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Abstract

In this paper, we proposed an adaptive QP-free method without a penalty function or a filter
for minimax optimization. In each iteration, solved two linear systems of equations con-
structed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work
set, the computational scale is further reduced. Instead of the filter structure, we adopt a
nonmonotonic equilibrium mechanism with an adaptive parameter adjusted according to the
result of each iteration. Feasibility of the algorithm are given, and the convergence under
some assumptions is demonstrated. Numerical results and practical application are
reported at the end.

Introduction

The minimax problem with nonlinear inequality constraints has the following form,

min F(x)
XER"

(1)

st. filx) <0,ie Z,={l+1,---,m}

where F(x) = max{f,(x)},ie Z,={1,2,---,1}.

The minimax problem is a specific class of nonsmooth optimization problems. The general
optimization methods cannot be applied directly in (1) because the objective function is non-
differentiable. The common approaches for (1) are gradient sampling methods [1, 2], Cutting
Plane Method, and bundle method [3].subgradient methods [4].

Smoothing is one of the most popular classes among all methods for solving nonsmooth
problems. There are two main approaches proposed by previous scholars to deal with this
problem. First, approximating the non-differential function by a smooth exponential function
with parameters (which is also called entropy function). Shor [4] proposed two smoothing
algorithms with an active set strategy and a new adaptive parameter update rule. Second, intro-
duce an artificial additional variable to transform the problem into an equivalent nonlinear
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programming with smooth constraints, as follows
min ¢
st filx)—t <0,ie I,={1,2,---,1} (2)

filx) <0jie I,={l+1,---,m},

. where f,(x) : R” — R are Lipschitz continuously function; t € R.

For (2), there are many algorithms can be used such as gradient projection [5], interior
point method [6], trust-region [7], sequential quadratic programming(SQP) [8], penalty func-
tion [9], filter methods [10] or QP-free method [11], etc.

The extraordinary efficiency of SQP methods in solving nonlinear constrained optimiza-
tion problems (NLP) has allowed its extension to many other problems, such as minimax
problems [8-13]. But the sequences may fail to converge as the initial point lies far from the
optimal point in the SQP algorithm. So penalty function methods were proposed by Courant
[13] in 1943 to enhance the convergence of the algorithm. The objective function is defined as
the sum of the objective function and penalty term in the penalty function method. In [9], Ma
gives an exact smooth penalty function method to solve minimax problems with mixed con-
straints. However, the choice of penalty parameters during the iterative process is complicated.
Meantime, the effectiveness of the penalty function method is significantly affected by it.

Fletcher [14] proposed the filter algorithm which can effectively avoid the choice of penalty
parameters. It is inspired by the idea of multi-objective programming in 2002, where the objec-
tive function and the constraint violation function are considered separately. The combination
of the filter and SQP methods has been applied to the minimax problem due to its satisfactory
numerical results. [15] gave a trust-region SQP filtering method combining nonmonotonic
techniques to solve the unconstrained minimization problem. Luo [10] constructed a new fea-
sible sub-problem based on working sets and incorporated filtering techniques. Although the
filter method has good numerical performance, the update of the filter set also faces the prob-
lem that the set is getting larger and the computational storage is growing. On the other hand,
the feasibility restoration phase is difficult to avoid in the filter method, which more or less
increases the computational effort.

To overcome the possible inconsistency in solving the sub-problem and the high computa-
tional cost, Panier [16] proposed a QP-free algorithm (SSLE algorithm) for optimization prob-
lems with inequality constraints based on the KKT conditions and Newton’s method. Each
iteration requires solving two systems of linear equations with the same coefficient matrix and
a least-squares subproblem. Global and superlinear convergence are established without the
assumption of stationary point isolate. In [11], Jian and Ma presented a new QP-free algorithm
for minimax problems according to the unique structure of these problems. [17, 18] proposed
two QP-free algorithms for solving constrained optimization problems respectively.

Inspired by the above study, a nonmonotonic QP-free algorithm without a penalty function
or a filter is given in this paper for the minimax problem. And the global convergence, as well
as the superlinear convergence under some mild conditions, is proved. This algorithm com-
bines the NCP function to solve in each iteration two nonlinear systems of equations with the
same coefficient matrix, which can be viewed as a Newton-quasi-interaction perturbation of
the primal and dyadic variables of the KKT condition. An adjustable operator is introduced,
which changes in each iteration according to the results of the previous iteration, thus chang-
ing the degree of influence of the objective function in this mechanism. A nonmonotonic
mechanism is used to avoid the Maratos effect. The working set is introduced to reduce the
computational effort further.
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The paper consists of the following parts. Section 1 introduces the previous methods for
solving minimax problem. In section 2, the structure of the work is described. Section 3 dis-
cusses the implementation of the algorithm. Section 4 discusses the global convergence and
superlinear convergence rate of the algorithm. In section 5, numerical results and practical
application are given. The article has been summarized in the final.

Description of algorithm
Preliminaries

Define the following notations:

X = (xTa t)T = (XI,XQ,“',t)T;
IZIlLJIQ:{1a"'alal+]—v"'7m};
W (X) = (Vh(X),i € T);

£(X) = max{0, h,(X) };

o = o(X).
The following function h,(X) is defined to represent the constraint of (2),

hi(X):{fi(x)—t deT, ={1,2,---,1}
ﬁ(x) 7i612:{l+17"'7m}"

where h,(X) : R""" — R are Lipschitz continuously functions.
Let G(X) = (hy, - b, hyyyy oo b)) R — R™

) m

(2) are equivalent to

min o(X)
(3)
st. h(X) <0,ieT,
where w(X) = ¢.
The Lagrangian function is defined as
L(X,p) = o(X) + Z:uihi(x)? (4)
i€l
where = (1, - -+ U P> o Mm)T is the multiplier vector.
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(X, it) is called the KKT point for (3) if the following conditions hold,

i€l

h(X) <0,i € T; (5)
arh(X) =0,i € Z;
p=0

To construct the system of equations, we introduce the nonlinear complementarity prob-
lem (NCP) function, and ¢(a, b) is called an NCP function if the following relationship holds,

¢(a,b) =0< ab=0,a>0,b>0. (6)

The NCP function is Lipschitz continuous and differentiable except for the origin. Strong
semi-smoothness holds at (0, 0). The Fischer-Burmeister NCP function is a simple NCP func-
tion with good theoretical properties and numerical performance.

The Fischer-Burmeister NCP function used in this paper has the following structure:

¢ep(a,b) = Va2 + b —a—b.

So we have
(L_l Lq) (a,b) # (0,0):
Vogla,b) = V@@ +b* V> + b o T (7)

(=1v=1) |+ =1,(ab) = (0,0).
Then the NCP function ®; is defined by
D, = (¢, )
where
(X, 1) = @@, 0)| ey () pmp ez
According to (5), define
O(X, p) = (ViL(X, )", @7)". (8)
Clearly, KKT condition (5) holds equivalent to ®(X, y) = 0.

Similar to (7), if (h(X), u;) # (0, 0), then

Vip, = | ———=+1]|Vh(X),i€T;

V.o, = — 1 |e,i €T,
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where ¢; = (0, ---,0,1,0, - --,0)%, and
of of, r

Vh,(X) = 0x, Ox, /
O 9o et
ox,”  ox,’ ! o
If (h(X), w;) = (0, 0), introduce the following notations:
k _hi{(X) +1 k k
{ = , (h(X), %) # (0,0);
1+ @ ,else.
2
uk
k _ . +1 /k k
Vv, = 2 2 7(h (X)au)#(oao)v
! (R (X)) + (u)
-1+ \/75 , else.

It holds that
Vi (X, ) =+ DVh(X)| —1<{<1,

VX = -1)-1<<1
Let Gi, = (h)" : R"" — R",j € W. VG, is the Hessian matrix of G}, = {h!|i € W} and

W is active set.
Define the coefficient matrix V¥ according to (8)

B* VG,
vk .= ,
diag(C,)(VG},)"  diag(v}, — )"
where B¥ is a approximation of the Hessian matrix of L(X, u), and
_ . kit
¢ = cmin{1, [|®"["}

. where ¢ > 0 and 7 > 1 are given parameters.
In this work, to increase the convergence and flexibility of the algorithm, we substitute the

objective function with the following equation:

O(X) = w(X) +3|l@," ©)

We introduce such an adjustable operator, which is not a penalty parameter, but is changed
in each iteration based on the effect of the iteration results. Fig 1 shows the initial situation of

taking 6 = 1.

5/18
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- e

/ Reject region

I

2
12, (X0l
Fig 1. Reject region for iteration points.
https://doi.org/10.1371/journal.pone.0274497.9001
We give the following filter equivalence mechanism:
Ykl k|| < k—r
@K @) < 0 max [} (10)
or both
A R 1, +1
L (1)
O(X*!) < O(X!) — a0, | V]l. (12)

There are three regions in the first quadrant. If the trial point X} is located in region I at the
kth iteration, i.e., (10) is satisfied at the current trial point, but (11) and (12) are not satisfied.
Then this point is accepted. If the trial point X is located in reject region, i.e., the function
value and constraint violation are not yielded a satisfactory decrease. So the point is rejected. If
the iteration point lies in region I, i.e., (10) is not hold, but (11) and (12) are satisfied. It
means that the objective function is improved, but the constraint violation function does not
reach the sufficient descent condition, so we need to tighten up our acceptance region (see Fig
2).

So we adjust the parameter J as follows,

wk+1

5, 1:min{5,5k+ ‘—
’ log]* — (1@}

b (13
where § is a constant.

If X} is located in region III, which means the algorithm makes a good improvement in the
objective function and the constraint violation function, So we intend to relax the acceptance
criteria and expect further improvements. This means increasing the value of §; to make the
rejected region narrower. (see Fig 3).
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o /)

Reject region

Y

12, (X.mlI?

Fig 2. The relaxed reject region for iteration points.

https://doi.org/10.1371/journal.pone.0274497.g002

A
w(X) F/ ¢ di

Reject region

h -
>

1@, (Xl

Fig 3. The tightened reject region for iteration points.

https://doi.org/10.1371/journal.pone.0274497.9003

Adjust 6y as follows.

k+1
(1)+

Opyy =Maxy — 0,0, — |——5——73
o { ‘ 'IICDfII2 — lf™ |

}. (14)

Algorithm A

Based on the above analysis, we give algorithm A for the problem (1).
StepO: (Initialization.)
Choose an initial point

X® € RS0 < Byy, 707,75, 0,0,,0,,0 < LR =051, =1B" =7 € R™".
Stepl: (Working set.)

Stepl.1 Seti=0, € ; = €x_;.
Stepl.2 Compute Z,, = {j € T | —¢,, < h(X*) — &(X¥) < 0}.
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Stepl.3 If det(W] (X)W, (X¥)) > ¢ set T, =T, W, = Wy, (X"),and ¢, = e, go to
Step 2. Otherwise, let € ;,1 == By, leti =i+ 1,go to Step 1.2.

Step2:(Search directions.)

Step2.1 If @) # 0, compute (d*, A¥) by solving (15) in (d, 1):

- d B —Vok
0)-(7) &

0,j €T\
M= § N =N (v ¢)sj € Z,v # 05 (16)
KO Ako. k
A =M eI vi=0.

Let

Step2.2 Compute (d*', \*') by solving (17) in (d, A):
ye( ¢ Ve (17)
Ao\ -k )

0,j €T\,

M= Jk = VM /(—VE 4 d)sj e Tk £ 0; (18)
KLy, Kk _
A; —kjl,]EI,vj_O.

Let

If ®F = 0, then d* = d*°, \* = A*; else, if d* = 0, then we let d* = d*', \¥ = A", If neither is sat-
isfied, then compute p* according to the following definition:

1, (Vo (X*),d") <y < (Vaok,d?);
ph= (Vo d)

1=y Vo dv = dny’ otherwise.

I 9, (d, V) > I,

max’

(| @] < y,hk ., then p* = pk, else p* = y5. Denote
dk — (1 _ pk)dko + pkdkl,

7\/k _ (1 o pk))\‘k() + pk}\‘kl.
Step3: (Adjustment nonmonotonous line search.)
Step3.1 If
lo(X*, )| < 0ll@(XF, 1)) (19)
and (10) or (12) at least one is satisfied, update &; by (14), Let
p Y
XM = Xkt e = kK (20)
Step3.2 Let M be a non-negative integer, and for each k > 1, let q(k) satisfy
q(0) = 0,0 < q(k) < min{g(k — 1) + 1, M},
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Defined
Xk — xk + O(kdk,[lkH — #k + kK. (21)

where o* = 7, j is the smallest non-negative integer that satisfying

vkl pktl k—r
(0, @) < 0 max 04| )
or both
. 1
o, )] < maxf 521 o, i @)
O (X 1) < O(X¥) — a0, || ®f]]. (24)
Step4: (Update.)
If (10)-(12) hold, update d; by (14), and let
Xkl — Xkﬂ;#kﬂ — ﬂk+1. (25)
Else, If (10) holds, but (11) and (12) are not all satisfied, then update X*and yk by (25).
Otherwise, update & by (13), and let
Xk+1 — Xk“uk-H — ,I.Lk. (26)

Compute B*"! by BEGS updated formula.

If (10) holds at X**" but not at X*, h*. = @ else, 'L =1 .

If (10) holds, update z; by

oo =, max 05/ max o)),

Else, tj41 = tx. k =k + 1, go back to step 1.

Remark 2.1 The Eqs (10) and (12) are composed of Lagrange multipliers and the KKT con-
dition. The solution of the system satisfies the first-order optimality condition of the original
problem.

Remark 2.2 For convenience, if (10) holds, then the iterative step is called is called ®-step;
if (11) and (12) hold, it is called ©-step.

Remark 2.3 Obviously, ; is bounded. And the Lagrangian function is Lipschitz
continuous.

Implementation of algorithm
Assumption A1 B¥ is positive definite and there exists positive numbers #1, and 1, such that
m|ld|]* < d"B'd < m||d|” (27)

foralld € R" and all k.
Assumption A2 {X | w(X) < w(X°)} and ||u* + A¥|| are bounded as k is sufficiently large.
Assumption A3 o(X) : R — Rand h(X) : R™" x Q — R are Lipschitz continuously
differentiable. For all @, b € R"™",

IVQ(a) — VQ(b)[| < mylla —b]|,[[©(a) — ®)| < mlla—b],

where mg > 0 is the Lipschitz constant.
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Assumption A4 The Mangasarian-Fromovitz qualification condition (MFCQ) is satisfied
at X:, i € W(X).
Assumption A5 The sequence of {B"} satisfies

(B — VEL(X*, i))d" |
|

— 0.

Assumption A6 The strict complementarity condition holds at (X*, u*).

Remark 3.1 It follows from A3 that the Lagrangian function (4) is Lipschitz continuous.

The following lemmas show the algorithm is well defined.

Lemma 3.1 Step 1 is finitely terminated.

proof Assume that the conclusion is not valid, then step 1 will run an infinite number of
times.

1
det {W/LULW/,(_,,-UL] < 5 6 (28)

From the definition of Wy, we know that Wy ;,; C Wy ;. Asiis large enough, Wy ; = Wy ;14
marked as W}.

Then we have det [WT w

JkiUL " Ji UL

| =0and W; = I(X*).
That is in contradiction to A4.
Lemma 3.2 If ®* #£ 0, V¥ is nonsingular for all k.

proof Let VEWk, vF) = 0, where u = (uy, . . ., u)v=y, ..., v From (17), we have
Bu+VG,v=0 (29)
diag(¢%,) (VG u + diag(vh,)'v = 0. (30)

Due to ®* # 0, there has (%, ; # 0and vy, # 0 for any j by their definitions.
v=—(diag(},)") " (diag(C;)(VGH) u. (31)
Taking (31) to (29), then pre multiplying (29) by u”, we get
u'B'u + uf(VGH)")(—(diag(v:,)") ' (diag(L%,) (VG w) = 0,

where B is positive definite, and (VG*)")(—(diag(vt,)") " (diag (L}, ) (VG¥) is semi-definite.
So we got 1 = 0. Submitting u = 0 to (31), then v = 0. Since (1, v) = 0 is the unique solution
of VK™, vNT=0, V¥is nonsingular, the conclusion holds.
Lemma 3.3 If d*° £ 0,then>

(dkO)TBkde < _(dkO)vak,
where B¥ is an approximation of the Hessian matrix of L(X, u); V" is the gradient vector of w
X5 ).
proof From (15), we have

B'dY + VG Y = —Vak, (32)

diag(¥,) (VG d® + diag(vh, — ¢F)AR = 0. (33)
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Then
19 = —(diag(vh, — ct)) " diag(Ch,) (VGE,)"d. (34)
Taking (34) to (32), then
(d)" (Bd" + VGi,L")
— (@) B — ()Y G, diag(C,) (diag(, — ) (VGY,)d®.
= —(d")'Var.

The matrix —VG¥,diag(%, ) (diag(v5, — ¢)) ' (VG",)"d" is positive semi-definite, so we
have

(dkO)TBkdkO < 7(dk0)vak.

(dk)vak _ (1 _ pk)(dko)TVa)k —I—pk(dkl)TVwk

. (Var, d) (Vor,d?)
= (dV) Vor|1-(1 —V)m+( _V)m
= 0(d")" Vot

< _Q(de)TBkdkO.

Hence the conclusion holds.
Lemma 3.4 For any 0 < a < 1, there exists ¢; > 0 such that

1D, (X* + o™, i + o) || — || < £,02(| (a4, 1) (35)
proof If (IDIIc = 0, then from (31), there exists t; > 0 such that forany 0 < a < 1,
10, (X* + o, i+ 02 |[* = @, (XF + od, it + o) — @f°

< otm3|(d, 21)]I".

Therefore the conclusion holds for <D'I‘ =0.
If <I)]Ic = 0, then ¢;(0, 0) = 0 indicates

10} + o(diag({) (VG},)'d + diag(v)A) " = [|@ff

(36)
+o?||diag(£))(VGL,)'d* +diag(v))M'|I%,
where diag({ k) and diag(vk) are the diagonal matrices with diagonal elements Cfo and
(= g).
So we have
[, (X* + 0d®, i + 0h)[|* = (| O} + O(o2). (37)

Hence the conclusion holds.
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Lemma 3.5 If @ # 0, for any £ > 0, there exists @ > 0, such that for any 0 < o < &,
DF))” — (1D, (X* + ad, @b+ od™)||* > (2 — &)f| D" (38)
proof If (I)’I‘ # 0, by (SSLE) we have
diag({*)(VGE,) d" + diag(v* — &A= —@k. (39)
For any i # 0,
G, (XE + ad 1k 4 o) = ¢F + a(diag(C*)(VGY,)T, diag(vF — ¢)A) + O(a2). (40)
By (36) and (40)

10, (X4 + o, g + o) |

IDF | + 02| diag (") (VG,) " + diag(v — )2 (41)

+  20(0})" (diag((")(VGH) d + diag(v: — ¢)AM) + O(e?).
Since ¢* # 0, by the definitions of ¢ and v* and ¢! = 0, the following equation holds

HCD]; + a(diag({k)(VG’;\,)Td“ + diag(v¢ — c")kkl) I?=1- 20()||(I)’I‘||2

(42)
+02||diag(C*) (VGY,) d* + diag(v: — )M ||”.
By (41) and (42), given any £ > 0, there is & > 0 such that, forany 0 < o < @,
107" — (19, (X* + !, " + )" > (2 = e)or]| 7] (43)
Hence the conclusion holds.
From Lemmas 3.4-3.5, we can obtain the following Lemma 3.6.
Lemma 3.6 If @} = 0, then given any & > 0, there exists & > 0 such that, for any
O<a<a,
D[ — (|, (X* + o, + ) || > pac]| . (44)

Theorem 3.1 If Algorithm A does not terminate at X, then there exits an @,,;, > 0, such to
o > A5 > 0, we have either (10) holds, or both (11) and (12) hold.
proof If p* = y;, for all k, ®* # 0 and any o« < min{(1 — 0)/7,, @}, there have

0,00 + o, k| < (1= p) |0 < 0@ < 0 max[[] .

0<r<m(k)—1

So (10) holds.
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If p* = p*, by the definition of p¥, —y, (d*)" Vw* > K-, ||®¢|| < Ok . From Lemma 6,

max’ max

<1
define 6 > . 0,, for all sufficiently large k, we have
3

O(X*) —O(Xk) > —ok(d") Var + 5| — 0, |0
> —aky, (d9) Vor — §(||®f| — |} )
S
> o0, || 07,
and

190, (X + o, 1 + o) |* < 0|0 < 9,

max ”

The proof is complete.

Convergence of algorithm

In this section, the global and superlinear convergence rates of this algorithm have been
discussed.

If ®* = 0, then (Xk, [/lk) is KKT point. From Lemma 3.3, if d° =0, then d*is the decreasing
direction of &, (d¥, \*) is the decreasing direction of | ®*||. If ®* = 0 and d*° = 0, (X*, ") satis-
fies the KKT condition. In the following, without loss of generality, it is assumed that the algo-
rithm does not terminate finitely.

Lemma 4.1 Assume A1-A4 hold. ®;(X, 4*) — 0, as k is large enough.

proof Case 1. If (10) holds for all k sufficiently large, one has

[l gogﬁc)”@fﬂﬁu

K+l gl I(k
= max{®;", ®"} < ||}V
The sequenceHd);“‘) H is monotone decreasing, which implies it is convergent. From (10), we
obtain

10, (X", )| < 0, 10f .

So {||<DI(Xk“, yk“)H} is convergent. Together with 6, € (0, 1), we have
1@, (X<, )| < (| @] — 0(k — o00),
which illustrates ®(X¥, [,lk) — 0.

case 2. If (11) and (43) hold for all k sufficiently large, we prove the conclusion by contradic-
tion. Then there exists €; > 0, such that

[, (X5, ]| = & > 0,

K >e>0.

max —

and

O(X") —O(X*") = o' + 3| D] [" — (@ + &y, |07, (46)
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By (12), (43) and the definition of § and J, we have
of — oM > k0, |0y — S (| - (|@))
> odk0,e, — S,k > 0.

Because {&"} is monotonically decreasing. Then w* — —c0 as k — +0o which is contradic-
tory to the hypothesis.

Case 3. If the ®-step and ©-step iterative appear alternately.

According to Remark 2.2, the iterations from k; to k;,; and k;,, + 1 to k3 are ©-steps. And
the iteration from k;,; + 1 to k;,, iteration are ®-steps.

k¥ is updated only when the transition from the ©-step to the ®-step, which indicates that
the constraint violation is still large enough to decrease. From step 4, we know if h!! is
updated, then

et = 0,01 < 0,01 = 0,15, < B,

max max —

Thus #*__(X) is monotonous descent and ||®}|| < [|®F*'|| < k¥ . Meantime, we have

max max

hke :hﬁé:xl =, = Wk

max max ?

K1+l key1+2 k k
W+l — max [OaE — hlent2 — = R — L = B
max 0§r§q(kt+1+1—r)—l|| I || ‘max max ‘max

Donate max{(r, + 1)/2,0,} = 0, then we have

™ < max OBt < O
0<r<q(kipo-r)—1

The sequence { coe R Rk e ks } is monotonous descent for all @ > 0,

7" "max max ?

and

Wt R =0 < 1,

max max

So hft1™h — (0, t — oo. Considering the non-negativity of b*_,

Along with (19), ||®|| < max{0,,0}k* . Therefore lim||®|| = 0.
k—o0

k
we have b — 0,k — oo.

max*

Lemma 4.2 Assume A1-A4 hold. If k is large enough, then d*° — 0, d* — 0.

The proof is similar to Lemma 5.4 in [20].

With Lemma 4.1 and 4.2, we can obtain the global convergence of the algorithm.

Theorem 4.1 The accumlation point (X*, u*) of the sequence {(x*, yk)} is the KKT point
pair of problem (15).

The convergence rate of the algorithm is discussed next. To make the algorithm converge
superlinear, assumptions 5-6 are added.

Remark 4.1 A5 illustrates (X*, 4¥) is a Newton direction with a high order perturbation. A6
shows that @ is continuously differentiable at each KKT point (X*, u*).

Lemma 4.3 The above assumptions hold, then {||(V*)™"||} and {||(V*) ™"} are uniformly
bounded. The accumulation matrix V* of {V¥} is nonsingular.

The proof is similar to Lemma 5.5 in [19].

Lemma 4.3 implies that the Theorem 4.2 holds.

Theorem 4.2 Assume A1-A6 hold, the algorithm is superlinearly convergent, i.e., (X", u¥)
converges to (X*, u*) superlinearly.
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Numerical results

In this section, the numerical results are shown. Problem 1 the section is taken from [19]. The
BFGS formula proposed by Broyden et al. is used to update B<*" as [20].

Tables 1 and 2 show the numerical experimental results of two test questions, where NIT is
the number of iterations, NF is the number of times the objective and constraint functions are
computed, and NG is the number of times the gradient is computed. and TIME(Unit in sec-
onds) is the CPU runtime. The numerical experiments were computed by Matlab R2020 on a
computer with 16.0GB RAM and Intel 11th Gen Intel(R) Core(TM) i5-11320H @ 3.20GHz.

The parameters involved in the algorithm are chosen as follows: B = I € R"",7=2.5,
€=02,0 =2,7=05,7,=0.1,7,=0.95, 73 = 0.5, 0= 0.9, 0, =095, 0, = 0.1, h’ = 0,10= Ly
=[1,0,...,0,1].

Test problem 1 [21].

Figurel min  F(x)
n—1
s.t. fx(x) = Z('x? + xi2+1 XX, — 1);
i=1

where

F(x) = max{f,(x) =x},i=1,...,n}.

Test problem 2 [21].
min F(x)
st fi(x) =(3.0—-0.5x,,)x,, —x, —2.0x,,+1, ie€[l,n—2]
where

F(x) = max{f(x) =x%,i=1,...,n}.

1

Table 1. Test Problem 1.

n NIT NF NG TIME(s)
2 2 2 2 0.045
3 9 16 0.079
4 8 71 78 0.107
5 9 88 96 0.109
6 9 88 96 0.113
7 8 103 110 0.127
8 9 92 100 0.131

https://doi.org/10.1371/journal.pone.0274497 t001

Table 2. Test Problem 2.

n NIT NF NG TIME(s)
3 7 38 44 0.083
4 4 19 22 0.065
5 13 172 184 0.173

https://doi.org/10.1371/journal.pone.0274497 1002
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Then we discuss the application of algorithms to investment portfolios. In the investment
problem proposed by Markowitz, there are two objective functions to be considered. One is to
maximize the return of the portfolio, and the other is to reduce the risk. In the traditional
model, the latter is to minimize the risk (variance) of a set of feasible portfolios for a given level
of expected returns. By varying the expected return level as the two objectives for a set of non-
dominant portfolios, the efficient frontier on returns is determined by the variance and aver-
age of the yields in the Markowitz model. Investors can get a suitable portfolio by analyzing
the expected investment and return.

In the traditional Markowitz mean-variance model, it is assumed that the investor has some
wealth and is ready to invest in a set of securities, which is recorded as a set P. R, represents
the return value of each security k, which is a random variable. The mean value of Ry can be
calculated from historical data. Define the expected return of a security as y = E(Ry), k=1,

-+ -, P. x4 is the proportion allocated to a certain security. The weight vector x; needs to satisfy
the following constraints,

wheree=1{1,---, 1}T e R".
The expected returns of the portfolio are as follows:

E(R) = E(x;R, + -+ + xpR;) = xypty + - Xptp = pi'x

where p = (1, -+ up) "
The variance of the portfolio is

-]

k=

P 2
v(R) =E xR, —E( > xR,
1 k=1
P

I
'M‘

E[(R, — luk)(Rj - /v‘j)]xkxj

where covariance matrix Q = {Q;j} is a symmetric positive semi-definite matrix with uncertain
information. Assume that the short-term investment value is uncertain, but there are obviously
x> 0,k=1,---, n. welet B, and Ay be the upper and lower bounds for x;, that is, By < x; <
Apk=1,---,P.

According to the above definition, the base/mean-variance dual-objective optimization
problem [22] can be described as

. W'x
min ———
xERP xTQx
min T(x)
X€ERP
st elx=1,
B <x, <A, k=1,---,P,
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where T(x) = [lx]l, = "¢, sign(|x,]), and

-1, x,<0,
sign = 0, x,=0,
1, x>0

Note that sign(||x4||) is discontinuous, so we introduce the following approximation func-
tion which is locally lipschitz continuity,

——+0+1 )
xk—1—|—5+ ThoAsT
X
Wi(5,) = Wl <o (47)
—0
——+0+1 >0
xk—1—|—5+ ThooAZe

where 6 > 0. For any x; € R, }sim+ o(x,, ) = sign(||x||)-
-0

RP+ 1

Lety = (x, yp+1)T € , we get the continuous approximation problem as follows:

)’IEI;}’EW()/) = (Wl(xU 5)a T WP(xP7 5)7yP+1)T

xTQx’ (48)

B,<x <A,k=1,---P.

where w(y) = (w1 (x1, 9), - - -, w(x,, 9), yp+1)T. (48) can be regarded as a minimax problem,
which can be solved using the algorithm 1. We take the case of P = 2, the optimal portfolio
obtained is [0.5;0.5]. This result illustrates that under the condition that the risk and return of
each stock are equal, the proportion of each stock in the optimal strategy is determined by the
investor’s investment willingness.

Conclusion

In this paper, we give the properties of global convergence and the global convergence of an
adaptive QP-free method for solving the minimization problem. Combining the NCP function
and the multiplier, in each iteration two systems of linear equations with the same coefficient
matrix are solved, which can be viewed as a perturbation of the primal Variables and dual vari-
ables of the KKT condition by the Newton-quasi interaction. A new filter substitution mecha-
nism is given, which retains the advantages of the filter method, avoids the selection of penalty
parameters, and eliminates potential storage problems that may arise from the filter. And the
objective function is tuned by introducing a flexible operator. A non-monotonic mechanism is
used to avoid the Maratos effect to some extent, and the introduction of working set further
reduces the workload. The effectiveness and convergence of the intensity algorithm are dem-
onstrated under the assumption of no stability point isolation.
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