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Abstract

Manufacturing enterprises accumulate numerous manufacturing instances as they run and

develop. Being able to excavate and apply the instance resources reasonably is one of the

most effective approaches to improve manufacturing and support innovation. A novel frame-

work for the discovery and reuse of typical process routes driven by symbolic entropy and

intelligent optimisation algorithm so as to scientifically determine reuse objects and raise the

reuse flexibility is proposed in this paper. A similarity measurement method of machining

process routes based on symbolic entropy is developed in this framework. Subsequently, a

typical process route discovery method based on the ant colony clustering model and simi-

larity measurement is devised, and two reuse approaches based on the typical process

route are analysed. Finally, three case studies are rendered. These case studies cover the

aspects of similarity analysis, mining, and reuse of manufacturing instances, which system-

atically explains the whole procedure of discovery and reuse based on typical process

route. The case studies show that (i) the similarity measurement method based on symbolic

entropy can accurately evaluate the similarity among ten machining process routes, (ii) ant

colony clustering model can realize adaptive clustering for these ten process routes, and (iii)

indirect reuse approach for the typical process route can support the generation of new

machining plan effectively. This reveal that the proposed framework comprehensively con-

siders various aspects of retrieval and reuse of manufacturing instances, which can effec-

tively support process instance reuse. Can better support process instance reuse.

1. Introduction

As manufacturing enterprises run and develop, they accumulate many manufacturing

instances. These instances stand for the important data and knowledge resources and reflect

the manufacturing capacity and level of the enterprises, which are a key embodiment of the

design preferences and experience of the technologists in these enterprises. The ability to rea-

sonably excavate and apply the instance resources can effectively improve manufacturing and

support innovation [1]. Meanwhile, mining and application of existing instance resources is a

focus of current and emerging research in the knowledge engineering field, which can lay a
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good foundation for transforming and upgrading manufacturing enterprises and realising

intelligent manufacturing.

Determining the most valuable and potentially reusable objects is the main problem to be

solved in order to discover and reuse high-value processing schemes. Among the numerous

process schemes, some schemes exhibit typicality and representativeness. The processing

routes of these typical schemes can be named typical process routes. They can be considered

standard process routes extracted from those parts having similar structural features and func-

tions [2]. Compared with other process routes, typical process routes contain rich process

design rules and experience pertaining to specific parts. For example, in case of a simple ladder

axis, it is composed of multi-segment cylindrical surfaces. Cylindrical surfaces can be obtained

by turning, and their dimensional precision will be assured by finish cutting and grinding. So

the typical process route of step shaft parts may be described as follows: rough turning!

semi-finish turning! finish turning! grinding. Compared with the typical process route,

although the shaft parts that are used in engineering can be more complicated, there will be no

significant difference for main processing procedure, which reveals the typical process route

has rich process rules and higher reuse value. Selecting a typical process route as the high-

value object and achieving discovery and reuse of the typical process route have considerable

value and significance; this can provide better support for machining process planning.

To discover the typical process route, the following two important issues must be addressed

to satisfy the mining requirement of the route: similarity measurement and cluster analysis of

machining process routes. The research on similarity measurement of manufacturing pro-

cesses is usually the core issue and key technology in this field and has produced many signifi-

cant results. Kambhampati [3] focused on selecting the reusable process from more alternative

planning schemes and developed a method to calculate the distance between the alternative

planning schemes and target objects. Liu et al. [4, 5] established a mathematical model of

machining process routes, used the Manharstein distance to evaluate the similarity of two pro-

cessing operations, and solved the similarity calculation problem of process routes by applying

the Euclidean distance. Zhang et al. [6] coded processing operations according to the machin-

ery industry standards, extracted the longest similar subsequence of two process sequences to

construct the measurement factor, and established a multilevel similarity calculation formula

of machining process routes. Zhou et al. [7] built a calculating model of process sequence simi-

larity by analysing and comparing part features, including machining features and topological

relations between features. They established a fuzzy similarity matrix of all the process

sequences. Wang et al. [8] used the attributed directed graph to model the machining process.

They measured the similarity between processes with the similarity between process cells and

the similarity between process routes by the process model. Fan et al. [9] defined the similarity

between processes cells and the similarity between process routes and then used self-adaptive

affinity propagation clustering to discover typical processes. Peng et al. [10] considered that

different product modules may have an identical or similar process route and mining the pro-

cess similarity of product modules can effectively reduce production cost and improve produc-

tion efficiency. They developed a novel product data mining approach with an improved

Euclidean distance formula to analyse the product module process similarity. Wu et al. [11]

proposed an innovative method based on process constituent elements model to objectively

calculate the similarity of product manufacturing processes; the similarity model is established

on the basis of six dimensions of process constituent elements, namely, input, output, resource,

environment, value-added processing activity, and quality control and inspection. Among the

aforementioned studies, the local similarity of consistent links between manufacturing pro-

cesses is the main basis for similarity evaluation. Unfortunately, the impact of global similarity

caused by the position of consistent links in manufacturing processes cannot be sufficiently
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considered. In addition to similarity measurement of machining process routes, cluster analy-

sis of machining process routes is an important aspect of determining the typical process

route. Clustering analysis is to mine some natural clusters from the data object collection to

allow the data objects among clusters to be of higher similarity. The data objects in different

clusters are of relatively small similarity. The clustering analysis method can be adopted to

obtain the potential classification among data objects. In addition, based on this, the character-

istics of data on each cluster can be observed and analysed. It is of important application value

in fields such as knowledge mining, image processing, pattern recognition, medical diagnosis,

bioengineering, and document retrieval. The clustering analysis methods can mainly be

divided into traditional algorithm and modern clustering model based on swarm intelligence

algorithm. Among traditional algorithms, the most extensively applied one is the K-means

algorithm [12, 13]. However, one of its notable shortcomings is that the number of clusters

must be initially specified. Furthermore, the initial position for the elements to be clustered

can impose a significant impact on the clustering partition effect. The density-based clustering

analysis methods are also one of the important research directions in traditional algorithms. In

general, such methods map the data objects to the data space where the data class would be

merged and divided based on distribution density. The advantages are the adaptability of clus-

tering analysis problems distributed in any shape and the capability to eliminate the interfer-

ence of the clustering process caused by the isolated data objects. However, the parameters of

the algorithm are difficult to set. The relatively mature algorithms include DBSCAN [14],

OPTICS [15], and DENCLUE [16, 17]. In recent years, artificial intelligence (AI) technology

has received widespread attention for its application in the data mining field. Many scholars

have started researching the clustering analysis model based on the swarm intelligence algo-

rithm, for example, the ant colony optimisation (ACO) clustering algorithm [18, 19], cluster-

ing algorithm based on particle swarm optimisation (PSO) [20], artificial fish swarm clustering

algorithm [21], bird swarm optimisation clustering algorithm [22], and moth swarm clustering

algorithm [23]. Generally, compare with those classical clustering methods like K-means algo-

rithm, the clustering analysis methods based on swarm intelligence algorithm are not affected

by the setting of initial clustering conditions. In addition, owing to groupisation, such methods

often exhibit rapid convergence rates and good global searchability. Therefore, based on the

comprehensive consideration of algorithm maturity and universality, the ACO algorithm has

been selected to construct the intelligent clustering model of the machining process route.

For reuse of the machining process route, the current mainstream approach is case-based

reasoning (CBR) [24, 25]. Chang et al. [26] considered that retrieving a relevant case of process

planning similar to the given part is an effective approach to develop a machining process

plan. They adapted the retrieved case using CBR to generate the new process plan. Jiang et al.

[27] presented a hybrid method combing rough set and CBR for remanufacturing process

planning. A rough set was employed for feature reduction and rapid determination of features’

weights automatically, and CBR was utilised to calculate the similarity of process cases to iden-

tify the most suitable solution effectively from the case database. Li et al. [28] presented a

hybrid method of blockchain and CBR for remanufacturing process planning. They utilised a

blockchain network to record the remanufacturing knowledge and its associated transactions

to guarantee the security and reliability of knowledge sharing. Further, they employed CBR to

retrieve and reuse the most suitable solution by analysing the similarity between previous

remanufacturing cases and a new case with the nearest neighbour algorithm. In these CBR

methods, although the typical process route can be regarded as the reuse object to generate

new processing schemes by reasoning, substantial human–computer interaction and revision

are repeatedly required, which cause decreased flexibility and intelligence in reusing the manu-

facture instances.
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A novel framework for discovering and reusing a typical process route driven by symbolic

entropy and intelligent optimisation algorithm was developed in this study. A similarity mea-

surement method of machining process routes based on symbolic entropy was developed, thus

realising comprehensive consideration of global and local similarity of machining process

routes. Subsequently, an intelligent clustering model based on ant colony algorithm and similar-

ity measurement of machining process routes was built, classifying machining process routes

and further extracting the typical process route in each class cluster. Finally, two reuse

approaches based on typical process routes, including direct revision reuse and indirect match-

ing reuse––this expands the reuse approach and improves reuse flexibility––were examined.

Because the proposed framework comprehensively considers the aspects of similarity analysis,

mining, and reuse of manufacturing instances, it can effectively support process instance reuse.

2. Discovery and reuse framework of the typical process route

The previous process plans can be considered as references for the technical process design of

the new object so as to improve the design quality and efficiency. Meanwhile, in most cases, the

difference of the majority of the series parts lies in the local structure and key dimension, but

their machining procedures are extremely approximate. The flexible reutilisation of similar pro-

cess plans can directly impact the research and development efficiency of the company’s prod-

ucts. To achieve the high reutilisation of the process plan, the insufficiency of orderly

management for process cases must be addressed and a method that can divide the process

route classification based on the similarity of process must be created. Thus, the effective classi-

fication and management of process plans can be achieved. Moreover, in each category, the typ-

ical process plan representing its category can be proactively analysed and extracted for reuse in

the future. The typical process route represented in its category can be extracted for reference

during the design of product process plans. For instance, the typical process route can serve as

the reference example to contribute to new product development. Furthermore, the CBR tech-

nique can be applied to generating new process plans. In addition, the typical process can be

served as the bridge for retrieval and reuse. The technologists can proceed with the similarity

retrieval from all typical process routes to identify the most similar one to the design object.

Subsequently, the secondary retrieval can be carried out from the above result to discover the

most identical one to the reuse demand. By doing so, it is not necessary to retrieve all process

plans. The reuse demand can be accurately matched while reducing the retrieval time.

The discovery and reuse framework of the typical process route is shown in Fig 1. The pre-

viously accumulated process plans of the company are considered as the data objects to be

clustered, and the similarity calculation results of various process routes serve as the reference

for the clustering partition, retrieval, and reuse. Thus, the difficulty in reuse caused by the lack

of rational organisation and management of previously accumulated process plans can be

improved.

According to the afore described analysis, the discovery and reuse of typical process route

mainly involve three modules, namely (1) the similarity calculation of machining process

routes; (2) the clustering analysis of process routes based on the similarity calculation results

and the acquisition of the typical process routes; and (3) the process reuse approaches based

on the typical process routes.

3. Similarity measurement of machining process routes based on

symbolic entropy

The modern machining processes of complicated products often involve multiple procedures,

generally carried out at different workstations or equipment. The process route of the product
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reflects the sequence of machining processes, which contains the required types of

manufacturing resources, their corresponding sequences, and the flow path at multiple sta-

tions (equipment) for the workpiece. The more similar the process route of two parts, the

more similar would be the required types, quantity, sequence of manufacturing resources, and

flow path of workpiece at the processing site; consequently, the higher would be the consis-

tency of process plans.

If process routes are abstracted into processing sequences, the similarity measurement of

machining process routes also can be transformed into similarity calculation of sequences. For

the similarity calculation of sequences, the local and global information all should be consid-

ered. For two sequences, their longest common subsequence can be used to evaluate the global

similarity, and the positions and frequency of their common elements can reflect the the local

similarity. For instance, there are three character sequences as follows: acbea, abedd and aabef.

The longest common subsequence is abe, which reflect the global similarity among them is

close. In addition, the positions and frequency of common elements between character

sequences acbea and aabef are same, so their similarity value is higher from the local informa-

tion. In order to synthetically evaluate the local similarity and global similarity among process

routes, a sequence similarity measurement method based on symbolic entropy has been

adopted to evaluate the similarity among process routes. Firstly, the longest common subse-

quence should be extracted from the two process routes to be compared. Subsequently, each

process method can be abstracted as a symbol to calculate the Shannon entropy of each posi-

tion symbol in the longest common subsequence. The entropy difference among all positions

can be utilised to compose the evaluation results of the subsequence similarity. As the calcula-

tion results of symbolic entropy are relative to the position and the frequency of occurrence of

Fig 1. A framework for discovery and reuse of typical process route.

https://doi.org/10.1371/journal.pone.0274532.g001
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the symbol, the ultimate subsequence similarity calculation results obtained can effectively

reflect the global and local information, thus strengthening the reliability of the calculation

results. Finally, the similarity evaluation results of the longest common subsequence and the

length of two original process routes to be compared should be comprehensively considered to

obtain a similarity calculation result that can be relatively accurate and reliable and can inte-

grate local, global, and length information.

3.1 Acquisition of longest common subsequence

The acquisition of the longest common subsequence is essentially a problem to locate the lon-

gest subsequence from two sequences to be compared. The longest common subsequence is

defined as follows: if a sequence S = {s1,s2,� � �,sr} (integer r denotes the length of sequence S) is

simultaneously a subsequence to two sequences M = {m1,m2,� � �,mu} (integer u denotes the

length of sequence M) and N = {n1,n2,� � �,nv} (integer v denotes the length of sequence N) to be

compared, that is, if Eq (1) is satisfied, S is considered the longest common subsequence of M
and N if and only if the length r of sequence S takes the maximum value.

sx ¼ my ¼ nz;

1 � y � u;

1 � z � v;

: ð1Þ

8
><

>:

The acquisition of the longest common subsequence is the basis of the application of

bioinformatics, which is also a relatively classical problem requiring computer dynamic pro-

gramming solutions. The existing literature [29–32] and tools (such as the Diff tool) have

afforded relatively mature and universal solutions to such questions, which are not reiterated

herein.

3.2 Calculation of symbolic entropy

The Shannon entropy was adopted in this study to calculate the symbolic entropy of each posi-

tion procedure in the process routes. In sequence M, the symbol may appear many times in

the same procedure; the position information for the ith occurrence of some procedure symbol

and its occurrence density can be described as αi, as follows:

ai ¼
1

pi � pi� 1

; 1 � i � k: ð2Þ

Here, pi refers to the position of the ith occurrence for the procedure symbol; k denotes the fre-

quency of occurrence for such symbol in the sequence. Evidently, p0 can be considered the

position of the procedure symbol before it appears. Let p0 = 0. Clearly, the position informa-

tion for the ith occurrence of some procedure symbol can be directly expressed by the value of

pi, and its occurrence density can be described by used the difference value between pi and pi-1.

If the previous occurrence of the procedure symbol is fixed that pi-1 is a definite value, a higher

value of pi shows that (i) the ith occurred position of some procedure symbol is later in the

sequence, and (ii) the interval to its previous occurrence is larger. According to this feature, Eq

(2) can be built. As known from Eq (2), the later the position of the occurrence of the proce-

dure symbol in the sequence and the larger the interval to the previous occurrence, the smaller

would be the value of αi. As a result, αi can be adopted to describe the position of the ith occur-

rence of the procedure symbol and the intensive interval to the previous occurrence of the

same symbol.
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To describe the orderliness of αi, the discrete probability distribution function expressed as

Eq (3) can be established.

Qi ¼

Xi

j¼1

aj

Xk

j¼1

aj

; 1 � i; j � k: ð3Þ

The Shannon entropy of the procedure symbol on each position in the process route can be

further calculated as

HðPtÞ ¼ � Qilog2
Qi; 1 � i � k; 1 � t � r: ð4Þ

Here, Pt signifies the position of the tth procedure symbol in M; H(Pt) refers to the symbolic

entropy of procedure at the position of Pt; Pt is the ith occurrence in M; and Qi stands for its

distribution probability.

3.3 Sequence similarity calculation based on symbolic entropy

In terms of any two process routes M = {m1,m2,� � �,mu}, N = {n1,n2,� � �,nv} to be compared, the

longest common subsequence S = {s1,s2,� � �,sr} can be extracted. If the position of some proce-

dure symbol sx in S is Py, and the position in N is Pz, the similarity of both sequences can be cal-

culated according to Eq (5).

simðM;NÞ ¼ 1 �
1

r

Xr

x¼1

jHðPyÞ � HðPzÞj: ð5Þ

Here, H(Py) denotes the calculation result of Shannon entropy for procedure symbol sx in M;

H(Pz) refers to the calculation result of Shannon entropy for procedure symbol sx in N. The

similarity calculation results of two process routes are composed of the Shannon entropy dif-

ference of all symbols in the longest common subsequence. Apparently, if the occurred posi-

tion of the longest common subsequence in two original sequences and the interval between

the occurrence of the same symbol are identical, the similarity obtained from the calculation

would be high. Moreover, the symbolic entropy also reflects the global and local structure

information of the original sequence, avoiding the scarcity of consideration of global structure

information due to the dependence on the subsequence measurement. As a result, the accuracy

of similarity calculation is improved.

In practice, if the lengths of two sequences to be compared are considerably different, it is

impossible to determine whether they are of higher similarity even if the occurred position

and frequency for the longest common subsequence in the original sequence is relatively

approximate. For instance, in case of character sequences ‘aabedf’ and ‘aabe’, the longest com-

mon subsequence is aabe. The occurred position and frequency interval for aabe in the two

original sequences are identical; however, this information cannot simply determine that these

two sequences are completely identical. The impact caused by the inconsistent sequence length

should be considered. The correction factor that can reflect the inconsistent length should be

introduced to establish the final similarity formula, as follows:

SIMðM;NÞ ¼
r

maxðu; vÞ
simðM;NÞ: ð6Þ

The following simple example can describe the similarity measurement algorithm of the

process route based on symbolic entropy. Assuming that there are two process routes: M
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(milling! grinding!boring! turning! drilling! boring) and N (milling! grinding

!milling! boring! drilling). The longest common subsequence S (milling! grinding

!boring! drilling) of them can be extracted. Then, the symbolic entropy in M and N for

each machining element in S can be calculated according to Eqs (2)–(4), which are shown in

Table 1.

Substitute the data in Table 1 into Eqs (5) and (6) to obtain the results of the similarity mea-

surement of the machining sequence, which is as follows: SIMðM;NÞ ¼ 4

6
1 � 1

4
j0 � 0:39jþð

�

j0:5 � 0jÞ� � 0:5183:

4. Clustering analysis model of process routes and acquisition of

their typical process

Clustering analysis is to mine some natural clusters from the data object collection to allow the

data objects among clusters to be of higher similarity. The data objects in different clusters are

of relatively small similarity. The clustering analysis method can be adopted to obtain the

potential classification among data objects. In addition, based on this, the characteristics of

data on each cluster can be observed and analysed. It is of significant application value in

knowledge mining, image processing, pattern recognition, medical diagnosis, bioengineering

and document retrieval. Considering the aspects of algorithm maturity and universality, the

ACO algorithm was selected to construct the intelligent clustering model of the machining

process route in this study.

4.1 Swarm similarity calculation of process route

In the ant colony clustering model of process route built in this study, all the routes are first

placed in a two-dimensional (2D) plane randomly. In the event that an ant needs to pick up

some process route under the non-loaded condition, the criterion depends on the comprehen-

sive similarity between the process route and the other process route at its location, that is,

swarm similarity. Similarly, if an ant needs to drop some process route under loaded condi-

tions, the judgement standard relies on the swarm similarity among the current location

where the ant is and all the other process routes.

On the basis of the process route similarity measurement method based on symbolic

entropy mentioned in Section 3, the swarm similarity formula of process route can be

expressed as

CSIMðMÞ ¼
1

jlocaðMÞj � 1

X

N2locaðMÞ;M 6¼N

SIMðM;NÞ: ð7Þ

Here, CSIM(M) stands for the swarm similarity of process route M; loca(M) refers to the loca-

tion of M in the 2D grid plane; |loca(M)| signifies the quantity of process routes at location loca
(M). If the non-loaded ant moves to loca(M) and determines whether to pick up M, |loca(M)|

−1 would be equal to the quantity of all process routes at the location except for M; however,

in the event that the loaded ant moves to loca(M) and determines whether to drop M, as M has

moved to the current location along with ant, |loca(M)|−1 would then be equal to the quantity

Table 1. Calculation example of symbolic entropy.

x 1 2 3 4

H(Py) 0 0 0.5 0

H(Pz) 0.39 0 0 0

https://doi.org/10.1371/journal.pone.0274532.t001
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of all process routes at the location of the ant. It can provide a reference for the ant to deter-

mine whether to pick up or drop the process route by calculating the mean similarity for M
and all other process routes at its location.

4.2 Process route clustering analysis based on ant swarm algorithm

The clustering analysis flow of process route based on ant swarm algorithm is illustrated in Fig

2; the specific implementation steps are as follows:

Step 1: Initialise the iteration number Gen and the number of ant Nant. Here, Gen is gener-

ally determined by the size of the data object set. The more the process routes to be conducted

the clustering analysis, the larger would be the Gen; the default value of Nant is normally Nant =

Num/5, where Num refers to the number of process routes in the clustering analysis.

Step 2: Initialise the 2D grid plane. The size of the grid plan should adapt to the value of

Num so as to ensure that the grid plane can accommodate all process routes without overlap-

ping. In practice, the process routes are initially randomly distributed on the grid plane. There-

fore, a slightly larger size should be selected so that two or more process routes would not

randomly distribute to one location. The value range of abscissa X and ordinate Y on the 2D

grid plane can be preset as X ¼ Y ¼ 3
ffiffiffiffiffiffiffiffiffiffi
Num
p

.

Step 3: The process routes to be clustered are randomly distributed to the grid plane defined

in step 2. One process route M to be clustered can be considered as an example. For a positive

integer Mx randomly generated from the range [1, X] and a positive integer My randomly

Fig 2. Flow chart of cluster analysis based on ant colony algorithm.

https://doi.org/10.1371/journal.pone.0274532.g002
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generated from the range [1, Y], the location coordinates (Mx, My) are the initial random loca-

tion of M.

Step 4: One process route should be randomly designated to each ant, and the initial loca-

tion of the ant should be the one on the designated process route.

Step 5: Proceed with the clustering iterative loop.

Step 6: All ants should be traversed for each clustering loop. If some ant has no load, pro-

ceed with step 7; otherwise, move to step 8.

Step 7: The number of process routes at the ant’s location should be calculated. If there are

no other process routes except for the designated process route M, that is, |loca(M)|−1 = 0, it

indicates that this location is not the clustering location. As a result, M can be directly picked

up, and the ant condition should turn into with-load. If other process routes are available

except for M, Eq (7) should be utilised to calculate the swarm similarity among the designated

process route and other routes at the location. In addition, the calculation result would help

determine whether the ant should pick up the designated process route. There are two types of

strategies to determine whether to pick up the designated object according to swarm similarity,

as follows: (1) In the clustering analysis of small-scale data, the swarm similarity can be directly

adopted as the judgement standard. Specifically, a threshold can be preset. When the swarm

similarity is smaller than the preset threshold, the designated object can be picked up; the con-

dition of ant should switch to be with-load; otherwise, a new object would be randomly desig-

nated to the ant and move the ant to the location of the new designated data object. (2) In the

clustering analysis of large-scale data, increasingly many data object elements would enter

each cluster, potentially reducing the similarity level of any individual to the entire swarm. As

a result, the swarm similarity can be turned into pick-up probability to determine pick-up

action. Specifically, the swarm similarity can be turned into pick-up probability Ppick according

to space conversion probability formula [33], and Ppick can then be compared with random

probability Pran. When Ppick� Pran, the ant can pick up the designated object and switch to

with-load condition; otherwise, a new object would be randomly designated to the ant, which

would also be moved to the location of the new designated object.

Step 8: To improve the efficiency of the clustering algorithm, in terms of the ant that loads

the process route, the considered priority should place the loaded process route to the location

where the ant once dropped off the process route. The underlying rationale here is that the

location where the ant used to drop off the data object is the potential clustering location. The

blindness to conduct a direct global search can be avoided by judging such locations can be

able to place the loaded data objects. If all locations where the ant used to drop off objects fail

to satisfy the requirements to place down the loaded objects, the ant and its loaded data objects

can be moved to a location of a new data object. The swarm similarity result can be utilised to

determine whether the ant can place down the loaded process route at the current location.

The reference to determine whether the ant can place down the loaded data object is also the

value of swarm similarity, which specifically involves the following two strategies: (1) In the

clustering analysis of small-scale data, the swarm similarity can be directly adopted as the

judgement standard; specifically, a threshold can be preset. When such swarm similarity is

smaller than the preset threshold, the designated object can be placed down––the condition of

ant changes to non-load. Meanwhile, a new object should be designated to the ant. Accord-

ingly, the ant should be moved to the location of the new designated data object. Otherwise,

the ant should not drop off the loaded data object. (2) In the clustering analysis of large-scale

data, increasingly many data object elements would enter each cluster with the clustering pro-

cess, potentially reducing the similarity level of any individual to the entire swarm. As a result,

the swarm similarity can be turned into drop-off probability to determine drop-off action. Spe-

cifically speaking, the swarm similarity can be turned into drop-off probability Pdrop according
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to space conversion probability formula, and then compare Pdrop with random probability

Pran. When Pdrop�Pran, the ant can drop off the designated object and switch to a non-load

condition; simultaneously, a new object would be randomly formulated to the ant. Otherwise,

the ant should not drop off the loaded data object. In addition to the aforedescribed strategies,

the number of the iterative loop for the ant to load the same object should be regulated as each

cluster may only contain one element, that is, when the iterative loop of ant reaches to a limit

and fails to drop off the loaded data object, a randomly generated location on the 2D grid

plane can be selected to drop off the loaded object. Meanwhile, a new data object should be

designated to the ant.

Step 9: Check whether the number of iterative loops has reached Gen. If so, the loop should

stop, and the clustering results should be output; otherwise, return to step 6 to continue the loop.

It can be seen from the above steps that the swarm intelligence clustering algorithm of pro-

cess route proposed in this paper contains one big loop and one nested small loop. The former

stands for the clustering iteration number. The latter represents that each clustering loop

could iterate through all ants and completes the corresponding calculation and judgment. For

each ant, the calculation and judgment of nested small loop has two selectable strategies, and

their time-consuming is different which is hard to describe exactly. Here the time complexity

of the proposed intelligent clustering algorithm can used O(Gen×Nant) to describe generally.

Meanwhile, except for the pre-set parameters and defined data spaces, the temporary parame-

ters mainly include that each ant may needs two variables that store Ppick/Pdrop and Pran when

it is performing one of two selectable strategies, so the space complexity can used O(Gen×-
Nant×2) to describe generally. Compared with other clustering algorithms, the swarm intelli-

gence clustering algorithm of the process route proposed herein has four main advantages in

terms of application.

First, the number of clustering loops and quantity of ant can be reasonably set according to

the size of the data object set. On the one hand, it can ensure that each ant can traverse most of

the objects and lower the missing detection rate; on the other hand, it can urge each data object

can be examined by multiple ants many times, reducing the lapse.

Second, the number of objects at the location where the ant is determined before deciding

whether to pick up the designated objects. The designated object would be directly picked up if

it is not the clustering location. Otherwise, the swarm similarity would be calculated to deter-

mine whether to pick up the designated data object. Thus, the computational expense of the

system can be reduced.

Third, two strategies are proposed to determine the pick-up and drop-off of the data object

for the ant, which suits both large-scale and small-scale data clustering analyses, thus signifi-

cantly improving the algorithm’s adaptability.

Finally, the algorithm sets up a storage space that records where an object is placed for each

ant. When the ant needs to drop off the loaded object, all the locations recorded in the space

can be first examined, and the potential clustering location can then be examined; thus, the

blindness of direct global search can be reduced, thereby lowering the clustering time and sys-

tem expenses.

4.3 Acquisition of typical process route

When the clustering output results have been obtained from the method mentioned in Section

4.2, the most representative machining process route in each cluster of the technical process

can be extracted as the typical process route. It is the most representative process case in its

technical process, which determines that the mean similarity is inevitably the highest com-

pared with other process routes in the same cluster. Therefore, the typical process route can be
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obtained by taking the maximum mean similarity among all data objects and others in each

cluster. The mean similarity formula for any process route M in some cluster to the given clus-

ter can be expressed as

ASIMðMÞ ¼
1

jclusterj � 1

X

N2jclusterj; M 6¼N

SIMðM;NÞ; ð8Þ

where ASIM(M) refers to the mean similarity value of M relative to other elements in the clus-

ter. M is contained in a cluster, and |cluster| denotes the number of elements in the cluster.

When the mean similarity values of all elements in the cluster are calculated, the correspond-

ing process route with the maximum value can be considered as the typical process route.

5. Discussion of reuse approaches for the typical process route

5.1 Direct revision of typical process route

For some series products, their design objective is relatively similar to the typical process case;

under such circumstances, some procedures or parameters of the typical process route can be

revised to generate the new machining plan.

The typical process route library has been established by mining the corporate process

cases. Meanwhile, the parameterisation of data in the technical process of the typical process

route was carried out. The design with an identical technical process can be directly realised by

modifying the parameters in the typical process route. Furthermore, such a route can be con-

sidered as a typical case of some type of design object, which can serve as reference for applying

the CBR technique while designing the new process. The new process plan can be generated

by extracting, screening, and modifying the process information.

5.2 Indirect matching of typical process route

The technical process design of parts is extremely complicated, which can be affected by many

factors, including constraints of manufacturing requirements and selection of manufacturing

resources. The core link of such design lies in the planning of the process route, which can also

be considered as a problem of machining operation selection and procedure ordering con-

straint. Regarding the procedure ordering constraint, the predefined constraint condition and

sorting objective function should be adopted to provide a reference for the organisation and

arrangement of machining operation sequence; thus, the final output process route sequence

scheme can be guaranteed to approximate or satisfy the optimal solution. During the process,

it is generally required to set up the constraint condition of machining operation sequence and

sorting objective function; in addition, the intelligence optimisation algorithm would be

employed to solve the decision-making of the process route.

The sorting constraint conditions mainly include the process and manufacturing resource con-

straints. The former mainly refers to some technical process design criteria that should be com-

plied with during the arrangement of the process sequence, for example, ‘the rough machining

should precede the fine machining’, ‘the benchmark shall proceed firstly’, and ‘the surface should

precede the holes’. The latter mainly refers to selecting and replacing manufacturing resources to

arrange the process sequence. In production practice, it is inevitably time-consuming if the gener-

ated process route frequently needs to change machine tools or requires multi-time clamping and

positioning. Furthermore, a large accumulative error may occur, increasing the production cost

and lowering the machining quality of parts. Therefore, it is essential to establish objective func-

tions according to sorting constraint conditions. Subsequently, the objective function can be uti-

lised to evaluate various sorting schemes of the process route. The principle to formulate the
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sorting objective function is to ensure the minimum turnover rate of manufacturing resources

based on the satisfaction of process constraints.

The mechanism to assist the decision-making of process routes with an intelligence optimisa-

tion algorithm is to continuously generate new machining process route sorting schemes through

the iterative loop of the mentioned algorithm. Subsequently, the pre-established objective function

is utilised to evaluate the sorting schemes. The current optimal solution would be replaced if the

more superior sorting scheme appears. Otherwise, the iterative loop would continue. If the num-

ber of iterative loops of the optimisation algorithm reaches the set value or the continuous iterative

loops reaches the limit without a more superior solution, the algorithm would stop operating;

then, the optimal solution of the output end state is the final sorting scheme.

It is not the research focus of this study to utilise the iterative loop of intelligence optimisation

algorithm to continuously generate the new sorting scheme of the process routes. The reuse con-

cept of indirect matching of the typical process route proposed herein applies the typical process

route for the category to which the design objective belongs in order to establish the sorting objec-

tive function, thus achieving the purpose of considering the typical process route as a reference.

The arrangement of procedure sequence for the typical process route contains the rich experience

in process design. It can even represent the procedure position arrangement of machining scheme

for similar parts to some extent. The similarity of the new scheme and typical process roue can be

calculated when generating the new procedure sequence scheme through the continuous iterative

loop of intelligence optimisation algorithm; the objective function with high evaluation value and

similarity can thus be established. The merit of such deed is the omission of analysis and discus-

sion of the sorting constraint conditions, enabling the reduction of construction difficulty for the

decision optimisation model of the process route. As regards the calculation method of the typical

process route, a detailed explanation is provided in Section 4.

6. Case study

6.1 Similarity calculation of machining process routes

The process instances of some company’s products are adopted for verification. Ten process

routes, including parts of axles, sleeves, flange plates and caps, and boxes, are randomly

selected from the company’s instances library. The machining process path of these 10 process

routes is extracted, as shown in Table 2.

Table 2. The process routes extracted from instances.

Part number Part name Machining process route

1 drive shaft rough turning!semi-finish turning!finish turning!rough milling

!semi-finish milling!finish milling!grinding

2 stepped shaft rough turning!semi-finish turning!finish turning!milling

3 cylinder liner casting!rough turning!semi-finish turning!boring

4 guide sleeve rough turning!semi-finish turning!drilling!boring!grinding

5 bearing Cover rough turning!semi-finish turning!drilling!turning (inner circle)

!milling!drilling

6 flange casting!rough turning!semi-finish turning!finish turning!drilling

!rough turning(inner circle)!finish turning(inner circle)!drilling

7 valve cover casting!rough turning!semi-finish turning!finish turning

!boring(centre hole)!drilling

8 close lid casting!rough turning!semi-finish turning!milling!drilling(reaming)

9 Triangular bearing box casting!milling!milling!rough boring!finis boring!milling

!drilling!milling!drilling

10 valve body casting!milling!milling!milling!rough boring!finish boring

!rough boring!drilling(tapping)!drilling(tapping)

https://doi.org/10.1371/journal.pone.0274532.t002
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As detailed in Section 3, the similarity values for these 10 cases are calculated (the computa-

tional code of similarity calculation case in S1 File), then a matrix of similarity values SIM10×10

can be constructed as follows:

SIM ¼

1:0000 0:5714 0:2857 0:4286 0:4286 0:3750 0:4286 0:4286 0:0582 0:0546

1:0000 0:5000 0:4000 0:5000 0:3750 0:5000 0:6000 0:0582 0:0546

1:0000 0:6000 0:3333 0:3750 0:6667 0:6000 0:2222 0:1837

1:0000 0:4167 0:3220 0:5000 0:6000 0:0798 0:0726

1:0000 0:6116 0:4167 0:5833 0:2542 0:0546

1:0000 0:5720 0:4470 0:3122 0:1111

1:0000 0:6667 0:3020 0:1837

1:0000 0:2491 0:1657

1:0000 0:6896

1:0000

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Take part 1 and 2 as an example, the value of matrix element SIM(1, 2) can be used to repre-

sent their process route similarity. It is obvious that SIM is a symmetric matrix. For each part,

in order to make its route similarity with other parts be more intuitive and clear, ten histo-

grams are used to demonstrate as shown in Fig 3. Evidently, except for the complete identity of

cases themselves, the similarity of the technical process of essentially similar parts are clearly

greater than that of the parts are not in the same type. For example, part 1 and 2 are axles, part

3 and 4 are sleeves, and part 9 and 10 are boxes. They have considerable similarities in their

process routes, consistent with the actual manufacturing process and experience recognition.

6.2 Discovery of typical process route

Clustering of 10 process routes shown in Table 2 is considered as an example for demonstra-

tion. As the number of data objects to be clustered Num = 10, according to the description in

Section 4.2, the number of iterative loops can be taken as Gen = 100 and the number of ants

Nant = Num/5 = 2. The 2D grid plane is initialised and takes the value range of horizontal and

vertical coordinates as X ¼ Y ¼ 3
ffiffiffiffiffiffiffiffiffiffi
Num
p

� 10. The number of data objects to be clustered is

10, which is a small-scale clustering problem. Therefore, the threshold of swarm similarity can

be selected to determine whether the ant should pick up or drop off the process route. The

symbolic entropy-based similarity measurement method proposed herein integrates the global

and local similarity of the process route. Therefore, the judgement standard of similarity is

stricter. As a result, the decision threshold of swarm similarity can be set as 0.5.

The aforementioned parameters are input into the program model according to the cluster-

ing steps described in Section 4.2. Subsequently, the initial distribution of the process route

shown in Fig 4 can be obtained. The symbol “�” in the figure indicates the location of the pro-

cess route.

Subsequently, the clustering partition results shown in Fig 5 can be obtained by running

the clustering program (the computational code of clustering analysis case in S2 File).

As indicated by Fig 5, the clustering partition results are as follows: cluster1 = {part 1, part 2,

part 5, part 6}, cluster2 = {part 3, part 4, part 7, part 8}, and cluster3 = {part 9, part 10}. Thus,

axles, sleeves, and boxes are still respectively categorised. Owing to the great difference of pro-

cess, the plates and caps are categorised respectively into cluster1 and cluster2 based on the

principle of a similar process.

PLOS ONE A novel framework for discovery and reuse of typical process route

PLOS ONE | https://doi.org/10.1371/journal.pone.0274532 September 12, 2022 14 / 24

https://doi.org/10.1371/journal.pone.0274532


According to the clustering partition results, the mean similarity for each part in the corre-

sponding class can be calculate by Eq (8), which are shown in Fig 6. Evidently, the typical pro-

cess route for cluster1 is part 5; part 3 or part 8 is the typical process route for cluster2; and

cluster3 corresponds to part 9 or part 10.

6.3 Process reuse based on typical process route

Two reuse approaches of the typical processes are introduced herein. The technologists can

adopt direct revision to generate new processes through analysis, screening, and revision

based on the typical process route. Such an approach emphasises the technologist’s subjective

initiative, and the implementation course is relatively simple. Therefore, further explanation is

not provided herein. The cases of indirect matching of typical process routes are considered

for further discussion.

Fig 3. Similarity calculation results of process routes.

https://doi.org/10.1371/journal.pone.0274532.g003
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The formulation of a machining scheme based on the matching level of the typical process

route is to apply the intelligence optimisation algorithm to the decision course of the process

route. Consider the genetic algorithm as an example. It repeatedly applies genetic operations

to the population in the solution space to generate a new population, allowing the continuous

optimisation of process route chromosome contained in each generation of the population.

For example, a cover part shown in Fig 7 is taken to demonstrate the indirect matching of typi-

cal process route. The part mainly contains five machining features: the left and right end face,

excircle with a diameter of 105, excircle with a diameter of 60 and a Ø40 centre hole. Accord-

ing to the process analysis of this example part, the machining method for the left end face is

rough turning, and the method for the right end face is rough turning! finish turning;

regarding Ø105 excircle, the machining method is rough turning! semi-finished turning!

finish turning; as for Ø60 excircle, the method is rough turning! semi-finished turning;

regarding the Ø40 centre hole, it involves in drilling! rough turning (inner circle)! finish

turning (inner circle). The indirect reuse process of this example part based on GA mainly

contains the following six steps (see Fig 8 for the realisation process):

1. Gene coding

In this case, the chromosome stands for the potential process route of the part, and the gene

signifies the procedure operation. According to the combination of manufacturing proce-

dures, the number of the part’s procedures to be sorted for the part is six: rough turning,

Fig 4. The initial location distribution of process routes to be clustered.

https://doi.org/10.1371/journal.pone.0274532.g004

PLOS ONE A novel framework for discovery and reuse of typical process route

PLOS ONE | https://doi.org/10.1371/journal.pone.0274532 September 12, 2022 16 / 24

https://doi.org/10.1371/journal.pone.0274532.g004
https://doi.org/10.1371/journal.pone.0274532


Fig 5. The clustering partition results.

https://doi.org/10.1371/journal.pone.0274532.g005

Fig 6. The mean similarity calculation results of each category.

https://doi.org/10.1371/journal.pone.0274532.g006
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semi-finished turning, finish turning, drilling, rough turning (inner circle), and finish turn-

ing (inner circle). Evidently, a chromosome consists of six genes in total. When coding the

genes, the simplest approach is to adopt the ‘machining method + machining stage’

method. For instance, the machining method of turning the excircle can be coded as 1;

turning the inner circle as 2; and drilling as 3. Similarly, the code for the rough machining

stage is 1, 2 indicates the semi-finished machining stage, and 3 refers to the finish machin-

ing stage. The coding without machining stage division can be coded according to the

rough machining mode. The six procedures for the example part can be coded as 11, 12, 13,

31, 21, and 23.

2. Initialisation of population

The length of the chromosome can determine the scale of the population, and the initialisa-

tion can proceed accordingly; thus, the solution space of the process route for the example

part can be formed.

3. Determination of objective function

The analysis indicates that the structure of the part is more approximate to the part in clus-
ter1 obtained in Section 6.2. Therefore, the similarity between the typical process route of

cluster1, namely, part 5, and the chromosome in the solution space would be selected to

Fig 7. Example part.

https://doi.org/10.1371/journal.pone.0274532.g007
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establish the objective function. The more similar the chromosome in the solution space to

part 5’s process route, the more superior would be the solution. In Section 3, the solution to

the similarity of two process routes through symbolic entropy is detailed; here, the same

code is regarded as the same symbol when calculating similarity. Based on the similarity,

the objective function F is constructed as

F ¼ min
1

SIMðL; L0 Þ

� �

; ð9Þ

where L stands for the typical process route, which specifically refers to the route of part 5.

The coded process route is 11!12!31!21!41!31; L0 signifies the represented process

route of chromosome in the solution space.

Fig 8. The realisation process of genetic algorithm.

https://doi.org/10.1371/journal.pone.0274532.g008

PLOS ONE A novel framework for discovery and reuse of typical process route

PLOS ONE | https://doi.org/10.1371/journal.pone.0274532 September 12, 2022 19 / 24

https://doi.org/10.1371/journal.pone.0274532.g008
https://doi.org/10.1371/journal.pone.0274532


4. Copy operation

The copy probability should be set, and the superior chromosome in the parent population

should be duplicated to the next generation population based on the probability.

5. Interlace operation

Firstly, two chromosomes is randomly selected as the parent chromosomes, and two cross-

over locations is randomly generated in each parent chromosome. Subsequently, the gene

between the intersection of one of the parent chromosomes is picked up; such genes are re-

sorted according to their corresponding sequence in the other parent chromosome. Finally,

they are inserted between two intersections to generate a new chromosome. The principle

of interlace operation is depicted in Fig 9.

6. Mutation operation

Mutation operation can be understood as the internal interlace operation in the chromo-

some. Some chromosomes can be selected according to the preset mutation rate to directly

exchange the positions of two genes internally, thus forming the new chromosome. The

principle of mutation operation is shown in Fig 10.

Fig 9. Interlace operation process of chromosome.

https://doi.org/10.1371/journal.pone.0274532.g009

Fig 10. Mutation operation process of chromosome.

https://doi.org/10.1371/journal.pone.0274532.g010
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Genetic algorithm as a intelligent optimization algorithm has lots of reports in various

scholarly literature, and there are some validated and effective value ranges for its parameters.

After analyzing these applications from literature, I found that the usual range of chromosome

population is from 10 to 100, the usual range of copy probability is from 10% to 20%, the usual

range of interlace probability is from 50% to 99%, the usual range of mutation rate is from

0.01% to 10%. On this basis, in consideration of the example part shown in Fig 7 only contain-

ing six procedures to be sorted, and a number of parameters selection trials were carried out,

the relative parameters are identified as follows: the scale of chromosome population can be

taken as 10, copy probability is 10%, interlace probability is 70%, the mutation rate is 5%, and

the number of genetic cycle iterations is 100.

The genetic sequencing process of the process route can be programmed according to the

aforementioned steps. The convergence curve of algorithm operation is shown in Fig 11. Pro-

cess design criteria are used to screen for the optimal chromosomes searched from each itera-

tion, and the optimal chromosome found in the search is shown in Fig 12. The process route

described by Fig 12 can be expressed as follows: rough turning! semi-finished turning! fin-

ish turning! drilling! rough turning (inner circle)! finish turning (inner circle). In the

solution space, the finally obtained process route has higher similarity with the typical process

route of the class cluster where the machine part shown in Fig 7 belongs to, thus representing

Fig 11. The convergence curve of the objective function.

https://doi.org/10.1371/journal.pone.0274532.g011

Fig 12. Optimal chromosome.

https://doi.org/10.1371/journal.pone.0274532.g012
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its procedure position arrangement meet some common requirements for process design in

this kind of parts, and illustrating it is potentially reasonable. In addition, this result is also con-

sistent with the cognition of machining designer, which verifies correctness of the searched

optimal chromosome.

7. Conclusions

This study entailed the development of a novel framework for discovering and reusing a typi-

cal process route. The proposed method has a clear target that the reuse efficiency of

manufacturing instances must be improved. In this framework, similarity analysis, mining,

and reuse of manufacturing instances implemented different degrees of innovation, raising the

accuracy of the reuse object’s determination, and expanding the reuse approach. In addition,

the proposed framework comprehensively covers the aspects of similarity analysis, mining,

and reuse of manufacturing instances; thus, it can provide better support for process instance

reuse.

The poor effectiveness of the auto-generated machining process route is one of the restrict-

ing factors to the development of intelligent manufacturing. Therefore, the proposed frame-

work is a good choice for process route planning in intelligent manufacturing and is also

closer to the research focus and emerging research direction in the knowledge engineering

field. The research is still in its initial stages; however, the applied case demonstrates that the

proposed method is feasible and effective. On the basis of this framework, the future research

direction will be optimising and improving manufacturing instance mining and reuse system,

such as establishing a multi-dimensional similarity measurement model or realising intelligent

reuse driven by the designer’s subjective intent.
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