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Abstract

Mesenchymal stem cells can be obtained and multiplied from various sources and have a

very high capacity to release exosomes. Exosomes are nano-sized extracellular vesicles

containing biological signaling molecules. This study aimed to determine the effect of MSC-

derived exosomes as a drug delivery system for paclitaxel in cervical cancer cells. In this

study, human MSC were isolated from wharton jelly of umbilical cord tissue (WJ-MSC), and

cells were characterized by CD44, CD90, CD105, and CD34 staining. Exosomes were

released in WJ-MSC cells with serum-starved conditions for 48 hours, and particle sizes

and structures were examined with zeta-sizer and TEM. In addition, exosomes CD9, CD63,

and CD81 markers were checked by western blot. Paclitaxel was loaded into exosomes

(Exo-PAC) by electroporation and then incubated with Hela cervical cancer cells for 24

hours. TGF-β, SMAD, Snail, Slug, β-catenin, Notch, Caspase-3, Caspase-9, Bax, Bcl-2 pro-

tein and gene expression levels were analyzed in Hela cells. As a result, low concentration

Exo-PAC induced apoptosis, and suppressed epithelial-mesenchymal transition proteins in

Hela cells. In this study, it has been demonstrated that WJ-MSCs can be used as drug deliv-

ery systems for cervical cancer if exosomes are produced scalably in the future.

Introduction

Stem cells are unspecialized cells that have a remarkable ability to be constantly regenerated in

the human body. Sources of stem cells include bone marrow, umbilical cord, cord blood, and

adipose tissue [1]. Although the umbilical cord is traditionally seen as biological waste, it is a

rich source of stem cells. Unlike stem cells from other sources, these umbilical cord tissues are

readily available in large quantities, and the stem cells are quickly recovered without undergo-

ing any invasive procedure [2]. Wharton’s jelly is a stem cell source consisting of connective

tissue composed of mesodermal cells in the umbilical cord [3]. UC-derived MSC’s unique

properties make them attractive alternatives in cell therapies and regenerative medicine [4].

Stem cells isolated from Wharton’s jelly show mesenchymal fibroblast-like morphology with
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the ability to self-renew and differentiate into neuronal, osteochondral, adipocytic, and muscle

derivatives [5]. In addition, Wharton jelly yields stem cells that are positive for MSC markers

(CD44, CD90, and CD105) but lack endothelial markers (CD144, CD146, and CD34). MSCs

isolated from Wharton’s jelly respond rapidly to tissue damage and induce angiogenesis due to

rapid adhesion [6]. Evidence is that they exert their effects through exosomes from extracellu-

lar vesicles (EVs) [7]. Exosomes are part of EVs of a specific size (40–160 nanometers), which

have a double-layered membrane-enclosed lipid and can be found in body fluids such as

blood, urine, saliva, and amniotic fluid [8]. The biological function of the exosome relies on its

bioactive cargoes, such as lipids, metabolites, proteins, and nucleic acids, which can be deliv-

ered to target cells. With the development of research methodologies and techniques, people

have realized that exosomes represent a new mode of intercellular communication and con-

tribute to a wide variety of biological processes, including health and many diseases, including

cancer [9]. Exosomes and their biomolecules can be serve as prognostic cancer markers, thera-

peutic targets, and even anti-cancer drug carriers. While exosomes are thought of as residues

left from cells, they have played a role in both the diagnostic field and understanding transi-

tions in molecular mechanisms in recent years. In particular, studies have focused on how they

affect physiological and pathological processes with the molecules they carry after they are

released from the cells. Because MSCSs have a high self-renewal capacity, they have high para-

crine activity and secrete many exosomes [10]. MSC exosomes play a role in developing many

diseases and are also used therapeutically. They not only participate in the process of tissue

repair and injury [11, 12] and have specific therapeutic effects on cardiovascular diseases [13,

14] and neurological diseases [15], but also the liver. They can alleviate the damage and be

used in treatment [16]. On the other hand, the issue of obtaining these exosomes from stem

cells in new approaches regarding both their roles and areas of use leads to debates. For this

reason, it is more critical to use tissues easily obtained by non-invasive methods rather than

invasive procedures in stem cell isolation and use. The placenta and umbilical cord are mainly

disposed of as biological waste after birth and not used for recycling [17, 18] The fact that the

placenta and umbilical cord tissues are available in large quantities and are readily available is

essential in stem cell isolation and the development of derivatives for use in therapy [2, 4].

This study investigated the potential of exosomes released from mesenchymal stem cells

isolated from the umbilical cord as a carrier of anti-cancer drugs such as paclitaxel for cervical

cancer cells.

Materials and methods

The study design was approved by the ethics committee of Aydin Adnan Menderes Univer-

sity School of Medicine Research Ethics Committee (Protocol number 09012020/23). The

study was conducted according to the criteria set by the Declaration of Helsinki, and each

subject was informed in writing before participating in the study. Formal written informed

consent was obtained from the participants before tissue collection. This study was carried

out in Aydin Adnan Menderes University Hospital Gynecology Clinic. The umbilical cord

was taken from the mother who gave birth to a healthy baby (>38 weeks) between 20-and 40

ages.

Isolation and characterization of WJ-MSC cells from UC

UC tissue was placed in phosphate-buffered saline (PBS, 100 U/ml penicillin, 100 μg/ml strep-

tomycin, 2 μg/ml amphotericin B), and Wharton jelly (WJ) was dissected. WJ was incubated

with collagenase (1 mg/mL type I) and hyaluronidase (0.7 mg/ml) for 1 hour at 37˚C and cen-

trifuged at 340xg [19]. DMEM/F12 supplemented with 15% FBS was added to the cell pellet
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and incubated at 37˚C with 5% CO2. Cells were followed for 21 days and replaced with fresh

medium every four days. The morphology of WJ-MSC cells was checked under the micro-

scope. CD44, CD90, CD105, and CD73 staining were detected by flow cytometric analysis in

WJ-MSC cells at the 21st-day passage. The immunofluorescence method performed WJ-MSC

cell surface receptors CD90, CD105, and CD44 staining [20].

Isolation and characterization of exosomes from WJ-MSC

MSC cells were grown in 75 cm2 flasks in FBS-free (starved) DMEM/F12 medium for 48

hours. First, the medium was collected to obtain exosomes released from fasting cells over 48

hours. Afterward, the media were centrifuged for 10 minutes at 13,000xg and 10 minutes at

45,000xg to separate cells and large vesicles. It was then centrifuged at 110,000xg for 5 hours

(Beckman Coulter) in an ultracentrifuge. Finally, the supernatant was discarded, and the pellet

was suspended with PBS.

Characterizations of isolated exosomes were checked by western blotting for CD9, CD63,

and CD81 markers. Exosome pellets were denatured 1:1 in 2X Sample loading buffer (4%

SDS, 20% glycerol, 10% β-mercaptoethanol, 0.004% bromphenol blue and 0.125 M Tris HCl,

pH 6.8) for 5 minutes at 95˚C. SDS-PAGE gels were prepared, and samples containing

five μg/mL protein were loaded. The gels were loaded with PVDF membrane, and blotting

was performed at 25 Volt and 1 Amp for 30 minutes (Biorad Transblot Turbo). The mem-

brane was blocked with 3% BSA, and after 2 hours, the primer was applied. Incubate with

antibody overnight at +4˚ C. The membrane was washed three times with TBST (20 mM

Tris, 154 mM NaCl, 0.1% Tween 20) Membrane was washed with secondary antibody

(1:1000, HRP conjugated sc-2030, sc- 2020) was incubated for 2 hours in room temperature.

A chemiluminescent substrate was placed on the membrane, and analysis was performed on

the imaging system (Syngene G:Box). A zeta sizer analyzed the quantities, sizes, and charges

of exosomes. SEM electron microscopy method was used to scan nano-sized structures after

their measurements.

Paclitaxel loading into WJ-MSC exosomes

An anti-cancer agent, paclitaxel, was loaded into the cell of exosomes [21, 22]. Exosomes (Exo)

were suspended in electroporation buffer (1.15 mM potassium phosphate (pH 7.2), 25 mM

potassium chloride and 21% (vol/vol) OptiPrep). This method creates small pores in the exo-

some membrane by applying an electric field to the exosomes suspended in a conductive solu-

tion. The electric current disrupts the phospholipid bilayer of exosomes, thus causing the

formation of temporary pores. The drugs then diffuse into the interior of the exosomes via

the pores [23]. Then one μg of paclitaxel (PAC) was mixed with the exosome suspension and

transferred to sterile electroporation cuvettes. The cuvettes were loaded with paclitaxel by

applying current at 160 V and 500 μF. Then, paclitaxel-loaded exosomes (Exo-PAC) were sep-

arated by centrifugation at 90.000 rpm for one hour. Paclitaxel loading into exosomes was

checked with a UV-VIS spectrophotometer. In order to determine the PAC loading efficiency

to exosomes, the PAC solution prepared as the stock was used, the spectrum was taken in the

range of 200–700 nm, and the maximum peak value was 225 nm. At this wavelength, the values

in the supernatant were measured before and after exosome loading. It was calculated indi-

rectly by proportioning according to the amount of PAC with the known value. As a result,

PAC loading efficiency was 62% in exosomes. PAC release experiments from Exo-PAC were

performed in pH 7.4, 6.3, and 5.50 buffers in PBS on samples taken at 0–72 hour time intervals,

and release amounts were determined. It was then used for cellular studies with the Exo-PAC.
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Cytotoxic effects of Exo-PAC effects in Hela cells

After obtaining exosomes and Exo-PAC, experiments were performed on human cervical

cancer cell Hela and normal cells (L929 mouse fibroblast). Hela and L929 cells were used in a

DMEM medium containing 10% FBS, Penicillin-Streptomycin (100 units), L-Glutamine, and

NaHCO3. Cells were incubated at 37˚C in an environment containing 5% CO2 and 95%

humidity and multiplied. Then, cells were seeded into 96 well plates and incubated for 24 or 48

hours with Exo or Exo-PAC at concentrations of 0.1 μg, 1 μg, 10 μg, and 100 μg. IC50 concen-

trations on the cytotoxic effects of exosomes were determined by the MTT (3-

[4,5-Dimethylthiazole-2-yl]-2,5-diphenyl tetrazolium bromide) test.

Measurement of Hela uptake of Exo-PAC

1x104 Hela cells were seeded in 4 well chamber slides, and Exo or Exo-PAC was added to the

medium at 10 μg concentrations and incubated for 24 hours. DiO (green) and DAPI staining

were performed and images were taken under a fluorescent microscope and the status of exo-

somes in the cell was determined. 1x104 Hela cells were seeded into 24 well plates and incu-

bated with 10 μg of Exo or Exo-PAC for 24 hours. After incubation, the amount of paclitaxel

in both the medium and cell pellets [24] was measured with a fluorometer.

Annexin-V binding of Exo-PAC in Hela cells

1x105 Hela cells were seeded into six-well plates and incubated with 10 μg of Exo or Exo-PAC

for 24 hours. Exo or Exo-PAC (10 μg) was added and incubated for 24 hours. The cells were

removed by adding 1 mL of trypsin-EDTA after incubation, and the supernatant was dis-

carded at the end of centrifugation at 800xg. The pellet was resuspended in 1 mL of PBS con-

taining 1% FBS, and 100 μL of Annexin V Cell Reagent (Muse Annexin V kit) was added to

the cells and incubated in the dark for 20 minutes. At the end of incubation, it was analyzed in

the Muse Cell Analysis System (Millipore, Germany).

Cell colony formation and Scratch assay

Hela cancer cells were seeded as 500 cells/well in 6 well plates [25]. It was incubated with 10 μg

of Exo or Exo-PAC for 15 days. Afterward, each well was fixed with methanol+acetic acid (3:1)

for 5 minutes and stained with 0.5% Crystal violet dye for 20 minutes. First, the size of the col-

onies was checked under the microscope, and their morphological images were examined.

Then, 2 mL of methanol was added to the colonies, and the amount of absorbed crystal violet

was measured spectrophotometrically at 570 nm. Finally, the results were calculated by com-

paring the colony-forming ability.

A Scratch test was performed to measure the migration potential of tumor cells [26]. Cells

were seeded into 12 well plates and scratched with a 100μl yellow pipette tip. Exo and Exo-

PAC were incubated for 24 hours, and cell images were taken under an inverted microscope.

The gap in the 0h and 24h images was calculated, and the viable adherent cells were counted.

Protein and gene expressions in Hela cells

Hela cells were seeded in 6 well plates and incubated with Exo (10μg) and Exo-PAC (10μg) for

24 hours. After incubation, cells were washed two times with PBS. TGF-beta, SMAD, Snail,

Slug, B-catenin, Notch, Caspase-3, Caspase-9, Bax, Bcl-2 markers were used by western blot

[27]. For gene expression studies, cells were lysed with RNA lysis buffer. Total RNA isolation

(Invitrogen, AM1912) and cDNA synthesis (Applied Biosystems 4368814) were performed

using a commercial kit. Primers specific for TGF-beta, SMAD, Snail, Slug, B-catenin, Notch,
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Caspase-3, Caspase-9, Bax, Bcl-2 (Sigma KiCqStart Primers), and SYBR Green Master Mix

(Applied Biosystems, A25742) were used. After preparing the mixture with a total reaction of

20 μl in each well (SYBR Green Master Mix: 10 μl +F primer: 1 μl+ R primer: 1 μl + cDNA),

95˚C for 5 min, 95˚C 30 sec, 55˚C 30 qRT-PCR was set up (ABI, StepONE Plus) as 40 cycles at

72˚C 30 sec, 72˚C 4 min. GAPDH was selected as the housekeeping gene, and the 2–ΔΔCt

method was used for calculations.

Statistical analysis

All experiments were carried out with at least three replications. Statistical analyzes were per-

formed using GraphPad Prism 7.0. Comparisons between groups in the analyzes were made

using the independent t-test, and the significance levels were accepted as values below 0.05.

Results

Umbilical cord stem cell isolation and WJ-MSC characterizations

Morphological images of WJ-MSC cells on day 3, day 10, and day 21 are shown in Fig 1a. The

proliferation capacity of WJ-MSC cells increases depending on the day, and their morphologi-

cal features resemble branched active fibroblasts. It was determined that WJ-MSC cells pre-

served their morphology for up to 21 days and had fusiform (spindle) morphology. In

determining the phenotypes of WJ-MSC cells by flow cytometry, the binding of CD44, CD90,

CD73, and CD105, which are the primary markers of MSC, was found to be 99.8% and above

(Fig 1b). Cells isolated from WJ-MSC had positive CD44, CD90, and CD105 staining in

immunofluorescent staining, while CD34 staining was negative (Fig 1c).

Fig 1. Morphology and characterization of WJ-MSC cells a) Morphological images of WJ-MSC cells on day 3, day 10,

and day 21 with scale bar 200 μm and 50 μm respectively b) Binding of WJ-MSC CD44, CD90, CD73, and CD105 by

flow cytometry c) WJ-MSC also CD34, CD44, CD90, and CD105 staining by IF staining.

https://doi.org/10.1371/journal.pone.0274607.g001
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WJ-MSC exosomes purification, characterization and SEM analysis

Exosome release from WJ-MSC cells was performed from the medium by starving the cells in

serum-free media (starved) for 48 hours. Images of cells growing in serum and serum-free

medium are shown in Fig 2. When the images of the cells are examined, it is seen that the cyto-

plasmic connections between each other decrease in the cells grown in a serum-free medium,

the cells become more sparse and exhibit apoptotic morphology, the release of apoptotic bod-

ies increases, and the fibroblast appearance of the cells disappear. MSCs with high resistance

and adhesion tendencies began to secrete exosomes after 48 hours of fasting, as the cells

increased exosome release under stress or starvation conditions (Fig 2a). WJ-MSC exosomes

were detected by western blot to carry cell surface markers CD9, CD63, and CD81. CD9 and

CD63 were dominant in exosomes, while CD81 was found in lower amounts (Fig 2b).

SEM imaging was performed to measure the shape and size of exosomes. After the analysis,

it is seen that the Exo isolated from WJ-MSC cells is 70.97 nm in size, and after PAC loading,

the Exo-PAC is 128 nm in size and retains its spherical shape (Fig 2c). Zeta-sizer was used in

studies on whether there was a change in size and load after PAC loading into exosomes. It

was observed that the size of Exo-PAC (82±32 nm) was slightly larger than that of Exo (118

±21 nm), and the size changes were at a level that did not prevent entry into the cell (Fig 2d).

The release graph in buffers at different pHs depending on the time of PAC loaded into exo-

somes is shown in Fig 2e. It was observed that PAC release from Exo-PAC was higher in a

short time (8 hours) in pH 5.00 buffer, whereas this release decreased in pH 7.4 buffer and

appeared later (24 hours).

Effect of Exo and Exo-PAC in Hela cells

In MTT studies, the PAC IC50 value was found at a concentration of 18.62±2.33 nM in Hela

cells and 67.42±5.81 nM in L929 cells. The IC50 value in Exo-PAC was calculated as 13.21

Fig 2. WJ-MSC exosomes characterization a) Morphologies of WJ-MSC cells grown in serum and serum-free

medium b) CD9, CD63, and CD81 western blot bands of exosomes isolated from WJ-MSC c) Exo and Exo-PAC SEM

analysis images d) Exo and Exo-PAC size analysis e) Exo and Exo-PAC time-dependent PAC release graph.

https://doi.org/10.1371/journal.pone.0274607.g002
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±1.82 μg/mL in Hela cells. The IC50 value could not be calculated because cell viability was

high in Exo applied cells. MTT experiments using the L929 healthy cell line determined that

Exo application alone increased cell proliferation, and the IC50 value could not be calculated.

In L929 cells, the IC50 value was found to be 197±4.65 μg/mL in Exo-PAC application (Fig 3a

and 3b).

Exo alone increased cell viability at a 100 μg/mL concentration both in 24 and 48 hours in

Hela and L929 cells (p˂0.05, p˂0.01) and did not change at other concentrations. PAC treat-

ment at 10 nM and 100 nM concentrations decreased cell viability in Hela and L929 cells for

24h (Fig 3a). Exo-PAC treatment showed effects at 10 μg/mL and 100 μg/mL concentrations

in Hela cells (p˂0.001), while it reduced cell viability only at 100 μg/mL concentration in L929

cells for 24h (p˂0.01). PAC treatment decreased cell viability at 10 and 100 nM concentrations

in both Hela and L929 cells at 48 hours. Exo-PAC between 1 and 100 μg/mL significantly

decreased cell viability in the Hela cells in 48 hours (p˂0.01, p˂0.001). In L929 cells, on the

other hand, it decreased cell viability by acting at a concentration of 100 μg/mL (p˂0.01, Fig

3b). Paclitaxel loaded into these exosomes entered the cell and accumulated, allowing it to

show the same effect as paclitaxel administered alone.

Annexin-V binding levels are seen in Fig 3c when ten μg/mL Exo or Exo-PAC are applied.

The number of viable cells in the Exo group was 96.03±2.34% in Hela cells and 57.03±2.34% in

cells treated with Exo-PAC (p<0.001). The number of apoptotic cells (early and late apoptosis)

in the Exo group was 0.81±0.05%, and 33.71±1.55% in the cells treated with Exo-PAC

(p<0.001). Necrotic cell counts were determined as 2.11±1.02% in Exo group cells, and 12.03

±2.03% in Exo-PAC treated cells (Fig 3d, p<0.001).

In order to evaluate the metastatic effect in colony formation, cells are evaluated in terms of

their capacity to proliferate alone in their region and how they behave. The colony formation

potential of Exo and Exo-PAC for 14 days is shown in Fig 3. In addition, statistically significant

inhibition of colony formation was determined by Exo-PAC application (Fig 3e, p<0.001). A

Scratch test was performed to measure the migration potential of Exo and Exo-PAC in tumor

cells. In the scratch experiment, it was seen that Exo-PAC did not change the gap closure.

However, since the PAC in Exo-PAC is a microtubule inhibitor, it suppresses the migration

Fig 3. Exo and Exo-PAC application to Hela and L929 cells a) 24 hours and b) 48 hours cell viability graph c) Annexin

V binding graphs of Exo-PAC in Hela cells d) Annexin V binding levels in Hela cells e) Colony formation levels in

Hela cells (��p<0.01, ���p<0.001 compare to Exo).

https://doi.org/10.1371/journal.pone.0274607.g003
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abilities of cells by blocking their division, adhesion, and movement. In addition, since Exo-

PAC inhibits the adhesion of cells by suppressing the adhesion tendency of cells, it is not suffi-

cient to evaluate them only in terms of gap closure. However, the number of cells should also

be controlled. It has been shown that Exo-PAC significantly reduces both gap closure and the

number of adherent cells (S1 Fig, p<0.001).

Exo and Exo-PAC protein expression changes in Hela cells

Epithelial-Mesenchymal Transition (EMT) activation and expression differences of proteins

that play an essential role in apoptosis were detected by western blot. The band changes of pro-

tein expressions in Exo and Exo-PAC application in Hela cells are seen in Fig 4.

When the protein expression changes associated with epithelial-mesenchymal transition

were analyzed (Fig 4a), the TGF-β level decreased 6.25±0.35 (p˂0.001) times in the Exo-

PAC group, SMAD level was 1.86±0.2 (p˂0.01) times, Slug level decreased 3.65±0.8 times

(p˂0.001), Notch level changed 1.12±0.15 times. However, it did not increase significantly,

and the Snail level was 2.75±0.1. In addition, it is observed that the β-catenin level decreased

2.46±0.6 times (p˂0.01) compared with the Exo group.

When apoptosis-related protein expression changes were examined (Fig 4b), the Bax level

increased 4.62±0.6 (p˂0.001) times, Bcl-2 level decreased 2.95±0.2 (p˂0.001) times in the Exo-

PAC group. The clv-Cas-3 level increased 2.3±0.5 (p˂0.01) times, and the clv-Cas-9 level

increased 1.87±0.3 (p˂0.01) times compared to the Exo group. (Fig 4c).

EMT and apoptosis-associated gene expression changes

The gene expression levels of TGF-β, SMAD, Snail, Slug, Notch, β-catenin, and apoptosis-asso-

ciated Bax, Bcl-2, Cas-3, and Cas-9 genes related to epithelial-mesenchymal transition were

analyzed by qPCR (Fig 5).

When gene expression changes associated with epithelial-mesenchymal transition were

examined, TGF-β mRNA level was significantly decreased by 0.44±0.10 in the Exo-PAC group

(p˂0.001), SMAD mRNA level was 0.87±0.02 significantly compared to the Exo group. In

addition, there was a decrease (p˂0.05), Slug mRNA level was 0.64±0.05 significant decrease

(p˂0.001), Notch mRNA level was 1.46±0.20 increase was not significant, Snail mRNA level

was 0.65±0.02. It was observed that there was a significant decrease of 0.05 (p˂0.001) and a

Fig 4. Western blotting protein expression changes a) Band image of EMT-related proteins, b) Band image of

apoptosis-related proteins, c) Fold change graph.

https://doi.org/10.1371/journal.pone.0274607.g004
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significant decrease of β-catenin mRNA level of 0.33±0.01 (p˂0.001) (Fig 5a–5f). When the

gene expression changes associated with apoptosis were examined, the Bax mRNA level

increased by 3.14±0.20 significantly (p˂0.001) and the Bcl-2 mRNA level decreased by 0.31

±0.02 significantly compared to the Exo group (p˂0.001), Cas-3 mRNA level increased 2.38

±0.31 significantly (p˂0.001), and Cas-9 mRNA level increased 2.68±0.20 significantly

(p˂0.001) (Fig 5g–5j).

Discussion

Cervical cancer is among the most common female malignancies globally and is detected at an

early stage by human papillomavirus (HPV) screening. HPV is the leading cause of cervical

cancer and can be transmitted sexually [28]. Cervical cancer progression depends on HPV

and multiple heterotypic cell interactions that make up the tumor environment. In examining

these effects, the potential of using exosomes, which play a role in cellular communication, as

a diagnostic and therapeutic biomarker, is being investigated [29, 30]. Our study isolated mes-

enchymal stem cells from umbilical cord tissue wharton jelly and purified the exosomes they

secreted out of the cell in vitro. We loaded paclitaxel, a taxane group drug, into these exosomes,

turned them into functional exosomes, and evaluated their effects on cervical cancer cells.

A current challenge in exosome research is the lack of characterization of existing method-

ologies that assess exosomes’ availability, purity, and isolation from their conditioned media in

cell culture and yield from complex biological fluids such as serum/plasma. For these reasons,

exosome isolation is essential, and differential centrifugation consisting of ultracentrifuge is

used as the "gold standard" for purification [31]. An alternative to ultracentrifugation is to

Fig 5. Graphs of mRNA levels of EMT and apoptosis-related genes.

https://doi.org/10.1371/journal.pone.0274607.g005
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concentrate from their conditioned media in large volume cell culture using ultrafiltration

devices. In exosome separation, the search for alternative methods is still ongoing to ensure

that the sample is less or more and the source of the sample is used correctly. Studies have

shown that exosomes made with SEC (size exclusion chromatography) after ultracentrifuga-

tion is more pure isolation [32]. Our study found that the size of exosomes isolated from

UC-MSC cells after ultracentrifugation separation was 70.97 nm, and this size increased

slightly after PAC loading to 114±32 nm. Depending on the size of the isolated exosomes, the

molecules they carry in their structures may differ. It is also known that the structures of exo-

somes isolated from different sources are different, even though they have the same size [33,

34]

Studies on drug loading into exosomes have shown that paclitaxel containing exosomes

have a significant inhibitory effect on the in vitro proliferation of the human pancreatic can-

cer cell line CFPAC-1 and have the potential to act as drug carriers [35]. In another study,

macrophage-derived exosomes containing paclitaxel have been shown to have a significant

anti-tumor effect in the Lewis lung cancer metastasis model [36, 37]. However, there are also

some differences in yield, content, function, and drug loading in exosomes from different

sources. These can produce different therapeutic effects. For example, in a study by Kancha-

napally et al. (2019), doxorubicin was successfully loaded into pancreatic stellate cells (PSCs)

and pancreatic cancer cells (PCCs), and macrophage-derived exosomes [38]. In contrast,

exosomes derived from PSCs have been shown to have the highest efficiency and high drug

loading rate, while macrophage-derived exosomes have been shown to have the most potent

anti-tumor activity. This effect indicates the specificity of exosomes from different sources.

In a previous study, we used exosomes as a different carrier by loading the exosomes we iso-

lated from Hela cells with docetaxel. We showed that re-administration of modified exo-

somes to the same Hela cells induces cell death [39]. In a study of exosomes developing

biomimetic nanoparticles without losing the integrity of proteins, they first developed doxo-

rubicin (DOX) loaded silicon nanoparticles. Then, DOX-loaded silicon nanoparticles were

inserted into exosomes obtained from human hepatocarcinoma Bel7402 cells by passive

loading. It has been shown that DOX-loaded silicon nanoparticles transported by exosomes

have higher cellular uptake and cytotoxicity in total heterogeneity cancer cells and cancer

stem cells. These results showed that it is a promising drug carrier for cancer chemotherapy

and can be used to target exosome-biomimetic nanoparticles to tumor cells [40]. It was

found that docetaxel loading (EXO-DTX) to exosomes isolated from A549 lung cancer cells

increased the cytotoxic effect and significantly suppressed A549 cell proliferation. In addi-

tion, it has been determined that EXO-DTX triggers apoptosis, induces cell cycle arrest in

the G2/M phase, and exerts an anti-cancer effect. In the in vivo experiment, it has been

shown that EXO-DTX has a higher drug potential than free DTX and can be used as a good

carrier system due to its faster entry into cells [41]. It is even suggested that the problems of

water solubility and photosensitivity can be solved by these transport systems by loading

photosensitizer anti-cancer drugs into exosomes [42, 43].

When the drug loading studies on exosomes isolated from mesenchymal stem cells were

examined, it was found that paclitaxel was loaded from taxol group drugs. When the studies

[44, 45] were examined, 10 μM paclitaxel was added to MSC544 MSC cells, and the cells were

left to incubate for 24 hours. Cell media were collected, and exosomes were isolated. It was

found that isolated paclitaxel decreased cell viability incubated with passively loaded exosomes

A549 lung cancer cell, SKOV-3 ovarian cancer cell, and MDA-hybrid breast cancer cells. At

the same time, it was shown that mammary tumors developed in NOD/SCID mice using

MDA-hybrid breast cancer cells were reduced by intravenous injection of paclitaxel-loaded

exosomes. Studies have shown that exosomes from MSC cells, effective on tumors by passive
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loading, can be used in different areas. In this study, it has been shown that paclitaxel is effec-

tive on Hela cells by active loading of exosomes (with electroporation), and it blocks migration

by leading the cells to apoptosis with a higher effect at a lower concentration.

The use of paclitaxel, one of the chemotherapeutic drugs, as monotherapy or in combina-

tion with other therapeutic agents is a common strategy in treating cervical cancer. However,

the response rate to treatment (percentage of patients with complete or partial response)

ranges from 29% to 63%, mainly due to the achievement of chemoresistance [46]. Numerous

studies have proven that the development of chemoresistance may be associated with the

emergence of the EMT process [47, 48]. For example, EMT and chemoresistance have been

reported in many cancer types in paclitaxel-resistant ovarian cancer cells [49], and gefitinib-

resistant lung cancer cells [50] and cisplatin-resistant MDA-MB-231 cells [51]. For this reason,

studies are continuing to elucidate the mechanisms of molecules that play a role in EMT and

increase the efficacy of chemotherapeutic agents.

Paclitaxel has a high effect on cervical cancer cells Hela at the nanomolar concentration

[52]. However, even if paclitaxel is placed in Hela cells above the inhibitory concentration

(IC50: 112.53 μg/ml), it has been shown to develop drug resistance after a certain period [53,

54]. Therefore, paclitaxel should be transported with a more effective delivery system at a

lower dose. Furthermore, the development of paclitaxel resistance during cervical cancer treat-

ment has been positively associated with the epithelial-mesenchymal transition (EMT) process

[55]. By EMT, epithelial cells remove their polarity and cell-cell adhesion properties and

become mesenchymal stem cells by gaining migratory and invasive properties [56]. Thus,

EMT promotes malignant progression and chemoresistance of cells. In a study, paclitaxel-

resistant Hela cells were developed when paclitaxel was incubated in Hela cells at an increasing

concentration (5–200 nM) for eighty days. It has been reported that EMT-related proteins (E-

cadherin, N-cadherin, vimentin (VIM), fibronectin (FN), zinc finger E-box binding homeo-

box 1 (Zeb1), Snail, Slug) are increased in these resistant cells.

Furthermore, they showed that if inhibition of Notch signaling is achieved, it can partially

restore paclitaxel sensitivity by reversing EMT in paclitaxel-resistant cervical cancer cells [57].

Therefore, preventing or delaying the emergence of paclitaxel resistance during cervical cancer

treatment is a significant challenge in this field. In order to overcome this difficulty, it is neces-

sary to fully understand the molecular mechanisms of chemoresistance and develop formula-

tions or new carrier systems that can act at lower doses to facilitate the entry of the agents into

the cell. In this study, it has been shown that when paclitaxel is loaded into WJ-MSC exosomes,

it can affect Hela cells at lower concentrations, accelerate cell death, and inhibit chemoresis-

tance by acting on EMT-related proteins.

Although there are many studies on cancer globally, an effective treatment strategy has not

been determined yet. Using stem cells in cancer treatment is generally avoided because cancer

cells have forms derived from stem cells. It is also predicted that stem cells can multiply uncon-

trollably with the growth factors they secrete. However, MSCs are thought to have antitumor

effects due to their immune modulation capacity and ability to accumulate at the tumor site.

Furthermore, MSCs are the only human cell type known to have a scalable capacity in the

mass production of exosomes for drug delivery. MSC-derived exosomes are more efficient in

transporting drugs than synthetic nanoparticles, as they exhibit biocompatibility/stability

properties and a superior capacity for loading with various cargoes. In this study, it has been

shown that the umbilical cord, which is considered a waste, is effective in transporting pacli-

taxel to target Hela cells at a lower dose by modifying mesenchymal stem cell exosomes.

UC-MSC-derived exosomes are a potential candidate for both personalized therapy and the

development of a scalable drug delivery system in the future.
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