maps and provide prior knowledge of the environment for MR; to speed up

convergence and reduce computing time.

The information in the environment (starting point, target point, obstacle shape, size and

location coordinates) is completely known for MR, so Coulomb’s law is used to model the

APF for the grid environment, as shown in Formula 4, Formula 5 and Formula 6:

UaðstÞ ¼
1

2
kar

2

gðstÞ ð4Þ

UrðstÞ ¼
1

2
kr

1

robðstÞ
�

1

ro

� �2

; robðstÞ � ro

0 ; robðstÞ � ro

ð5Þ

8
><

>:

UnðstÞ ¼ UrðstÞ þ UaðstÞ ð6Þ

UðstÞ ¼
Umax � UnðstÞ

Umax

�
�
�
�

�
�
�
� ð7Þ

Q0ðs0; a0Þ ¼ UðstÞ ð8Þ

where, Ua(st) is the gravitational field producing gravitational force in state st; Ur(st) is the grav-

itational field producing gravitational force in state st; Un(st) is the total potential energy of

state st; ρg(st) is the Euclidean distance between state st and the center of the target point; ρob(st)
is the Euclidean distance between state st and the center of the obstacle; ρo is the obstacle influ-

ence factor; ka and kr are the scale factors; U(st) is the potential energy in state st; Umax is the

highest potential energy in state st

Action selection

To avoid obstacles and reach the target point with the short path length, eight directions of

movement are defined for the MR (north, northeast, east, southeast, south, southwest, west

and northwest). When the safe distance of MR is defined as rsd = 5m, the corresponding move-

ment and movement distance are:

action1: a1 = move north 10m;

action2: a2 ¼ move northeast 10
ffiffiffi
2
p

m;

action3; a3 = move east 10m;

action4: a4 ¼ move southeast 10
ffiffiffi
2
p

m;

action5: a5 = move south 10m;

action6: a6 ¼ move southwest 10
ffiffiffi
2
p

m;

action7: a7 = move west 10m;

action8: a8 ¼ move northwest 10
ffiffiffi
2
p

m
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Reward function

To solve this problem, a combined static and dynamic reward function is proposed in the

DMQL algorithm, which provides the target and current position as a priori knowledge to the

MR. When the MR is closer to the target position, the larger the reward obtained, prompting it

to move to the target position and speed up the convergence.

In this paper, two different sets of reward functions are set for the two working modes of

SSQL. The reward functions of the short path length are shown in Formulas 9 ~ 13. The

planned path is shown in Fig 1C.

reward ¼ rs � ð1þ rdÞ ð9Þ

rs ¼

1; hor: or ver:movement

2; stþ1 is the start node

1=
ffiffiffi
2
p

; diagonal movement

10; stþ1 is the target node

� inf; stþ1 is the forbidden node

ð10Þ

8
>>>>>>><

>>>>>>>:

dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðytarget � ytÞ
2
þ ðxtarget � xtÞ

2

q

ð11Þ

dtþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðytarget � ytþ1Þ
2
þ ðxtarget � xtþ1Þ

2

q

ð12Þ

rd ¼
dt � dtþ1

jdt � dtþ1j
ð13Þ

where, rs is the static reward; rd is the dynamic reward; dt is the Manhattan distance from the

target position in the state st; dt+1 is the Euclidean distance from the target position in the next

state st+1; (xt,yt) is the coordinate in the state st; (xt+1,yt+1) is the coordinate in the state st+1;

(xtarget,ytarget) is the coordinate in the target position.

The reward functions of the safe path length are the same with Formula 9, Formula 11, For-

mula 12 and Formula 13. Formula 10 is modified as Formula 14. The planned path is shown in

Fig 1D. By setting such a reward function the distance to the obstacle can be controlled.

rs ¼

1; hor: or ver:movement

2; stþ1 is the start node

1=
ffiffiffi
2
p

; diagonal movement

10; stþ1 is the target node

� inf ; the eight grids around stþ1

are the forbidden nodes

ð14Þ

8
>>>>>>>>>><

>>>>>>>>>>:

Short and safe condition path planning

In this paper, the proposed SSQL algorithm is applied to the path planning problem of MR,

and its basic ideas are as follows: the APF is used to initialize Q-table, to provide the prior

knowledge in the environment to the MR. The static and dynamic reward are combined to

optimize the reward function, to induce the MR to move toward the target point and control

the distance between MR and obstacles.
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To sum up, the flow of MR using SSQL algorithm is as follows: when MR is located at the

starting point, select the mode (short or safe condition path planning). When considering

MRs driving as far away from shoreline objects as possible to avoid collisions with reefs, the

safe condition is used. When distance and energy consumption are taken into account, short

condition path planning is used to path the shortest path length for MR. The combination of

the two models allows for better path planning for MRs based on actual situations.

Results and discussion

It is difficult to apply the SSQL algorithm directly to the path planning problem of MR, and it

requires repeated training to obtain the optimal action strategy, therefore, this paper demon-

strates the performance and generality of the SSQL through several numerical simulations in

this section.

Environments

This paper considers nine different environment maps for MR to validate our approach. Each

map is defined as a square grid environment with sides of length 20�2r (r is the radius of MR).

The simulation maps are represented by M01 to M09 as shown in Fig 2. The center of each

Fig 2. The number of iterations that path length converges to the optimum.

https://doi.org/10.1371/journal.pone.0275100.g002
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grid is marked by a Cartesian coordinate system, with the x-axis indicating the horizontal

direction and the y-axis indicating the vertical direction. The coordinates are expressed as (x,

y). The first and second dimensions of the grid map represent the x-horizontal and y-vertical

coordinates, respectively.

Performance metrics

To test the effectiveness, safety, and speed of the proposed SSQL algorithm in a comprehensive

and concrete way, the MR path is evaluated in three performance metrics: path length (For-

mula 15), turning angle (Formula 19), and computing time.

Path length (m)

Path LengthðmÞ ¼
Xn

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyiþ1 � yiÞ
2
þ ðxiþ1 � xiÞ

2

q

ð15Þ

where, i = 0,1,2,. . .,n, when i = 0, the MR is at the starting position S = (xo,yo), when i =n, the

MR is at the target position T = (xn,yn), (xi,yi) represents the coordinates of the current state of

the MR; (xi+1,yi+1) represents the coordinates of the next state of the MR.

Turning angle (rad)

The turning angle is the sum of the change in heading angle of MR from the start to the target.

When the turning angle is smaller, the path is smoother, less energy is consumed, and the

completion time of the mission is shorter. This paper defines the turning angle of MR from the

start to the target position as shown in Formula 16 ~ Formula 19.

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyi � yi� 1Þ
2
þ ðxi � xi� 1Þ

2

q

ð16Þ

bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyiþ1 � yiÞ
2
þ ðxiþ1 � xiÞ

2

q

ð17Þ

ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyiþ1 � yi� 1Þ
2
þ ðxiþ1 � xi� 1Þ

2

q

ð18Þ

AngleðradÞ ¼
Xn

i¼1

p � arcos
a2
i þ b

2
i � c

2
i

2 � ai � bi

� �

ð19Þ

where, i = 0,1,2,. . .,n, (xi,yi) represents the coordinates of the current state of MR; (xi+1,yi+1)

represents the coordinates of the next state of MR.

Computing time (s)

Computing time is consumed by the algorithm through iterative computation is denoted as

Time(s). The average value of 30 repeated tests in this paper is taken as the computing time.

The shorter computing time, the less waiting time for MR to execute the action.

Parameters selection

Before the SSQL algorithm is executed, the values of the two parameters: learning rate α
(0�α�1) and decay rate γ(0�γ�1) in the Q-value update Formula 1 need to be determined.

According to Watkins et al. [24], when the α value is small, the agent goes through all states in
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the environment and calculates all possible actions, and the Q value converges to the optimal

value. When the γ value is large, it can expand the exploration range of the agent and prevent

the agent from falling into the problem of local optimum. Therefore, based on the above the-

ory, when γ = 0.9, this paper records the number of iterations that path length converges to the

optimum (Fig 2). Repeat the test 30 times to take the average value, considering the computing

time of MR, both α and γ are taken as 0.9 [23].

To evaluate the generality and universality of the SSQL algorithm applied to the MR path

planning problem, the SSQL algorithm is compared with CQL (Classical Q-learning), PSO

(Particle Swarm Optimization), GWO (Grey Wolf Optimization) [28], DA [29] and MFO

(Moth-Flame Optimization) [30] in different simulation environments, respectively. PSO [31]

is the basic path planning comparison algorithm. It originates from the study of bird flock pre-

dation behavior, which is characterized by easy implementation; GWO is inspired by the lead-

ership hierarchy and hunting mechanism of the gray wolf in nature, which has the

characteristics of strong convergence performance and few parameters; DA and MFO are the

state-of-the-art algorithms. DA is inspired by the static and dynamic swarming behaviors of

dragonflies in nature, which has the advantages of strong stability, good search speed, and

global searchability, etc. MFO simulates the special navigation mechanism of moths using lat-

eral positioning during night flight, which has the performance characteristics of strong paral-

lel optimization ability, global superiority, and not easy to fall into local minima. To test the

SSQL algorithm proposed in this paper under the same conditions, the parameter settings of

the compared algorithms are shown in Table 1.

Table 1. Parameters setting of DFQL, CQL, PSO, GWO, DA, and MFO.

Algorithms Parameters Selection Max Pop
DFQL α = 0.9, γ = 0.9, ρo = 2, ka = 1.5, kr = 1.5 100 —

CQL α = 0.9, γ = 0.9 —

PSO c1 = 2, c2 = 2 30

o ¼ omax � Iter � ððomax � ominÞ=MaxÞ
ωmax = 0.9, ωmin = 0.2

GWO a = 2−Iter�(2/Max), C = 2�rand()

DA a ¼ 2 � randðÞ � ð0:1 � 0:1 � Iter=ðMax=2ÞÞ

c ¼ 2 � randðÞ � ð0:1 � 0:1 � Iter=ðMax=2ÞÞ

e ¼ 0:1 � 0:1 � IterðMax=2Þ

f = 2�rand()

r = 3+(Iter/Max)

s ¼ 2 � randðÞ � ð0:1 � 0:1 � Iter=ðMax=2ÞÞ

o ¼ omax � Iter � ððomax � ominÞ=MaxÞ
ωmax = 0.9, ωmin = 0.2

MFO t ¼ ð� 1þ Iter � ð� 1=MaxÞ � 1Þ � randðÞ þ 1, b = 0.9

where, Max is the maximumnumber of iterations, Pop is the population size; PSO: c1 and c2 are the learning factor, ω
is the linearly decreasing weight (LDW) (Tian et al., 2018), ωmax is the maximum inertia weight, ωmin is the

minimum inertia weight; GWO: a is a constant, the initial value is 2, and decreases linearly from 2 to 0 with the

iteration of the algorithm, C is a random number between 0 and 2; DA: a is the alignment weight, c is the cohesion

weight, e is the natural enemy weight factor, f is the prey weight factor, r is the neighborhood radius, and s is the

separation weight; MFO: t is the path coefficient, b is the logarithmic spiral shape constant; rand() denotes a random

number between [0,1], and Iter denotes the current iteration number.

https://doi.org/10.1371/journal.pone.0275100.t001
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Short path planning for mobile robot

In this section, a short path planning for MR using the SSQL is proposed. The proposed algo-

rithm enables the MR to perform the task with the shortest or shorter path length from the

starting point to the target point. To verify the effectiveness and generalizability of the pro-

posed algorithm, tests were conducted on the nine grip maps in Fig 3. Each map shows the

best path obtained by the SSQL algorithm (black solid line), S is the starting point and T is the

target point.

Fig 3. Short path planning (solution) for MR in different test environments (Each map shows the best path obtained by the SSQL algorithm, S is the

starting point and T is the target point).

https://doi.org/10.1371/journal.pone.0275100.g003
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The optimal (suboptimal or optimal under optimal conditions) results of SSQL in 30

repeated tests (the path with the smaller turning angle and computing time under the same

path length condition is taken) are shown in Fig 3 (the paths of other compared algorithms are

not indicated in Fig 3 for a clearer representation of the paths of SSQL). Experimental data

and analysis results were recorded in Table 2, and check whether there is a significant differ-

ence between SSQL algorithm and other comparison algorithms by t-test (considering 0.05

significance level). Compared mean path length of various path planning algorithms for MR

are shown in Fig 4.

Safe path planning for mobile robot

In this section, a safe planning for MR using the SSQL is proposed. The proposed algorithm

enables the MR to perform the task with the safe path length (keep away from obstacles)

from the starting point to the target point. To verify the effectiveness and generalizability of

the proposed algorithm, tests were conducted on the nine grip maps in Fig 3. Since the path

planned by the comparison algorithms (PSO, GWO, DA and MFO) cannot move away

from the obstacles, it usually adopts the way of expanding the obstacles to achieve the pur-

pose of planning the safe path. In this paper, the obstacles are expanded by one grid (1x1

expanded to 3x3 grids) to plan the path of the comparison algorithms. Each map shows the

best path obtained by the SSQL algorithm (black solid line), S is the starting point and T is

the target point.

The optimal (suboptimal or optimal under optimal conditions) results of SSQL in 30

repeated tests (the path with the smaller turning angle and computing time under the same

path length condition is taken) are shown in Fig 4 (the paths of other compared algorithms are

not indicated in Fig 5 for a clearer representation of the paths of SSQL).

Experimental data and analysis results were recorded in Table 3, and check whether there is

a significant difference between SSQL algorithm and other comparison algorithms by t-test

(considering 0.05 significance level). Compared mean path length of various path planning

algorithms for MR are shown in Fig 6.

It can be seen that in the nine test maps (Figs 3 and 5), the SSQL can effectively solve the

path planning problem of MR from the starting position to the target position without colli-

sion with obstacles under short path length condition, and it can achieve excellent results

(path length and turning angle) in majority of experiments except M02. The results demon-

strate that the proposed algorithm effectively reduces the random motion in the initial phase

of MR, further accelerating the convergence speed and reducing the computing time com-

pared to the CQL. Our method achieves the optimal path length and turning angle in different

environments, which demonstrates its practicality, generalizability, and robustness. Compared

to the existing methods, the proposed approach can effectively escape from trap points due to

local minima and find the optimal path. The limitation is that the computing time is longer

compared to the comparison algorithms, but it is within the acceptable range.

To demonstrate the superiority of the proposed algorithm over the CQL algorithm in terms

of path length turning angle and computing time. In this paper, the percentage improvement

on the CQL algorithm is recorded in Tables 4 and 5. The results demonstrate that the proposed

algorithm effectively reduces the random motion in the initial phase of MR, further accelerat-

ing the convergence speed and reducing the computing time.

Test results under nine different cases validate that:

1. Our approach has the shortest path length and smallest turning angle of MR for short and

safe path planning in all cases, compared with the comparison algorithms in this paper.
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Table 2. A comparison between SSQL, CQL, PSO, GWO, DA and MFO for short path planning. The lowest (best) both mean, standard deviation, and the values of

path length bigger than the level 0.05 of significance are highlighted.

Env Statistics SSQL CQL PSO GWO DA MFO

M01 Path Length Mean 269.68 290.18 346.61 274.56 353.05 316.54

Std. Dev. 3.11 38.59 12.88 5.96 16.32 27.86

t-test - 6.99e-3 5.54e-26 2.57e-4 2.21e-23 3.74e-10

Angle Mean 0.10 0.43 0.63 0.54 0.75 0.66

Std. Dev. 0.26 0.44 0.19 0.42 0.28 0.24

Time Mean 5.92 6.54 2.76 2.92 3.67 2.77

M02 Path Length Mean 310.49 314.39 317.52 309.71 315.56 313.81

Std. Dev. 2.97 6.36 11.13 0.00 9.36 10.45

t-test - 2.15e-3 3.28e-1 1.52e-6 2.92e-7 4.73e-1

Angle Mean 1.10 1.66 0.81 0.77 0.86 0.84

Std. Dev. 0.12 0.12 0.14 0.06 0.21 0.17

Time Mean 5.21 5.79 3.32 3.37 4.06 3.05

M03 Path Length Mean 293.30 297.01 308.14 299.94 327.87 309.12

Std. Dev. 4.46 6.36 12.59 9.52 14.38 9.89

t-test - 1.16e-2 5.20e-7 1.28e-3 1.89e-14 7.80e-10

Angle Mean 1.62 1.72 1.25 1.36 1.01 1.22

Std. Dev. 0.16 0.17 0.17 0.17 0.32 0.13

Time Mean 6.09 6.97 3.46 3.62 4.55 3.31

M04 Path Length Mean 242.47 246.88 261.22 247.43 261.22 265.08

Std. Dev. 5.47 6.42 18.51 14.24 21.13 12.08

t-test - 5.82e-3 6.54e-6 8.284e-2 4.41e-5 1.21e-11

Angle Mean 0.58 0.73 0.79 0.72 0.72 0.79

Std. Dev. 0.15 0.24 0.22 0.18 0.16 0.24

Time Mean 7.24 8.19 4.24 2.98 3.64 3.17

M05 Path Length Mean 249.04 256.22 264.21 278.58 285.20 256.50

Std. Dev. 8.47 20.98 27.49 25.33 28.96 15.45

t-test - 9.05e-2 6.64e-3 8.28e-2 4.41e-5 1.21e-11

Angle Mean 1.33 1.42 1.65 1.63 1.53 1.71

Std. Dev. 0.18 0.19 0.23 0.28 0.34 0.35

Time Mean 6.17 6.51 3.78 3.88 4.21 3.59

M06 Path Length Mean 249.93 253.25 276.18 277.02 277.02 269.56

Std. Dev. 4.72 6.35 28.26 26.98 26.98 20.71

t-test - 2.54e-2 2.10e-5 6.64e-6 6.64e-6 1.65e-5

Angle Mean 1.37 1.57 1.82 1.83 1.88 1.94

Std. Dev. 0.27 0.33 0.62 0.47 0.46 0.41

Time Mean 5.39 5.79 4.33 4.12 4.56 4.71

M07 Path Length Mean 238.23 249.55 255.63 248.73 250.40 248.74

Std. Dev. 6.31 15.79 15.55 14.38 13.28 12.24

t-test - 7.90e-4 1.53e-6 7.27e-4 4.88e-5 1.38e-4

Angle Mean 1.05 1.58 1.58 1.52 1.51 1.50

Std. Dev. 0.15 0.55 0.49 0.38 0.43 0.44

Time Mean 6.18 6.52 3.49 3.91 4.66 3.34

(Continued)
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2. The proposed approach has the smallest standard deviations among the comparison algo-

rithms in all cases, which demonstrates the superiority and stability of the DMQL algorithm

under different environments.

3. From the time results in Tables 2 and 3, it can be seen that DSQL has improved compared

to CQL, but the computing time slightly higher than PSO, GWO, DA and MFO.

4. The t-test results indicate that SSQL outperforms in all the cases because the values are

smaller than the level 0.05 of significance.

In Figs 3A and 5A, we test the long-distance obstacle free path planning scheme. In Figs 3

and 5B–5F, we design the local minimum problem, which will cause the mobile robot to easily

fall into the local optimum and cannot calculate the effective path. In Figs 3 and 5G–5I, we

design the path planning problem under the maze and dense obstacles that may be encoun-

tered in the real environment. Through these maps and comparison algorithms, it can be

proved that the proposed algorithm has the advantages of robustness, universality and wide

application range. The experimental results show that the SSQL algorithm can enable the

mobile robot to plan the path with the shortest distance and the smallest turning angle. The

sub optimal algorithm is GWO, which performs well in most experiments, but its robustness

and stability are not as good as SSQL. The performance of PSO is the worst in most experi-

ments, which is specifically manifested in that the path is far away from the obstacles, resulting

in the long path length, and the path is tortuous and the large turning angle. During the experi-

ment, CQL cannot find the global optimal solution due to its slow convergence speed, result-

ing in the path tortuous, large turning angle and long path length. On the other hand, the

biological heuristic algorithm is prone to premature convergence caused by falling into local

optimization, while the principle of Q-learning algorithm leads to that the SSQL algorithm can

finally find the global optimal solution under the condition that the time is long enough.

During the experiment, the mobile robot traverses the map to obtain the global informa-

tion, and finds the optimal path (optimal path length and turning angle) in the process of con-

tinuous interaction with the environment. These results of path planning for MR show that:

Our method achieves the optimal path length and turning angle in different environments,

which demonstrates its practicality, generalizability, and robustness. PSO performs blind ran-

dom search and cannot obtain the global map information, resulting in the inability to

Table 2. (Continued)

Env Statistics SSQL CQL PSO GWO DA MFO

M08 Path Length Mean 287.61 299.19 297.54 301.95 294.78 313.55

Std. Dev. 5.88 21.41 22.26 25.27 19.50 31.35

t-test - 7.32e-3 2.41e-2 4.82e-3 6.22e-2 1.02e-4

Angle Mean 1.33 1.51 1.85 1.53 1.68 1.68

Std. Dev. 0.16 0.32 0.68 0.34 0.56 0.48

Time Mean 6.94 7.51 3.35 3.92 3.51 3.47

M09 Path Length Mean 312.19 317.16 326.26 319.64 321.30 319.37

Std. Dev. 8.46 20.11 15.96 12.37 13.67 12.50

t-test - 2.01e-1 7.84e-5 6.60e-3 2.41e-3 9.17e-3

Angle Mean 1.30 1.52 1.83 1.84 1.78 1.79

Std. Dev. 0.17 0.43 0.52 0.53 0.60 0.53

Time Mean 6.15 6.35 3.31 3.97 4.28 4.12

https://doi.org/10.1371/journal.pone.0275100.t002
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calculate the optimal or suboptimal solution, and lead to long computing time. DA introduces

the initial population individual optimization mechanism and adds the local rationality judg-

ment mechanism, which makes the algorithm easy to fall into the local minima when calculat-

ing the best result. GWO and MFO have achieved excellent results in the comparison

algorithm, which is to explore the search space widely, but it still cannot find the global optimal

solution like SSQL. Compared to the existing methods, the proposed approach can effectively

escape from trap points due to local minima and find the optimal global path. The limitation is

that the computing time is longer compared to the comparison algorithms, but it is within the

acceptable range.

In the application of mobile robot path planning, different working modes can be adopted

according to the size of the mobile robot, the density of obstacles in the environment and the

Fig 4. Compared mean path length of various path planning algorithms for MR (The interval on each bar denotes the standard deviation of the path

length).

https://doi.org/10.1371/journal.pone.0275100.g004
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actual needs. When the mobile robot aims to reach the target point as soon as possible, the

short path planning mode of SSQL can be used to make the mobile robot reach the target with

the shortest path length and turning angle. When the purpose of the mobile robot is to avoid

collision with obstacles, the safe path mode can be adopted, and the mobile robot will plan the

feasible path away from the obstacles. The combination of the two modes can be better applied

in the working environment according to the actual use of mobile robots.

Fig 5. Safe path planning (solution) for MR in different test environments (Each map shows the best path obtained by the SSQL algorithm, S is the

starting point and T is the target point).

https://doi.org/10.1371/journal.pone.0275100.g005
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Table 3. A comparison between SSQL, CQL, PSO, GWO, DA and MFO for safe path planning. The lowest (best) both mean, standard deviation, and the values of

path length bigger than the level 0.05 of significance are highlighted.

Env Statistics SSQL CQL PSO GWO DA MFO

M01 Path Length Mean 269.09 296.43 347.39 297.79 352.86 321.23

Std. Dev. 2.14 42.16 11.98 35.66 14.14 28.18

t-test - 1.34e-3 1.76e-26 1.32e-4 5.75e-25 4.58e-11

Angle Mean 0.08 0.51 0.73 0.62 0.82 0.72

Std. Dev. 0.22 0.47 0.28 0.46 0.31 0.30

Time Mean 5.46 6.14 2.74 2.87 3.52 2.77

M02 Path Length Mean 316.34 318.69 320.25 317.71 319.47 319.86

Std. Dev. 2.03 2.98 9.41 2.87 6.94 8.56

t-test - 7.92e-4 3.35e-2 3.79e-2 2.37e-2 3.59e-2

Angle Mean 1.20 1.71 1.22 0.98 0.99 1.07

Std. Dev. 0.25 0.16 0.58 0.47 0.44 0.50

Time Mean 6.29 6.77 3.76 3.43 3.92 3.09

M03 Path Length Mean 299.94 302.48 308.53 304.82 325.13 310.29

Std. Dev. 5.18 7.16 12.15 9.49 13.54 8.19

t-test - 1.22e-1 9.81e-4 1.73e-2 1.60e-11 3.98e-7

Angle Mean 1.59 1.72 1.42 1.48 1.22 1.42

Std. Dev. 0.12 0.17 0.30 0.25 0.43 0.27

Time Mean 6.22 6.57 3.64 3.22 4.17 3.51

M04 Path Length Mean 254.76 261.10 264.76 259.26 268.69 278.38

Std. Dev. 7.34 9.89 17.44 10.48 17.24 16.71

t-test - 6.71e-3 6.21e-3 5.929e-2 2.20e-4 1.45e-8

Angle Mean 1.57 1.90 1.51 1.38 1.43 1.53

Std. Dev. 0.25 0.76 0.62 0.70 0.82 0.56

Time Mean 5.92 6.28 3.26 3.69 5.12 4.21

M05 Path Length Mean 270.13 281.67 279.62 284.58 296.93 283.94

Std. Dev. 12.29 22.96 24.28 18.20 20.21 19.97

t-test - 1.93e-2 6.27e-2 7.06e-4 1.22e-7 2.26e-3

Angle Mean 1.18 1.42 1.59 1.58 1.56 1.67

Std. Dev. 0.22 0.29 0.34 0.36 0.38 0.43

Time Mean 5.71 6.29 4.14 3.24 4.56 3.72

M06 Path Length Mean 257.65 273.41 293.69 293.59 284.20 286.96

Std. Dev. 1.91 25.25 25.76 27.76 28.74 27.96

t-test - 1.92e-3 1.87e-8 8.35e-8 2.17e-5 3.26e-6

Angle Mean 2.18 2.41 2.14 2.48 2.65 2.70

Std. Dev. 0.50 0.76 0.73 0.69 0.53 0.57

Time Mean 7.34 7.72 4.18 3.55 4.52 4.12

M07 Path Length Mean 321.99 332.45 340.97 355.83 361.49 335.95

Std. Dev. 19.67 50.16 37.69 31.20 41.76 49.91

t-test - 2.94e-1 1.86e-2 7.10e-6 3.01e-5 1.62e-1

Angle Mean 3.20 3.33 3.60 3.48 3.83 4.00

Std. Dev. 0.61 1.49 1.28 1.17 1.21 1.20

Time Mean 5.41 5.87 3.72 4.15 4.52 5.51

M08 Path Length Mean 313.13 325.94 333.84 329.88 318.64 326.12

Std. Dev. 15.76 30.24 27.60 29.52 32.23 30.39

t-test - 4.57e-2 8.54e-4 8.81e-3 4.06e-1 4.37e-2

Angle Mean 1.34 1.56 1.85 1.59 1.63 1.75

Std. Dev. 0.17 0.29 0.65 0.29 0.53 0.43

Time Mean 6.63 7.52 3.72 3.82 4.91 4.51

(Continued)
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Table 3. (Continued)

Env Statistics SSQL CQL PSO GWO DA MFO

M09 Path Length Mean 315.84 324.33 329.28 322.92 328.99 324.75

Std. Dev. 1.13 19.86 13.24 11.27 9.39 12.20

t-test - 2.64e-2 5.35e-6 1.82e-3 1.77e-8 4.07e-4

Angle Mean 1.33 1.83 1.93 1.87 1.74 1.86

Std. Dev. 0.18 0.40 0.47 0.52 0.53 0.45

Time Mean 5.15 5.62 3.71 3.24 4.79 4.53

https://doi.org/10.1371/journal.pone.0275100.t003

Fig 6. Compared mean path length of various path planning algorithms for MR (The interval on each bar denotes the standard deviation of the path

length).

https://doi.org/10.1371/journal.pone.0275100.g006
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Conclusions

In this paper, the SSQL for MR path planning algorithm is proposed, and simulation experi-

ments are conducted according to the short and safe condition of MR in different environ-

ments. Two modes are switched for practical work, which can effectively solve the MR path

planning problem, saving energy and time. By combining APF with the Q-learning algorithm

to initialize the Q-table and setting the static and dynamic reward function to provide the

prior knowledge in the environment to the MR, the convergence speed and computation time

of CQL are accelerated.

To demonstrate the effectiveness and generality of the proposed algorithm, simulation

experiments are set up for the maritime environments, fully considering the reefs around the

coast in the actual work. It demonstrates the proposed SSQL algorithm can effectively solve

the path planning problem for MR, and the mean, standard deviation and t-test of the data

analysis show that the proposed algorithm yields the smallest path length and smoothness,

which significantly speeds up the computation time and convergence speed of the CQL. The

problem of MR falling into local minima and not being able to derive effective paths is avoided.

The results show that the SSQL algorithm does not have precocity and can calculate the opti-

mal solution, and it can be further seen that PSO, GWO, DA, and MFO are more prone to pre-

cocity in the environment with sparse obstacles.
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Table 4. Comparison of algorithm performance between SSQL and CQL in short path planning.

Path length vs CQL Angle vs CQL Time vs CQL

M01 7.06% 76.74% 9.48%

M02 1.24% 33.73% 10.02%

M03 1.25% 5.81% 12.63%

M04 1.79% 20.55% 11.60%

M05 2.80% 6.34% 5.22%

M06 1.31% 12.74% 6.91%

M07 4.54% 33.54% 5.21%

M08 3.87% 11.92% 7.59%

M09 1.57% 14.47% 3.15%

https://doi.org/10.1371/journal.pone.0275100.t004

Table 5. Comparison of algorithm performance between SSQL and CQL in safe path planning.

Path length vs CQL Angle vs CQL Time vs CQL

M01 9.22% 84.31% 53.19%

M02 0.74% 29.82% 7.09%

M03 0.84% 7.56% 5.33%

M04 2.43% 17.37% 5.73%

M05 4.10% 16.90% 9.22%

M06 5.76% 9.54% 4.92%

M07 3.15% 3.90% 7.84%

M08 3.93% 14.10% 11.84%

M09 2.62% 27.32% 8.36%

https://doi.org/10.1371/journal.pone.0275100.t005
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