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Abstract

Particle swarm optimization and genetic algorithms are two classes of popular heuristic
algorithms that are frequently used for solving complex multi-dimensional mathematical
optimization problems, each one with its one advantages and shortcomings. Particle swarm
optimization is known to favor exploitation over exploration, and as a result it often con-
verges rapidly to local optima other than the global optimum. The genetic algorithm has the
ability to overcome local extrema throughout the optimization process, but it often suffers
from slow convergence rates. This paper proposes a new hybrid algorithm that nests parti-
cle swarm optimization operations in the genetic algorithm, providing the general population
with the exploitation prowess of the genetic algorithm and a sub-population with the high
exploitation capabilities of particle swarm optimization. The effectiveness of the proposed
algorithm is demonstrated through solutions of several continuous optimization problems,
as well as discrete (traveling salesman) problems. It is found that the new hybrid algorithm
provides a better balance between exploration and exploitation compared to both parent
algorithms, as well as existing hybrid algorithms, achieving consistently accurate results
with relatively small computational cost.

1. Introduction

In recent years, there has been an increasing need for swift and accurate solutions to complex
problems in many fields, such as science, engineering, manufacturing, finance etc., which has
led to the development and implementation of a variety of modern mathematical optimization
algorithms. With the constant rise in the computational power of CPUs, the use of heuristic
algorithms is becoming increasingly more popular in recent decades. Heuristic optimization
algorithms are particularly suitable for complex and computationally heavy multivariate prob-
lems that exhibit a plethora of local extrema. This is because, unlike gradient algorithms, they
rely on the use of a random population of candidate solutions (“individuals” or “particles”)
inside the search space. The goal of finding the best solution (global optimum) is pursued
through an iterative procedure that considers a variety of interactions within the population.
An effective heuristic algorithm is expected to ensure the quick and repeatable convergence to

PLOS ONE | https://doi.org/10.1371/journal.pone.0275094 September 23, 2022

1/24


https://orcid.org/0000-0003-0074-7422
https://doi.org/10.1371/journal.pone.0275094
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275094&domain=pdf&date_stamp=2022-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275094&domain=pdf&date_stamp=2022-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275094&domain=pdf&date_stamp=2022-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275094&domain=pdf&date_stamp=2022-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275094&domain=pdf&date_stamp=2022-09-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275094&domain=pdf&date_stamp=2022-09-23
https://doi.org/10.1371/journal.pone.0275094
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/Aivaliotis/SGA

PLOS ONE

Swarming genetic algorithm

a satisfactory solution. As such, the creation of an efficient heuristic algorithm requires the bal-
ance of two major factors: exploration and exploitation. Exploitation is the algorithm’s ability
to converge fast to a solution, whereas exploration is the ability to overcome local extrema suc-
cessfully, thus reaching the global optimum.

Various heuristic algorithms have been proposed so far in the scientific literature, such as
the Genetic Algorithm [1], Simulated Annealing [2], Tabu search [3], Particle Swarm Optimi-
zation [4], Ant Colony Optimization [5], Differential Evolution [6], Shuffled Frog-Leaping
Algorithm [7], Invasive Weed Optimization [8], Artificial Bee Colony [9], Gravitational Search
Algorithm [10], Grey Wolf Optimizer [11, 12], MTDE [13], NMPA [14]. Researchers have also
combined different algorithms to produce hybrid versions possessing improved performance,
e.g. ANGEL [15], PSOGSA [16], SELA-IWO [17], GGWO [18], WOA [19], AOA [20], m-
SCBOA [21], FRCSA [22]. The present study focuses on the Genetic Algorithm and the Parti-
cle Swarm Optimization, and their combination into hybrid algorithms.

Evolutionary algorithms are a sub-set of heuristic algorithms, with the Genetic Algorithm
(GA) introduced by Holland [1] being one of the most used and well known. GA is based on
the principles of natural evolution and the concept of the survival of the fittest. The sets of opti-
mization variables are treated as chromosomes that are subjected to the three main genetic
operators, namely selection, crossover and mutation, in order to achieve a better solution with
each subsequent generation. GA favors exploration over exploitation and, as a consequence,
its convergence is often slow [23].

Particle Swarm Optimization (PSO) is a social evolutionary algorithm developed by Ken-
nedy & Eberhart [4] based on swarm intelligence. It was inspired by the social behavior of
flock of birds and school of fishes. The sets of optimization variables are treated as particles
in the search space, where the position of a particle is a solution to the studied problem.
Each particle is moving in the search space iteration by iteration according to its score, i.e.
the corresponding value of the objective function (personal aspect), relative position to
other particles (social aspect) and inertia (change of location in previous iteration). PSO is a
fast-converging algorithm favoring exploitation over exploration, but as a result the algo-
rithm is susceptible to getting trapped in local extrema, thus failing to yield the true (global)
optimal solution.

In order to alleviate the inherent shortcomings of each of the individual methods,
researchers have proposed several hybrid algorithms by combining GA and PSO operations,
with the basic idea being the achievement of better balance between exploration and exploi-
tation [16, 23-28]. In these algorithms, GA is usually responsible for the exploration, while
PSO focuses in providing improved convergence speed. The hybrid algorithms differ
between each other in the details of the coupling of the GA and PSO, e.g. whether a method
is nested inside the other (and which) or they are conducted in parallel, and how they inter-
act (i.e. how the outcome of one method influences the computations of the other). For
example [25], proposed a hybrid form of PSO with the incorporation of GA’s mutation prop-
erty, thus providing PSO with an escape route from local extrema. A different adaptation
was proposed in [28] with coupled parallel GA and PSO operations. Jeong et al. [23] applied
a similar parallel combination to multi-objective optimization. Herein, a new hybrid
approach is proposed combining GA and PSO. Its novelty lies on that the PSO is nested
inside the GA and applied to only a part of the GA population, aiming to achieve a better bal-
ance between exploration and exploitation compared to existing hybrid methods. The per-
formance of the new approach is tested and compared with that of parent algorithms and
two existing hybrid algorithms for two sets of continuous benchmark problems, as well as a
set of discrete (traveling salesman) problems.
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2. Algorithms

In this section, we first provide the framework for GA and PSO in the form they are employed
in this study. Subsequently, we present the proposed hybrid algorithm, along with two existing
hybrid algorithms from which inspiration was drawn [25, 26].

2.1 Genetic algorithm

Being among the earliest heuristic methods, genetic algorithms have seen widespread applica-
tion in many scientific fields. In GA, each candidate solution x; = {x; jx, .. . ..xp,} to the prob-
lem is termed an “individual” or “chromosome”, with the free (optimization) scalar variables
x; being considered “genes”. The size M of the population of individuals to be the considered
in the search space at the start of the solution process is set by the user. The algorithm begins
by randomly creating sets of genes for the M individuals and then evaluating the objective
function f(x;) for each individual. One of the individuals (the global best) would yield the best
current solution f(xgp), i.e. min{f(x,),. . .,f(xy)} for minimization problems or max{f(x,),. . .,f
(xpp)} for maximization problems.

Since the basic concept of the algorithm is the “survival of the fittest”, a fitness level Lpr is
assigned to each individual j, representing the suitability of the solution compared to its peers:

ACEY
LFTJ - f(xj) (1)

Before the next iteration of the algorithm, a group of individuals (either randomly selected
or targeted) is subjected to random mutations of the chromosomes and crossover breeding.

The mutations are instrumental for avoiding convergence to a sub-optimal solution by
keeping the individuals uncluttered. For continuous problems, mutations can be done by add-
ing to (or subtracting from) x; a random percentage of the width W; of the search space in the
corresponding (i™) dimension as follows:

xf;m“) = xg") +rand_ - R-W, (2)

where rand,,, are random real numbers between -1 and 1, and R is the maximum possible per-
centage change, which is usually a parameter selected by the user. Eq (2) applies provided that

the mutated individual remains inside the search space and any optimization constraints are
(iter+1)
ij

equal to the closest limiting value (i.e. max x; or min x;).

satisfied. In case x computed using Eq (2) falls outside the search space, its value is set

Crossover provides the means for convergence by combining two individuals to create a
new one (offspring) to be used in the next iteration of the algorithm. For continuous problems,
an offspring may be created through arithmetic crossover [29] as a linear interpolation (it can
be seen also as a weighted average) between two existing solutions (parents), as follows:

x(oﬂspring) = l.andcr o x(parentl) + (1 - randcr) o x(parentZ) (3)

where rand,, is a vector of random numbers between 0 and 1. In order to completely replace
the two parents before the next iteration, a second offspring is created by swapping the weight
factors rand, and (1-rand,).

Elitist selection is often employed in GA, i.e. a proportion of best individuals of the popula-
tion (elite group) is retained to the next generation. More recently, in order to enhance the
exploitation capabilities of GA, elitist crossover is also considered, i.e. crossover is focused in a
group of best performing individuals [30, 31]. Fig 1 shows schematically the aforementioned
mutation and crossover processes.
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Fig 1. Schematic representation of GA mutation and crossover.

https://doi.org/10.1371/journal.pone.0275094.9001

The above procedure is repeated iteratively until a set of specified stopping criteria are met
(e.g. exceedance of a maximum number of iterations or the global best remains constant for a
given number of iterations). The sequence of these steps is shown in the form of flow chart in
Fig 2.

2.2 Particle swarm optimization

PSO operates by moving the individuals (particles) in the multi-dimensional search space in a
geometric manner. The method starts by generating a preset number (M) of particles at ran-
dom positions. Each particle j has a vector indicating its current position (x;) and a vector sym-
bolizing its spatial velocity v; i.e. the change of particle position between successive iterations.

Termination

Termination
criteria met?

Sort population by
Fitness level

Evaluation of
Fitness level

Initialize
population

Genetic operations
Re-evaluation of - Selection
Fitness level - Mutations
- Crossovers

Fig 2. Typical flow chart for genetic algorithm.
https://doi.org/10.1371/journal.pone.0275094.9002
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Every particle has also a “memory” of its best position (xpg j), which is kept along with the
global best position (xp) of the entire population. Both xpp j and xgp are acting as attractors
for particle j. At the start of the algorithm, the particles’ initial velocities are set equal to zero.
Each particle velocity at subsequent steps is set to be directly proportional to 1) its previous
velocity (inertial component), 2) the distance of the current particle position from the global
best (social component) and 3) the distance from its personal best (personal component),
according to the following equation:

(iter+1)

v, — - Vj(iter) +¢, -rand, o (xgg') _ Xj(iter)) +¢, - rand, o (xﬁf;ﬁ;) _ xj(iter)) (4)

where rand; and rand, are vectors of random numbers between 0 and 1, and c¢; and ¢, are con-
stants scaling the “social” and “personal” gravitational components, respectively. The factor w
is an “inertia” coefficient controlling the influence of the current velocity value to that of the
next iteration. Once the new velocity is stablished using Eq (4), the new particle position is cal-
culated as

(iter+1) __  (iter) (iter+1)
X; =X +v; (5)

Fig 3 shows a schematic representation of the inertial, social and personal velocity
components.

This procedure is repeated iteratively until a set of specified convergence and stopping cri-
teria are met (Fig 4). Common practice is to set the inertial factor w to decrease (e.g. linearly or
exponentially) as the iteration number increases, a technique often referred as “damping”, in
order to facilitate convergence [32]. Herein, we set w to decrease linearly with the number of

global best

W,v[current)

current

= c,rand,°(Xp-x\curen)
position T e

V‘r‘ng‘..:

new position
A previous
position

>
Xy

Fig 3. Schematic representation of PSO velocity components.

https://doi.org/10.1371/journal.pone.0275094.9003
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Fig 4. Flow chart for particle swarm optimization.

https://doi.org/10.1371/journal.pone.0275094.g004

iterations:

iter

(6)

max Wmin)

maxiter

where Wy and W, are the maximum (initial) and minimum values of the inertial factor,
and maxiter is the maximum allowed number of iterations. For the PSO to be able to achieve
convergence, the w,,;, needs to be well below 1.0.

2.3 Hybrid algorithms

2.3.1 HPSOM. The standard PSO is formulated in such a way that convergence to a solu-
tion is guaranteed, provided that w is set initially or becomes eventually less than unity. This is
because the particles tend to converge with successive iterations to a global best, where both
social and personal velocity components become zero. However, there is no guarantee that
this solution is the global optimum and not a local one. To alleviate this major shortcoming
and in order to boost the exploration prowess of the PSO algorithm, Esmin et al. [26] proposed
the incorporation of particle mutations. In their algorithm, which is called Hybrid Particle
Swarm Optimizer with Mutation (HPSOM)), in each iteration once PSO calculations are com-
pleted, a group of particles is randomly chosen to undergo mutation (Eq 2). HPSOM can be
seen as connecting the PSO and GA processes in series, with PSO preceding GA and with
absence of crossovers.

2.3.2 PGPHEA. Shij etal. [28] proposed an algorithm combining PSO and GA in parallel,
named PSO-GA parallel hybrid evolutionary algorithm (PGPHEA). The algorithm starts by
setting an initial population divided in two random sub-populations, one undergoing GA
computations while the other PSO. For a user-defined number of iterations (#.), each sub-
population is undergoing its optimization algorithm without any interaction. Every n, itera-
tions, there is an exchange of a fixed proportion of randomly selected individuals between the
two sub-populations. After each exchange, the global bests are redefined in each group and the
process is repeated until reaching the set termination criteria (Fig 5). Herein, the two sub-pop-
ulations are set to be of equal size, following [23]. Moreover, once the exchanged individuals
enter PSO, their personal best is set equal to themselves and the inertial velocity component is
set equal to zero.
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Fig 5. Flow chart for PGPHEA algorithm.
https://doi.org/10.1371/journal.pone.0275094.9005

3. Swarming genetic algorithm

The main idea of the proposed hybrid algorithm is to incorporate the fast convergence capabil-
ities of PSO in the strongly exploratory GA. The hybrid algorithm formulated herein, named
Swarming Genetic Algorithm (SGA), nests PSO loops inside external loops of GA, as shown in
Fig 6 and in the form of pseudo-code (Fig 7). Every n, iterations of GA, a small sub-group
(Mp) of the global population (Mg) is randomly selected to undergo PSO calculations for a
specified number of iterations 7, Each time a block of 1, PSO iterations starts, the initial parti-
cle velocities are set equal to zero and the personal bests are reset to the current position of the
corresponding particles, while the global best is re-evaluated based on the outcome of the pre-
ceding GA calculations for the current PSO sub-population. In other words, PSO does not
retain a memory of the previous block of PSO calculations. After n,, iterations, the PSO sub-
group is re-introduced to the overall population, which then undergoes new GA operations of
mutations and crossovers. The sub-group that undergoes PSO usually converges rapidly to a
solution, but given that the rest of the population is unaffected by the nested PSO, the algo-
rithms maintain the strong exploratory character of the standard GA. Computations terminate
once certain criteria are met, e.g. the cumulative number of evaluations of the objective func-
tion 7y, reaches a preset limit #,,,,. From Figs 6 and 7, it can be seen that the added complex-
ity of nesting PSO calculations in GA is minimal and, as it will be shown in the following
section, the proposed hybrid algorithm is competitive regarding its computational cost.

4. Benchmark tests

In this section, the performance of SGA is compared against GA [1], PSO [4], HPSOM [26]
and PGPHEA [28] for continuous as well as discrete (traveling salesman) single-objective opti-
mization problems, both in terms of effectiveness in finding the global optimum and computa-
tional time efficiency.
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Fig 6. Flow chart for the proposed hybrid algorithm.
https://doi.org/10.1371/journal.pone.0275094.9006

4.1 Continuous problems

Two sets of continuous single-objective optimizations problems are considered herein. The
first (Set A) contains 14 standard optimization functions with dimensions D (i.e. number of
optimization variables) in the 2 to 30 range. The second set (Set B) contains the single-objec-
tive optimization problems of the CEC 2017 benchmark suite [33, 34] with D set equal to 50.
All the problems of the second set are constrained and more demanding than those of the first
set. Due to the probabilistic nature of the heuristic algorithms, each time a problem is solved
with a given algorithm a different result may be produced. Hence, each algorithm was tested
100 consecutive times for each optimization problem. The performance of the algorithms is
compared based on various metrics, such as the average and maximum errors, the Overall
Effectiveness (OE) [35], and then ranked accordingly. The results are also analyzed using two
statistical tests i.e., the Wilcoxon signed-rank test [16, 35], with the hypothesis that SGA pro-
vides smallest error, and the Friedman test.

The overall population size for all methods was equal to 100. The algorithmic parameters
for PSO are set ¢; = ¢; = 2, Wiax = 1 and wpi, = 0.001. Moreover, a maximum limit was set to
the particle velocity equal to 50% of the width of the search space. For the hybrid algorithms,
the algorithmic parameters for the PSO component are the same as above, except in PGPHEA
where they were increased t0 Wy, = 2 and wyy;, = 0.01, as trials showed that this improves the
performance of PGPHEA (S1 Table in S1 File). For the standard (non-hybridized) GA, an elite
group of 30% of the population is isolated in order to undergo elite crossover, while 10% of the
population undergoes mutation and 60% undergoes crossover, both randomly selected. In the
GA component of the hybrid algorithms, 20% of the population undergoes mutations, 60% is
derived from crossovers, and 20% is isolated for elite crossover operations. For PGPHEA, the
number of iterations for a population exchange to happen is #n. = 100 steps. In SGA, in every
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SGA algorithm

Input: Global population (Mg), PSO sub-population (Mp), np, ng, nmax, PSO parameters, GA
parameters

Output: Global optimum

1. Begin
2. Initialize (Randomly creating Mg individuals in the search space)
3. While 7reval < max

4. Foritg=2tong

5. Breed individual to create offspring X(oftspring) using Eqgs. (2) and (3)
6. Evaluate Lrr using Eq. (1)

7 Update Global Best

8 Randomly select Mp individuals to undergo PSO

9. Initialize PSO Global Best and Particles’ Personal Best

10. End

11. Foritp=1tony

12.  Update vj using Eq. (4), x; using Eq. (5) and w using Eq. (6)
13.  Update PSO Global Best

14. End

15. Update Global Best of entire population

16. End

17. Return Global Best
18. Finish
Fig 7. Pseudocode of the proposed hybrid algorithm.

https://doi.org/10.1371/journal.pone.0275094.9007

iteration (ng = 1) of GA (external loop) 20% of the population is randomly selected to undergo
n, = 100 PSO iterations (internal loop). For HPSOM, 20% of the population is set to undergo
mutation, as it was found that higher percentages caused the algorithm to become unstable.
The parameter maxiter in Eq (6) of PSO operations was set equal to 7, and 7. for SGA and
PGPHEA, respectively. For PSO and HPSOM, maxiter = 2000.

The above algorithmic parameters and settings are considered as optimal and were estab-
lished via several preliminary trial runs for the whole sets of continuous test functions that are
considered herein. All calculations were performed on an Intel™ i7-11800H processor using
scripts programmed in Matlab.

4.1.1 Set A. The continuous problems of Set A are standard benchmarking optimization
functions (f;-f14) [28, 36, 37] and are shown in Table 1, along with their search spaces and the
number D of optimization variables (dimensions).

The global optima for the above benchmark problems are shown in Table 2. Table 1 con-
tains mostly unconstrained minimization problems, with the exception of f; and f; [28] which
pertain to constrained maximization. In order to convert the latter to unconstrained minimi-
zation problems (to make the studied cases more homogenous) with global optimum equal to
zero, the following conversion was implemented:

1

f7 () = 100 - 11.68 — (f;(x) + pen.)| + 0.01
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Table 2. Global optima for objective functions f; —f; 4.

Function Global optimum

f 0

f 0

f 0

fa -2.60E+89
fs 0.998004
fs -3.32237
1 0

5 0

fo 0

fio -4.15581
fu -959.641
fiz -1

fris -186.731
fia 0

https://doi.org/10.1371/journal.pone.0275094.t1002

F(x) = 100 - ! (7B)
| —1.3777 — (fy(x) + peny)| + 0.01

pen; = 1000(g, ;)" + 1000(g, ;)* (8A)

peng = 1000(g, 5)* + 1000(gy 5)* (8B)

where pen; and peng are penalty terms introducing in the objective functions the enforcement
of the respective constraints in the form used in [28], and < > are the Macauley brackets (i.e.
<x> =x for x>0, otherwise = 0). With this transformation, the search range for the optimiza-
tion variables of the modified functions f,* and fg* is 0 to 100.

For all algorithms, computations are terminated once the cumulative number of evaluations
of the objective function exceeds 40020 (termination criterion). The average error and maxi-
mum error from the 100 consecutive runs are shown in Tables 3 and 4, respectively, where
grey shading marks the best performing algorithms in each case. These results are also com-
pared graphically in Fig 8.

It can be seen that SGA exhibits the best OE (64.29%), while there are significant statistical
differences based on the Friedman test (p-value = 7.6828e-04). Nonetheless, it should be noted
that the Wilcoxon test (Table 5) did not find significant differences between SGA and
PGPHEA for the specified significance level. Moreover, PGPHEA vyields the smaller errors
than SGA in problem f, and f1,4. In most of the cases (most notably f; and f;), PSO gets trapped
in local optima due to its limited exploration capabilities. Among PGPHEA and HPSOM,
PGPHEA appears to achieve better convergence than HPSOM (Table 6). It is also interesting
to note that in certain cases (most notably f,, 15, fs, fo) HPSOM vyields larger errors than PSO.
This indicates that the frequent mutation imposed on the PSO particles was making the algo-
rithm less efficient for the specific functions.

The observation that SGA provided better results for a given number of objective function
evaluations does not necessarily mean that it is the most computationally efficient. This is
because the other calculations in each algorithm (e.g. generation of random numbers,
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Table 3. Comparison of average error in finding the global optimum of functions f;-f14.

Function PSO GA SGA PGPHEA HPSOM
f 1.72E+05 1.03E+03 2.81E+01 4.30E+01 2.52E+05
f 1.17E-14 4.68E+01 2.15E-16 3.86E-16 5.60E+02
f 3.42E+01 2.47E+01 1.29E+01 2.22E+01 1.27E+02
fa 5.21E+88 2.60E+89 0.00E+00 0.00E+00 0.00E+00
fs 0.00E+00 7.11E-01 0.00E+00 8.88E-18 6.97E-16
fs 8.39E-02 2.06E-03 3.31E-02 7.98E-03 5.19E-02
fr 1.38E-05 2.80E+00 4.73E-12 1.32E-10 5.28E+01
fs 5.87E-10 2.41E-02 5.68E-14 3.50E-12 8.66E+00
fo 1.68E-16 8.85E-01 2.38E-48 5.89E-30 1.10E+01
fio 6.83E-02 9.27E-02 3.09E-02 3.54E-05 2.32E-11
fu 2.67E+00 9.56E+01 7.82E+00 1.92E+01 1.02E+01
fiz 0.00E+00 2.32E-09 0.00E+00 0.00E+00 3.88E-11
fiz 8.38E-14 1.42E-02 9.35E-14 1.10E-13 1.26E-08
fia 3.66E+03 6.01E+03 2.29E+03 1.90E+03 1.92E+03

W/T/L 2/2/10 1/0/13 6/3/5 1/2/11 1/1/12
OE% 28.57% 7.14% 64.29% 21.43% 14.29%

https://doi.org/10.1371/journal.pone.0275094.t003

algebraic operations of GA crossovers and PSO velocities) and their relative proportions result
in differences in computational cost among the algorithms. Moreover, an algorithm, although
not achieving the minimum error, may approach the global optimum to a practically adequate
degree faster than the algorithm that yields the least error. To investigate this aspect, the con-
vergence speed, i.e., the evolution of the average fitness (of the 100 runs) with CPU time (as
reported by Matlab), is plotted in Fig 9. The fitness is defined herein as

o 1 .
fitness = error,, + 0.01 ®)
Table 4. Comparison of maximum error in finding global optimum of functions f;-f14.

Function PSO GA SGA PGPHEA HPSOM

h 1.00E+06 3.96E+03 3.49E+02 1.88E+02 1.08E+06

f 2.18E-13 9.15E+01 4.44E-16 6.66E-16 1.99E+03

f 6.37E+01 4.48E+01 2.89E+01 4.58E+01 2.26E+02

fa 2.60E+89 2.60E+89 0.00E+00 0.00E+00 0.00E+00

fs 0.00E+00 5.10E+00 0.00E+00 2.22E-16 3.11E-15

fs 1.92E-01 1.19E-01 1.19E-01 1.19E-01 1.23E-01

f7 1.36E-03 1.79E+01 1.80E-10 1.98E-09 9.50E+01

fs 5.42E-08 1.39E-01 1.66E-12 7.11E-11 6.44E+01

fo 3.49E-15 2.10E+00 1.18E-46 1.42E-28 3.96E+01

fro 1.41E+00 1.96E+00 1.66E+00 2.41E-03 7.34E-10

i 1.01E+02 2.44E+02 6.51E+01 2.08E+02 2.41E+02

fiz 0.00E+00 1.67E-08 0.00E+00 0.00E+00 5.88E-10

fi3 1.14E-13 2.10E-01 1.14E-13 1.14E-13 1.82E-07

fia 5.14E+03 6.37E+03 3.57E+03 3.10E+03 3.34E+03

W/T/L 0/3/11 0/0/14 6/5/3 2/4/8 1/1/12
OE% 21.43% 0.00% 78.57% 42.86% 14.29%
https://doi.org/10.1371/journal.pone.0275094.t1004
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Fig 8. Comparison of algorithmic performance in solving the continuous problems of Set A: a) average error, b) maximum error in
predicting the global optimum.

https://doi.org/10.1371/journal.pone.0275094.9008

The perfect fitness is equal to 100, meaning that the error is equal to zero.

In unconstrained optimization problems f, & f5 and the constrained problems f; & fs, SGA
reaches fitness larger than 99 faster than the rest of the algorithms. GA in general is much
slower, but its convergence rate is steady (e.g. f5, f-, fio and fi3). Oppositely, PSO generally

Table 5. Wilcoxon signed-rank-test (p > 0.05) for average error in continuous problems of Set A.

SGA vs. PSO GA PGPHEA HPSOM
p-value 1.05E-02 4.27E-04 1.90E-01 1.99E-02
Significant Yes Yes No Yes

https://doi.org/10.1371/journal.pone.0275094.t1005
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Table 6. Algorithm Ranking for continuous problems of Set A.

Rank: PSO GA SGA PGPHEA HPSOM
Average 2.93 4.14 1.57 2.07 3.79
Overall 3 5 1 2 4

https://doi.org/10.1371/journal.pone.0275094.1006

attains high fitness values much faster than GA once a breakthrough from local minima is
made (e.g. 2, fs, fo» fi1> f13). It is interesting to note that PGPHEA and SGA have fitness evolu-
tion patterns (curve shape) that are similar to those of PSO, but in most cases overcome local
minima and reach high fitness levels at a shorter CPU time.

4.1.2 Set B. The second set comprises the 29 single-objective continuous problems (F1,
F3-F30) of the CEC 2017 benchmark suite [33, 34]. This suite contains unimodal, multimodal,
hybrid, and composition functions. The optimization algorithms are tested with the dimension
D for all benchmarks set equal to 50. The population size and algorithmic parameters are the
same as in the case of the Set A problems presented in the previous section, with the difference
that the termination criterion is set to 500100 function solution (5000 steps for a population of
100).

The average error and maximum error from the 100 runs are shown in Tables 7 and 8,
respectively, where grey shading marks the best performing algorithms in each case. The
results are also compared graphically in Fig 10.

It can be seen that SGA exhibits the best performance, followed by PGPHEA (Table 9).
SGA achieves the smallest average and maximum errors for 22 and 21 out of the 29 functions,
respectively (Table 7). Moreover, the Wilcoxon test (Table 10) as well as the Friedman test
(with p-value = 6.8896e-20) indicate that there are significant statistical differences in the per-
formance of the examined algorithms. In the case of CEC 2017 suite, the parent algorithms
GA and PSO cannot provide better results than the hybrid algorithms SGA and PGPHEA in
any of the benchmark functions. The evolution of the global best value (average of 100 runs)
with CPU time for the 29 benchmark problems can be found in S1 Fig in S1 File. It can be seen
that in a number of problems (e.g. F14,F18,F26,F27) SGA is ahead from the other algorithms
from the beginning of the solution process. However, in most of the cases, SGA gains an edge
in later stages, often with a sharp improvement of the global best, indicating an escape from a
sub-optimal solution (e.g. F5,F7,F8,F10,F16,F17,F20,F21,F23,F24).

4.2 Discrete problems

The algorithms were tested for 9 cases of the traveling salesman problem (TSP) of the library
TSPLIB [38]. In order to render the PSO algorithm able to solve discrete problems, a PSO
adaptation is necessary, e.g. [39-45]. In this paper, we adopt the mapping proposed in [41]
according to which each feasible solution (permutation) is linked to a vector (particle position)
X = {x1,X2,. . ., xp} the elements of which are numbers signifying the priorities of the 1,.. ., D cit-
ies. For example, if we have a six-variable permutation problem [A B C D E F], each letter will
match the corresponding position, i.e., x; is city’s “A” priority. A particle vector {0.91, 0.72,
0.87,0.12, 0.61, 0.89} would result in the following permutation [AF CBE D].

Unlike in the continuous problems (in which case arithmetic crossover was employed), for
the crossover operations of the GA (either as standalone algorithm or as a component in the
hybrid algorithms), the order crossover approach of [46] was used. Each new individual fol-
lows the ‘travel” order of one parent until a random point from which it starts following the
second parent’s ‘travel’ order by skipping the visited cities. For example, if the travel order of
the first parent is [A C B F D E] and that of the 2nd parent is [E C B A D F] with the crossover
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Fig 9. Graphical representation of the evolution of fitness with CPU time spent for Set A continuous problems

(hifa)-

https://doi.org/10.1371/journal.pone.0275094.9009

point being the 4t city, the offspring’s ‘travel’ order is [ACBF] + [ED] =[ACBFED]. On
the other hand, the mutation is a simple swap between two cities priority order. For an individ-
ual’s order [A F C B E D], a mutation (1,5) would result in the new order [EF C B A D].

The parameters for each algorithm were optimized through trial runs of the nine TSP
benchmarks. The parameters ¢; and ¢, (Eq 4) are equal to 2 in all algorithms involving PSO
operations. The inertial factor w is set equal to a fixed value (no “damping”) of 0.01 for SGA,
PGPHEA and HPSOM, while for PSO it is set to decrease linearly (Eq 6) with wy,,, = 1 and
Wmin = 0.4. The overall population size was M = 20 for all algorithms. For GA (either as stand-
alone algorithm or as a component in the hybrid algorithms), an elite group of 20% of the pop-
ulation is isolated in order to undergo elite crossover, 30% undergoes mutation and 50%
crossover. For PGPHEA, it was found that its best performance is achieved with n. = 1, i.e. the

Table 7. Comparison of average error in finding the global optimum for CEC 2017 problems.

Function PSO GA SGA PGPHEA HPSOM
F1 2.03E+10 6.80E+06 2.01E+03 2.16E+03 4.18E+09
F3 7.54E+04 1.57E+05 5.92E+04 3.09E+04 6.37E+04
F4 2.13E+03 2.49E+02 8.93E+01 1.25E+02 3.81E+02
F5 2.68E+02 2.27E+02 5.32E+01 1.19E+02 3.73E+02
F6 2.23E+01 5.10E+01 1.97E-02 2.75E+00 1.93E+01
F7 3.65E+02 5.36E+02 1.20E+02 1.49E+02 6.07E+02
F8 2.74E+02 2.47E+02 5.39E+01 1.21E+02 3.74E+02
F9 5.95E+03 2.73E+03 7.09E+01 1.86E+02 5.61E+03

F10 7.03E+03 7.44E+03 4.58E+03 4.87E+03 8.92E+03
F11 1.74E+03 3.68E+02 1.41E+02 2.09E+02 8.46E+02
F12 4.86E+09 2.56E+07 6.68E+05 1.16E+06 9.03E+08
F13 9.79E+08 8.89E+04 1.79E+04 2.12E+04 7.15E+07
F14 1.08E+06 8.02E+05 6.74E+04 3.25E+04 4.64E+05
F15 2.34E+07 2.34E+04 7.60E+03 1.10E+04 1.94E+07
F16 2.24E+03 2.11E+03 7.86E+02 1.19E+03 2.08E+03
F17 1.62E+03 1.96E+03 7.34E+02 9.79E+02 1.67E+03
F18 3.15E+06 2.91E+06 2.16E+05 4.64E+05 4.35E+06
F19 1.05E+07 3.42E+05 1.26E+04 1.56E+04 5.27E+06
F20 1.06E+03 1.31E+03 5.38E+02 2.77E+02 1.08E+03
F21 5.10E+02 4.87E+02 2.53E+02 3.10E+02 5.67E+02
F22 7.73E+03 8.72E+03 4.37E+03 2.36E+03 9.00E+03
F23 1.04E+03 9.36E+02 4.82E+02 5.54E+02 7.42E+02
F24 1.05E+03 1.05E+03 5.33E+02 5.86E+02 8.06E+02
F25 1.32E+03 6.69E+02 5.63E+02 5.56E+02 7.76E+02
F26 6.22E+03 9.15E+03 1.65E+03 2.59E+03 4.39E+03
F27 1.21E+03 1.89E+03 7.84E+02 7.49E+02 8.77E+02
F28 2.88E+03 6.44E+02 7.61E+02 5.05E+02 8.05E+02
F29 2.27E+03 3.05E+03 1.13E+03 1.19E+03 2.03E+03
F30 4.31E+07 4.55E+07 1.08E+06 1.56E+06 2.84E+07

W/T/L 0/0/29 0/0/29 22/0/7 710/22 0/0/29
OE 0.00% 0.00% 75.86% 24.14% 0.00%
https://doi.org/10.1371/journal.pone.0275094.t1007
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Table 8. Comparison of maximum error in finding global optimum for CEC 2017 problems.

Function PSO GA SGA PGPHEA HPSOM
F1 3.91E+10 1.16E+07 3.18E+04 1.11E+04 9.00E+09
F3 5.57E+05 1.99E+05 9.36E+04 2.00E+04 9.26E+04
F4 1.27E+04 3.55E+02 2.04E+02 2.13E+02 9.20E+02
F5 4.28E+02 2.74E+02 1.02E+02 2.34E+02 4.96E+02
F6 8.59E+01 6.06E+01 2.16E-01 8.76E+00 4.11E+01
F7 6.95E+02 7.42E+02 1.64E+02 2.61E+02 7.56E+02
F8 4.10E+02 3.19E+02 1.09E+02 2.71E+02 5.50E+02
F9 2.48E+04 4.36E+03 2.45E+02 5.85E+02 2.57E+04

F10 1.34E+04 9.59E+03 8.53E+03 6.54E+03 1.18E+04
F11 4.82E+04 5.58E+02 2.90E+02 5.69E+02 1.76E+03
F12 3.67E+10 4.76E+07 1.78E+06 4.22E+06 4.57E+09
F13 1.92E+10 1.36E+05 5.45E+04 1.53E+05 6.36E+08
F14 6.20E+07 1.53E+06 2.75E+05 3.54E+05 1.98E+06
F15 4.05E+09 3.94E+04 3.25E+04 5.24E+04 7.17E+07
F16 5.78E+03 3.52E+03 2.00E+03 2.54E+03 3.07E+03
F17 2.70E+03 2.60E+03 1.39E+03 1.76E+03 2.58E+03
F18 1.77E+08 5.11E+06 1.10E+06 1.52E+06 1.63E+07
F19 2.49E+08 9.75E+05 3.68E+04 3.11E+04 3.40E+07
F20 2.26E+03 1.85E+03 1.36E+03 9.34E+02 1.79E+03
F21 7.41E+02 5.93E+02 2.94E+02 4.73E+02 6.51E+02
F22 1.39E+04 1.08E+04 6.65E+03 7.84E+03 1.25E+04
F23 1.69E+03 1.19E+03 5.53E+02 6.67E+02 9.11E+02
F24 1.55E+03 1.42E+03 5.61E+02 6.95E+02 8.98E+02
F25 2.61E+03 7.43E+02 6.11E+02 6.26E+02 1.14E+03
F26 1.16E+04 1.09E+04 2.10E+03 7.16E+03 5.80E+03
F27 2.19E+03 2.75E+03 1.23E+03 1.23E+03 1.34E+03
F28 9.99E+03 7.42E+02 6.26E+03 5.92E+02 5.71E+03
F29 7.51E+03 4.12E+03 3.28E+03 2.00E+03 3.21E+03
F30 1.38E+09 5.64E+07 2.44E+06 3.06E+06 1.13E+08

W/T/L 0/0/29 0/0/29 21/0/8 8/0/21 0/0/29
OE 0.00% 0.00% 72.41% 27.59% 0.00%

https://doi.org/10.1371/journal.pone.0275094.t008

exchange between PSO and GA sub-populations happens after every iteration. For HPSOM,
40% of the population is set to undergo mutation. In SGA, every n, = 2 iterations of GA (exter-
nal loop), 25% of the population is randomly selected to undergo n, = 5 PSO iterations (inter-
nal loop). As a termination criterion, a maximum number of the route distance calculations
equal to 40020 is considered.

Each problem was solved 100 times with each algorithm, and the average and maximum
relative errors in the calculated optimal distance are shown in Tables 11 and 12, respectively,
and in Fig 11.

It can be seen that, in the case of TSPs, the GA and PSO algorithms along with the three
hybrids have difficulty in finding the global optimum at the prescribed maximum number of
objective function evaluations (termination criterion). Nonetheless, a distinct pattern emerges,
different than that in the continuous benchmark problems. In overall, PSO appears to be the
worst performing algorithm by a significant margin in many cases, and its hybridization
results in an improved performance to various degrees (Fig 11). GA is underperforming par-
ticularly for the problems containing large number of cities. Nonetheless, it is worth to note
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Fig 10. Comparison of algorithmic performance in solving continuous problems of Set B (CEC 2017): a) average error, b) maximum
error in predicting the global optimum.

https://doi.org/10.1371/journal.pone.0275094.9010

Table 9. Algorithm Ranking for CEC 2017 problems.

Rank: PSO GA SGA PGPHEA HPSOM
Average 4.72 3.52 1.28 1.76 3.72
Overall 5 3 1 2 4
https://doi.org/10.1371/journal.pone.0275094.t1009
Table 10. Wilcoxon signed-rank-test (p > 0.05) for average error/ in CEC 2017 problems.
SGA vs. PSO GA PGPHEA HPSOM
p-value 1.86E-09 9.31E-09 1.01E-02 1.86E-09
Significant Yes Yes Yes Yes
https://doi.org/10.1371/journal.pone.0275094.t1010
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Table 11. Comparison of average relative distance error for traveling salesman problems.

TSP problem Global optimum PSO GA SGA PGPHEA HPSOM
Berlin 52 7542 190.48% 41.50% 39.13% 82.51% 76.58%
kroA100 21282 508.99% 132.81% 150.45% 296.75% 264.48%
kroA200 29368 847.92% 275.24% 323.45% 616.20% 531.85%
Pr299 48191 157.80% 445.82% 104.81% 144.69% 104.75%
Rd400 15281 1127.11% 465.63% 543.77% 945.53% 815.89%
D657 48912 498.92% 716.75% 261.65% 429.28% 262.68%
Rat783 8806 736.01% 843.86% 400.84% 657.38% 409.59%
U1060 224094 72.52% 1378.71% 40.64% 70.82% 40.76%
U1432 152870 65.88% 1357.67% 36.97% 65.70% 37.01%
Average 467.29% 628.67% 211.30% 367.65% 282.62%
W/T/L 0/0/9 3/0/6 5/0/4 0/0/9 1/0/8
OE 0% 33.3% 55.5% 0% 11.1%

https://doi.org/10.1371/journal.pone.0275094.t011

that GA is the best performing algorithm for 3 out of the 9 TSP benchmarks. SGA outperforms
the other algorithms in 5 out of 9, while HPSOM in 1 out of 9 (Table 11, Fig 11A), with a Fried-
man test p-value equal to 9.86E-05, indicating significant differences across all algorithms.
Although SGA’s ranks first on average (Table 14), according to the Wilcoxon test (Table 13) it
can’t be claimed SGA can provide better results than GA with 0.05 significance. Nonetheless, it
should be noted that, in terms of maximum relative error, HPSOM seems to have an edge over
SGA (Table 12, Fig 11B). Finally, it is worth mentioning that HPSOM provides better results
compared to PGPHEA, in contrast to what was observed in the case of continuous problems
(Table 14).

5. Conclusions

A new hybrid heuristic algorithm, named Swarming Genetic Algorithm (SGA) was proposed,
nesting Particle Swarm Optimization (PSO) loops inside the Genetic Algorithm (GA), in
order to enhance the efficiency of the latter in attaining fast the global optimum. The aim was
to counter each algorithm’s shortcomings by taking advantage of the exploitation capabilities
of PSO and combine them with the well-known exploration prowess of GA. In order to assess
the performance of the new hybrid algorithm, two sets of continuous and one set of discrete

Table 12. Comparison of maximum distance error for traveling salesman problems.

TSP problem Global optimum PSO GA SGA PGPHEA HPSOM
Berlin 52 7542 227.82% 57.03% 68.32% 122.24% 108.55%
kroA100 21282 572.03% 167.30% 175.06% 375.62% 346.53%
kroA200 29368 900.74% 311.09% 382.64% 747.02% 611.32%
Pr299 48191 165.93% 481.81% 111.34% 156.51% 113.36%
Rd400 15281 1169.48% 497.35% 637.73% 1144.23% 898.46%
D657 48912 521.44% 744.82% 281.03% 477.64% 277.83%
Rat783 8806 762.23% 876.45% 511.67% 704.25% 433.64%
U1060 224094 75.30% 1426.88% 42.69% 74.44% 43.08%
U1432 152870 68.16% 1388.15% 38.92% 67.39% 38.74%
Average 495.90% 661.21% 249.93% 429.93% 319.06%
W/T/L 0/0/9 4/0/5 2/0/7 0/0/9 3/0/6
OE 0% 44.4% 22.2% 0% 33.3%

https://doi.org/10.1371/journal.pone.0275094.1012
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Fig 11. Comparison of algorithmic performance in solving TLP: a) average relative error, b) maximum relative error in
predicting the optimal distance.

https://doi.org/10.1371/journal.pone.0275094.9011

Table 13. Wilcoxon signed-rank-test (p > 0.05) for average error in continuous problems.

SGA vs. PSO GA PGPHEA HPSOM
p-value 1.95E-03 6.45E-02 1.95E-03 1.56E-02
Significant Yes No Yes Yes

https://doi.org/10.1371/journal.pone.0275094.1013

Table 14. Discrete problem algorithm ranking.

Rank: PSO GA SGA PGPHEA HPSOM
Average 4.44 3.33 1.44 3.44 2.33
Overall 5 3 1 4 2

https://doi.org/10.1371/journal.pone.0275094.t1014

(traveling salesman) benchmark problems were examined and comparisons were made against
GA, PSO and two existing hybrid algorithms. The results showed that SGA has in overall sig-
nificantly better performance than PSO and GA in terms of accuracy, in both continuous and
discrete problems.
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