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Abstract

In this paper, we proposed an adaptive QP-free method without a penalty function or a filter

for minimax optimization. In each iteration, solved two linear systems of equations con-

structed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work

set, the computational scale is further reduced. Instead of the filter structure, we adopt a

nonmonotonic equilibrium mechanism with an adaptive parameter adjusted according to the

result of each iteration. Feasibility of the algorithm are given, and the convergence under

some assumptions is demonstrated. Numerical results and practical application are

reported at the end.

Introduction

The minimax problem with nonlinear inequality constraints has the following form,

min
x2Rn

FðxÞ

s:t: fiðxÞ � 0; i 2 I 2 ¼ fl þ 1; � � � ;mg
ð1Þ

where FðxÞ ¼ maxffiðxÞg; i 2 I 1 ¼ f1; 2; � � � ; lg.
The minimax problem is a specific class of nonsmooth optimization problems. The general

optimization methods cannot be applied directly in (1) because the objective function is non-

differentiable. The common approaches for (1) are gradient sampling methods [1, 2], Cutting

Plane Method, and bundle method [3].subgradient methods [4].

Smoothing is one of the most popular classes among all methods for solving nonsmooth

problems. There are two main approaches proposed by previous scholars to deal with this

problem. First, approximating the non-differential function by a smooth exponential function

with parameters (which is also called entropy function). Shor [4] proposed two smoothing

algorithms with an active set strategy and a new adaptive parameter update rule. Second, intro-

duce an artificial additional variable to transform the problem into an equivalent nonlinear
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programming with smooth constraints, as follows

min t

s:t: fiðxÞ � t � 0; i 2 I 1 ¼ f1; 2; � � � ; lg

fiðxÞ � 0; i 2 I 2 ¼ fl þ 1; � � � ;mg;

ð2Þ

. where fiðxÞ : Rn ! R are Lipschitz continuously function; t 2 R.

For (2), there are many algorithms can be used such as gradient projection [5], interior

point method [6], trust-region [7], sequential quadratic programming(SQP) [8], penalty func-

tion [9], filter methods [10] or QP-free method [11], etc.

The extraordinary efficiency of SQP methods in solving nonlinear constrained optimiza-

tion problems (NLP) has allowed its extension to many other problems, such as minimax

problems [8–13]. But the sequences may fail to converge as the initial point lies far from the

optimal point in the SQP algorithm. So penalty function methods were proposed by Courant

[13] in 1943 to enhance the convergence of the algorithm. The objective function is defined as

the sum of the objective function and penalty term in the penalty function method. In [9], Ma

gives an exact smooth penalty function method to solve minimax problems with mixed con-

straints. However, the choice of penalty parameters during the iterative process is complicated.

Meantime, the effectiveness of the penalty function method is significantly affected by it.

Fletcher [14] proposed the filter algorithm which can effectively avoid the choice of penalty

parameters. It is inspired by the idea of multi-objective programming in 2002, where the objec-

tive function and the constraint violation function are considered separately. The combination

of the filter and SQP methods has been applied to the minimax problem due to its satisfactory

numerical results. [15] gave a trust-region SQP filtering method combining nonmonotonic

techniques to solve the unconstrained minimization problem. Luo [10] constructed a new fea-

sible sub-problem based on working sets and incorporated filtering techniques. Although the

filter method has good numerical performance, the update of the filter set also faces the prob-

lem that the set is getting larger and the computational storage is growing. On the other hand,

the feasibility restoration phase is difficult to avoid in the filter method, which more or less

increases the computational effort.

To overcome the possible inconsistency in solving the sub-problem and the high computa-

tional cost, Panier [16] proposed a QP-free algorithm (SSLE algorithm) for optimization prob-

lems with inequality constraints based on the KKT conditions and Newton’s method. Each

iteration requires solving two systems of linear equations with the same coefficient matrix and

a least-squares subproblem. Global and superlinear convergence are established without the

assumption of stationary point isolate. In [11], Jian and Ma presented a new QP-free algorithm

for minimax problems according to the unique structure of these problems. [17, 18] proposed

two QP-free algorithms for solving constrained optimization problems respectively.

Inspired by the above study, a nonmonotonic QP-free algorithm without a penalty function

or a filter is given in this paper for the minimax problem. And the global convergence, as well

as the superlinear convergence under some mild conditions, is proved. This algorithm com-

bines the NCP function to solve in each iteration two nonlinear systems of equations with the

same coefficient matrix, which can be viewed as a Newton-quasi-interaction perturbation of

the primal and dyadic variables of the KKT condition. An adjustable operator is introduced,

which changes in each iteration according to the results of the previous iteration, thus chang-

ing the degree of influence of the objective function in this mechanism. A nonmonotonic

mechanism is used to avoid the Maratos effect. The working set is introduced to reduce the

computational effort further.
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The paper consists of the following parts. Section 1 introduces the previous methods for

solving minimax problem. In section 2, the structure of the work is described. Section 3 dis-

cusses the implementation of the algorithm. Section 4 discusses the global convergence and

superlinear convergence rate of the algorithm. In section 5, numerical results and practical

application are given. The article has been summarized in the final.

Description of algorithm

Preliminaries

Define the following notations:

X ¼ ðxT; tÞT ¼ ðx1; x2; � � � ; tÞ
T
;

I ¼ I 1 [ I 2 ¼ f1; � � � ; l; l þ 1; � � � ;mg;

WIðXÞ ¼ ðrhiðXÞ; i 2 IÞ;

xðXÞ ¼ max
i2I
f0; hiðXÞg;

IðXÞ ¼ fhiðXÞ ¼ xðXÞ; i 2 Ig;

Fk
I ¼ FIðX

k; mkÞ;

ok ¼ oðXkÞ:

The following function hi(X) is defined to represent the constraint of (2),

hiðXÞ ¼
fiðxÞ � t ; i 2 I 1 ¼ f1; 2; � � � ; lg;

fiðxÞ ; i 2 I 2 ¼ fl þ 1; � � � ;mg:

(

where hiðXÞ : Rnþ1
! R are Lipschitz continuously functions.

Let GðXÞ ¼ ðh1; � � � ; hl; hlþ1; � � � ; hmÞ
T

: Rnþ1
! Rm

.

(2) are equivalent to

min oðXÞ

s:t: hiðXÞ � 0; i 2 I ;
ð3Þ

where ω(X) = t.
The Lagrangian function is defined as

LðX; mÞ ¼ oðXÞ þ
X

i2I

mihiðXÞ; ð4Þ

where μ = (μ1, � � �, μl, μl+1, � � �, μm)T is the multiplier vector.
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ð�X ; �mÞ is called the KKT point for (3) if the following conditions hold,

rLð�X ; �mÞ ¼ ð0; � � � ; 0; 1ÞT þ
Xm

i2I

�mirhið
�XÞ ¼ 0;

hið
�XÞ � 0; i 2 I ;

�mT
i hið

�XÞ ¼ 0; i 2 I ;

�m � 0:

8
>>>>>>><

>>>>>>>:

ð5Þ

To construct the system of equations, we introduce the nonlinear complementarity prob-

lem (NCP) function, and φ(a, b) is called an NCP function if the following relationship holds,

φða; bÞ ¼ 0, ab ¼ 0; a � 0; b � 0: ð6Þ

The NCP function is Lipschitz continuous and differentiable except for the origin. Strong

semi-smoothness holds at (0, 0). The Fischer-Burmeister NCP function is a simple NCP func-

tion with good theoretical properties and numerical performance.

The Fischer-Burmeister NCP function used in this paper has the following structure:

φFBða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

� a � b:

So we have

rφFBða; bÞ ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p � 1;

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p � 1

� �

; ða; bÞ 6¼ ð0; 0Þ;

ðz � 1; n � 1Þ j z
2
þ n2 ¼ 1; ða; bÞ ¼ ð0; 0Þ:

8
><

>:
ð7Þ

Then the NCP function Fi is defined by

FI ¼ ð�1; � � � ; �mÞ
T
;

where

�iðX; mÞ ¼ φFBða; bÞja¼� hiðXÞ;b¼mi ;i2I
:

According to (5), define

FðX; mÞ ¼ ðrXLðX; mÞ
T
;FT

I Þ
T
: ð8Þ

Clearly, KKT condition (5) holds equivalent to F(X, μ) = 0.

Similar to (7), if (hi(X), μi) 6¼ (0, 0), then

rX�i ¼
� hiðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhiðXÞÞ
2
þ m2

i

q þ 1

0

B
@

1

C
ArhiðXÞ; i 2 I ;

rm�i ¼
miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhiðXÞÞ
2
þ m2

i

q � 1

0

B
@

1

C
Aei; i 2 I ;
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where ei = (0, � � �, 0, 1, 0, � � �, 0)T, and

rhiðXÞ ¼

@fi
@x1

; � � � ;
@fi
@xn

; � 1

� �T

; i 2 I 1;

@fi
@x1

; � � � ;
@fi
@xn

; 0

� �T

; i 2 I 2:

8
>>><

>>>:

If (hi(X), μi) = (0, 0), introduce the following notations:

z
k
j ¼

� hk
i ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhk
j ðXÞÞ

2
þ ðmk

j Þ
2

q þ 1 ; ðhkðXÞ; mkÞ 6¼ ð0; 0Þ;

1þ

ffiffiffi
2
p

2
; else:

8
>>>>>>><

>>>>>>>:

nk
j ¼

mk
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhk
j ðXÞÞ

2
þ ðmk

j Þ
2

q þ 1 ; ðhkðXÞ; mkÞ 6¼ ð0; 0Þ;

� 1þ

ffiffiffi
2
p

2
; else:

8
>>>>>>><

>>>>>>>:

It holds that

rX�iðX; mÞ ¼ ðzþ 1ÞrhiðXÞj � 1 � z � 1;

rm�iðX; mÞ ¼ ðz � 1ÞÞj � 1 � z � 1:

Let Gk
W ¼ ðhjÞ

T
: Rnþ1 ! Rm, j 2W.rGk

W is the Hessian matrix of Gk
W ¼ fh

k
i ji 2Wg and

W is active set.

Define the coefficient matrix Vk according to (8)

Vk :¼
Bk rGk

W

diagðzk
WÞðrGk

WÞ
T diagðnkW � ckÞ

T

 !

;

where Bk is a approximation of the Hessian matrix of L(X, μ), and

ck
j ¼ cminf1; kFkk

t
g

. where c> 0 and τ> 1 are given parameters.

In this work, to increase the convergence and flexibility of the algorithm, we substitute the

objective function with the following equation:

YðXÞ ¼ oðXÞ þ dkFIk
2
: ð9Þ

We introduce such an adjustable operator, which is not a penalty parameter, but is changed

in each iteration based on the effect of the iteration results. Fig 1 shows the initial situation of

taking δ = 1.
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We give the following filter equivalence mechanism:

kFIðX̂kþ1; m̂kþ1Þk � y max
0�r�qðkÞ� 1

kFk� r
I k ð10Þ

or both

kFIðX̂kþ1; m̂kþ1Þk � max
�
ik þ 1

2
; y1

�

hk
max; ð11Þ

YðX̂kþ1Þ � YðXkÞ � aky2kF
k
Ik: ð12Þ

There are three regions in the first quadrant. If the trial point Xk is located in region I at the

kth iteration, i.e., (10) is satisfied at the current trial point, but (11) and (12) are not satisfied.

Then this point is accepted. If the trial point Xk is located in reject region, i.e., the function

value and constraint violation are not yielded a satisfactory decrease. So the point is rejected. If

the iteration point lies in region II, i.e., (10) is not hold, but (11) and (12) are satisfied. It

means that the objective function is improved, but the constraint violation function does not

reach the sufficient descent condition, so we need to tighten up our acceptance region (see Fig

2).

So we adjust the parameter δk as follows,

dkþ1 ¼ min
�

�d; dk þ

�
�
�
�

ok � okþ1

kFk
Ik

2
� kFkþ1

I k
2

�
�
�
�

�

; ð13Þ

where �d is a constant.

If Xk is located in region III, which means the algorithm makes a good improvement in the

objective function and the constraint violation function, So we intend to relax the acceptance

criteria and expect further improvements. This means increasing the value of δk to make the

rejected region narrower. (see Fig 3).

Fig 1. Reject region for iteration points.

https://doi.org/10.1371/journal.pone.0274497.g001
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Adjust δk as follows.

dkþ1 ¼ max
�

� �d; dk �

�
�
�
�

ok � okþ1

kFk
Ik

2
� kFkþ1

I k
2

�
�
�
�

�

: ð14Þ

Algorithm A

Based on the above analysis, we give algorithm A for the problem (1).

Step0: (Initialization.)

Choose an initial point

X0 2 Rn
;0 < b; g; g1; g2; g3; y; y1; y2;

�d < 1;h0
max ¼ 0; i0 ¼ 1,B0 ¼ I 2 Rn�n

.

Step1: (Working set.)

Step1.1 Set i = 0, �k,i = �k−1.

Step1.2 Compute I k;i ¼ fj 2 I j � �k;i � hjðXkÞ � xðXkÞ � 0g.

Fig 2. The relaxed reject region for iteration points.

https://doi.org/10.1371/journal.pone.0274497.g002

Fig 3. The tightened reject region for iteration points.

https://doi.org/10.1371/journal.pone.0274497.g003
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Step1.3 If detðWT
Ik;i
ðXkÞWIk;i

ðXkÞÞ � �k;i, set I k ¼ I k;i;Wk ¼WIk
ðXkÞ, and �k = �k,i, go to

Step 2. Otherwise, let �k,i+1 ≔ β�k,i, let i≔ i + 1,go to Step 1.2.

Step2:(Search directions.)

Step2.1 IfFk
I 6¼ 0, compute ðdk0; �lk0Þ by solving (15) in (d, λ):

Vk
d

l

 !

¼
� rok

0

 !

: ð15Þ

Let

l
k0

j ¼

0; j 2 I n I k;

l
k0

j ¼ n
k
j
�lk0

j =ð� n
k
j þ ck

j Þ; j 2 I ; nkj 6¼ 0;

l
k0

j ¼
�lk0

j ; j 2 I ; nkj ¼ 0:

8
>><

>>:

ð16Þ

Step2.2 Compute ðdk1; �lk1Þ by solving (17) in (d, λ):

Vk
d

l

 !

¼
� rLk

� Fk
I

 !

: ð17Þ

Let

l
k1

j ¼

0; j 2 I n I k;

l
k1

j ¼ n
k
j
�lk1

j =ð� n
k
j þ ck

j Þ; j 2 I ; nkj 6¼ 0;

l
k1

j ¼
�lk1

j ; j 2 I ; nkj ¼ 0:

8
>><

>>:

ð18Þ

IfFk
I ¼ 0, then dk = dk0, λk = λk0; else, if dk = 0, then we let dk = dk1, λk = λk1. If neither is sat-

isfied, then compute ρk according to the following definition:

rk
1
¼

1; hroðXkÞ; dk1i � g < hrok; dk0i;

ð1 � gÞ
hrok; dk0i

hrok; dk0 � dk1i
; otherwise:

8
><

>:

If � g1hdk0;rf ki � hk
max, kF

k
Ik � g2hk

max, then rk ¼ rk
1
, else ρk = γ3. Denote

dk ¼ ð1 � rkÞdk0 þ rkdk1;

l
k
¼ ð1 � rkÞl

k0
þ rkl

k1
:

Step3: (Adjustment nonmonotonous line search.)

Step3.1 If

kFðX̂kþ1; m̂kþ1Þk � ykFðXk; mkÞk: ð19Þ

and (10) or (12) at least one is satisfied, update δk by (14), Let

X̂kþ1 ¼ Xk þ dk; m̂kþ1 ¼ mk þ l
k
: ð20Þ

Step3.2 Let M be a non-negative integer, and for each k� 1, let q(k) satisfy

qð0Þ ¼ 0; 0 � qðkÞ � minfqðk � 1Þ þ 1;Mg;
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Defined

X̂kþ1 ¼ Xk þ akdk; m̂kþ1 ¼ mk þ akl
k
: ð21Þ

where αk = τj, j is the smallest non-negative integer that satisfying

kFIðX̂kþ1; m̂kþ1Þk � y max
0�r�qðkÞ� 1

kFk� r
I k ð22Þ

or both

kFIðX̂kþ1; m̂kþ1Þk � max
�
ik þ 1

2
; y1

�

hk
max; ð23Þ

YðX̂kþ1Þ � YðXkÞ � aky2kF
k
Ik: ð24Þ

Step4: (Update.)

If (10)-(12) hold, update δk by (14), and let

Xkþ1 ¼ X̂kþ1; mkþ1 ¼ m̂kþ1: ð25Þ

Else, If (10) holds, but (11) and (12) are not all satisfied, then update Xk and μk by (25).

Otherwise, update δk by (13), and let

Xkþ1 ¼ Xk; mkþ1 ¼ mk: ð26Þ

Compute Bk+1 by BFGS updated formula.

If (10) holds at Xk+1 but not at Xk, hkþ1
max ¼ Fk

I ; else, hkþ1
max ¼ hmax.

If (10) holds, update ιk by

ikþ1 ¼ max
0�r�qðkþ1Þ� 1

kFkþ1� r
I k= max

0�r�qðkÞ� 1
kFk� r

I k:

Else, ιk+1 = ιk. k = k + 1, go back to step 1.

Remark 2.1 The Eqs (10) and (12) are composed of Lagrange multipliers and the KKT con-

dition. The solution of the system satisfies the first-order optimality condition of the original

problem.

Remark 2.2 For convenience, if (10) holds, then the iterative step is called is calledF-step;

if (11) and (12) hold, it is called Θ-step.

Remark 2.3 Obviously, δk is bounded. And the Lagrangian function is Lipschitz

continuous.

Implementation of algorithm

Assumption A1 Bk is positive definite and there exists positive numbers m1 and m2 such that

m1kdk
2
� dTBkd � m2kdk

2 ð27Þ

for all d 2 Rn
and all k.

Assumption A2 {X j ω(X)� ω(X0)} and kμk + λkk are bounded as k is sufficiently large.

Assumption A3oðXÞ : Rnþ1
! R and hðXÞ : Rnþ1

� O! R are Lipschitz continuously

differentiable. For all a; b 2 Rnþm,

krOðaÞ � rOðbÞk � m0ka � bk; kFðaÞ � FðbÞk � m0ka � bk;

where m0 > 0 is the Lipschitz constant.
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Assumption A4 The Mangasarian-Fromovitz qualification condition (MFCQ) is satisfied

at X∗
i , i 2W(X).

Assumption A5 The sequence of {Bk} satisfies

kðBk � r2

XLðX
k; mkÞÞdk1k

kdk1k
! 0:

Assumption A6 The strict complementarity condition holds at (X*, μ*).
Remark 3.1 It follows from A3 that the Lagrangian function (4) is Lipschitz continuous.

The following lemmas show the algorithm is well defined.

Lemma 3.1 Step 1 is finitely terminated.

proof Assume that the conclusion is not valid, then step 1 will run an infinite number of

times.

det WT
Jk;i[L

WJk;i[L

h i
<

1

2i �0: ð28Þ

From the definition of Wk, we know that Wk,i+1�Wk,i. As i is large enough, Wk,i = Wk,i+1

marked as W∗
k .

Then we have det
�
WT

Jk;i[L
WJk;i[L

�
¼ 0 and W∗

k ¼ IðXkÞ.

That is in contradiction to A4.

Lemma 3.2 IfFk 6¼ 0, Vk is nonsingular for all k.

proof Let Vk(uk, vk) = 0, where u = (u1, . . ., um)T,v = (v1, . . ., vm)T. From (17), we have

BkuþrGk
Wv ¼ 0 ð29Þ

diagðzkWÞðrGkÞ
Tuþ diagðnk

WÞ
Tv ¼ 0: ð30Þ

Due to Fk 6¼ 0, there has z
k
W;j 6¼ 0 and nk

W;j 6¼ 0 for any j by their definitions.

v ¼ � ðdiagðnkWÞ
T
Þ
� 1
ðdiagðzk

WÞðrGkÞ
Tu: ð31Þ

Taking (31) to (29), then pre multiplying (29) by uT, we get

uTBkuþ ukðrGkÞ
T
Þð� ðdiagðnkWÞ

T
Þ
� 1
ðdiagðzkWÞðrGkÞ

TuÞ ¼ 0;

where Bk is positive definite, and ðrGkÞ
T
Þð� ðdiagðnk

WÞ
T
Þ
� 1
ðdiagðzk

WÞðrGkÞ
T
is semi-definite.

So we got u = 0. Submitting u = 0 to (31), then v = 0. Since (u, v) = 0 is the unique solution

of Vk(uT, vT)T = 0, Vk is nonsingular, the conclusion holds.

Lemma 3.3 If dk0 6¼ 0,then>

ðdk0Þ
TBkdk0 � � ðdk0Þ

T
rok;

where Bk is an approximation of the Hessian matrix of L(X, μ);rωk is the gradient vector of ω
(Xk, μk).

proof From (15), we have

Bkdk0 þrGk
Wl

k0
¼ � rok; ð32Þ

diagðzk
WÞðrGk

WÞ
Tdk0 þ diagðnkW � ckÞl̂k0 ¼ 0: ð33Þ
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Then

�lk0 ¼ � ðdiagðnk
W � ckÞÞ

� 1diagðzkWÞðrGk
WÞ

Tdk0: ð34Þ

Taking (34) to (32), then

ðdk0Þ
T
ðBkdk0 þrGk

Wl
k0
Þ

¼ ðdk0Þ
TBkdk0 � ðdk0Þ

T
rGk

Wdiagðz
k
WÞðdiagðn

k
W � ckÞÞ

� 1
ðrGk

WÞ
Tdk0:

¼ � ðdk0Þ
T
rok:

The matrix � rGk
Wdiagðz

k
WÞðdiagðn

k
W � ckÞÞ

� 1
ðrGk

WÞ
Tdk0 is positive semi-definite, so we

have

ðdk0Þ
TBkdk0 � � ðdk0Þ

T
rok:

ðdkÞ
T
rok ¼ ð1 � rkÞðdk0Þ

T
rok þ rkðdk1Þ

T
rok

¼ ðdk0Þ
T
rok 1 � ð1 � gÞ

hrok; dk0i

hrok; dk0 � dk1i
þ ð1 � gÞ

hrok; dk0i

hrok; dk0 � dk1i

� �

¼ yðdk0Þ
T
rok

� � yðdk0Þ
TBkdk0:

Hence the conclusion holds.

Lemma 3.4 For any 0< α� 1, there exists t1 > 0 such that

kFIðXk þ adk0; mk þ al
k0
Þk

2
� kFk

Ik
2
� t1a

2kðdk0; l
k0
Þk

2 ð35Þ

proof IfFk
I ¼ 0, then from (31), there exists t1 > 0 such that for any 0< α� 1,

kFIðXk þ adk0; mk þ al
k0
Þk

2
¼ kFIðXk þ adk0; mk þ al

k0
Þ � Fk

Ik
2

� a2m2
2
kðdk0; l

k0
Þk

2
:

Therefore the conclusion holds for Fk
I ¼ 0.

If Fk
I ¼ 0, then φi(0, 0) = 0 indicates

kFk
I þ aðdiagðz

k
ÞðrGk

WÞ
Tdk0 þ diagðnkÞlk

Þk
2
¼ kFk

Ik
2

þa2kdiagðzÞkÞðrGk
WÞ

Tdk þdiagðnÞkÞlk
k

2
;

ð36Þ

where diag(zk) and diag(νk) are the diagonal matrices with diagonal elements z
k0

j and

ðnkj � cjkÞ.
So we have

kFIðXk þ adk0; mk þ al
k0
Þk

2
¼ kFk

Ik
2
þ Oða2Þ: ð37Þ

Hence the conclusion holds.
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Lemma 3.5 IfFk
I 6¼ 0, for any ε> 0, there exists �a > 0, such that for any 0 < a � �a,

kFk
Ik

2
� kFIðXk þ adk1; mk þ al

k1
Þk

2
� ð2 � εÞakFk

Ik
2
: ð38Þ

proof IfFk
I 6¼ 0, by (SSLE) we have

diagðzk
ÞðrGk

WÞ
Tdk1 þ diagðnk � ckÞl

k1
¼ � Fk

I : ð39Þ

For any i 6¼ 0,

�iðXk þ adk1; mk þ al
k1
Þ ¼ �

k
i þ aðdiagðz

k
ÞðrGk

WÞ
T
; diagðnk � ckÞl

k1
Þ þ Oða2Þ: ð40Þ

By (36) and (40)

kFIðXk þ adk0; mk þ al
k0
Þk

2

¼ kFk
Ik

2
þ a2

�
�diagðzk

ÞðrGk
WÞ

Tdk1 þ diagðnk � ckÞl
k1
�
�2

þ 2aðFk
I Þ

T � diagðzkÞðrGkÞ
Tdk1 þ diagðnk � ckÞl

k1
�
þ Oða2Þ:

ð41Þ

Since ck
i 6¼ 0, by the definitions of ck

i and nki and �
k
i ¼ 0, the following equation holds

�
�Fk

I þ a
�
diagðzk

ÞðrGk
WÞ

Tdk1 þ diagðnk � ckÞl
k1
�
k

2
¼ ð1 � 2aÞkFk

Ik
2

þa2kdiagðzk
ÞðrGk

WÞ
Tdk1 þ diagðnk � ckÞl

k1
k

2
:

ð42Þ

By (41) and (42), given any ε> 0, there is �a > 0 such that, for any 0 < a � �a,

kFk
Ik

2
� kFIðXk þ adk1; mk þ al

k1
Þk

2
� ð2 � εÞakFk

Ik
2
: ð43Þ

Hence the conclusion holds.

From Lemmas 3.4–3.5, we can obtain the following Lemma 3.6.

Lemma 3.6 IfFk
I 6¼ 0; then given any ε> 0, there exists �a > 0 such that, for any

0 < a � �a,

kFk
Ik

2
� kFIðXk þ adk; mk þ al

k
Þk

2
� rkakFk

Ik
2
: ð44Þ

Theorem 3.1 If Algorithm A does not terminate at Xk, then there exits an αmin> 0, such to

αk� αmin> 0, we have either (10) holds, or both (11) and (12) hold.

proof If ρk = γ3, for all k, Fk
I 6¼ 0 and any a � minfð1 � yÞ=g3; �ag, there have

kFIðXk þ adk; mk þ al
k
Þk

2
� ð1 � rkaÞkFkk � ykFk

1
k

2
� y max

0�r�mðkÞ� 1
kFk� r

I k:

So (10) holds.
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If rk ¼ rk
1
, by the definition of ρk, � g1ðdk0Þ

T
rok � hk

max, kF
k
Ik � yh

k
max. From Lemma 6,

define �d >
1

g3

� y2, for all sufficiently large k, we have

YðXkÞ � YðXkþ1Þ � � akðdkÞ
T
rok þ dkkF

k
Ik � dkþ1kF

kþ1

I k

� � akg1ðdk0Þ
T
rok � �dðkFk

Ik � kF
kþ1

I kÞ

� akhk
max �

�darkkFk
Ik

� aky2kF
k
Ik;

ð45Þ

and

kFIðX
k þ adk; mk þ al

k
Þk

2
� y1kF

k
1
k

2
� g1h

k
max:

The proof is complete.

Convergence of algorithm

In this section, the global and superlinear convergence rates of this algorithm have been

discussed.

If Fk = 0, then (Xk, μk) is KKT point. From Lemma 3.3, if dk0 6¼ 0, then dk is the decreasing

direction of ωk, (dk, λk) is the decreasing direction of kFk
Ik. If Fk

I ¼ 0 and dk0 = 0, (Xk, μk) satis-

fies the KKT condition. In the following, without loss of generality, it is assumed that the algo-

rithm does not terminate finitely.

Lemma 4.1 Assume A1-A4 hold. FI(Xk, μk)! 0, as k is large enough.

proof Case 1. If (10) holds for all k sufficiently large, one has

�
�Flðkþ1Þ

I

�
� � max

0�r�qðkÞ
kFkþ1� r

I k

¼ maxfFkþ1

I ;FlðkÞ
I g �

�
�FlðkÞ

I

�
�:

The sequence
�
�FlðkÞ

I

�
� is monotone decreasing, which implies it is convergent. From (10), we

obtain

kFIðX
kþ1; mkþ1Þk � y1kF

lðkÞ
I k:

So {kFI(Xk+1, μk+1)k} is convergent. Together with θ1 2 (0, 1), we have

kFIðX
kþ1; mkþ1Þk � kFlðkÞ

I k ! 0ðk!1Þ;

which illustrates FI(Xk, μk)! 0.

case 2. If (11) and (43) hold for all k sufficiently large, we prove the conclusion by contradic-

tion. Then there exists �1 > 0, such that

kFIðXkþ1; mkþ1Þk � ε > 0;

hk
max � ε > 0:

and

YðXkÞ � YðXkþ1Þ ¼ ok þ dkkF
k
Ik

2
� ðokþ1 þ dkþ1kF

kþ1

I k
2
Þ: ð46Þ

PLOS ONE An adaptive QP-free method without a penalty function or a filter for minimax optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0274497 July 10, 2023 13 / 18

https://doi.org/10.1371/journal.pone.0274497


By (12), (43) and the definition of θ and �d, we have

ok � okþ1 � aky2kF
k
Ik �

�dðkFk
Ik

2
� kFkþ1

I k
2
Þ

� aky2�1 �
�d�1a

k > 0:

Because {ωk} is monotonically decreasing. Then ωk! −1 as k! +1 which is contradic-

tory to the hypothesis.

Case 3. If the F-step and Θ-step iterative appear alternately.

According to Remark 2.2, the iterations from kt to kt+1 and kt+2 + 1 to kt+3 are Θ-steps. And

the iteration from kt+1 + 1 to kt+2 iteration areF-steps.

hk
max is updated only when the transition from the Θ-step to the F-step, which indicates that

the constraint violation is still large enough to decrease. From step 4, we know if hkþ1
max is

updated, then

hkþ1
max ¼ y1kF

lðkþ1Þ

I k � y1kF
lðkþ1Þ

I k ¼ y1hlðkÞ
max � hk

max:

Thus hk
maxðXÞ is monotonous descent and kFk

Ik � kF
kþ1

I k � hk
max. Meantime, we have

hkt
max ¼ hktþ1

max ¼ � � � ;¼ hktþ1
max ;

hktþ1þ1
max ¼ max

0�r�qðktþ1þ1� rÞ� 1
kF

ktþ1þ1

I k ¼ hktþ1þ2

max ¼ � � � ¼ hktþ2
max ¼ � � � ¼ hktþ3

max :

Donate maxfðrk þ 1Þ=2; y1g ¼
�y, then we have

hktþ1þ1
max � max

0�r�qðktþ2� rÞ� 1

�yhktþ1þ1� r
max � y1h

ktþ1
max :

The sequence
�
� � � ; hktþ1

max ; � � � ; h
ktþ2
max ; � � � ; h

ktþ3
max ; � � �

�
is monotonous descent for all α� 0,

and

hktþ1þ1

max =hktþ1

max ¼
�y < 1:

So hktþ1þ1
max ! 0; t !1. Considering the non-negativity of hk

max, we have hk
max ! 0; k!1.

Along with (19), kFk
Ik � maxfy1;

�yghk
max. Therefore lim

k!1
kFk

1
k ¼ 0.

Lemma 4.2 Assume A1-A4 hold. If k is large enough, then dk0! 0, dk! 0.

The proof is similar to Lemma 5.4 in [20].

With Lemma 4.1 and 4.2, we can obtain the global convergence of the algorithm.

Theorem 4.1 The accumlation point (X*, μ*) of the sequence {(Xk, μk)} is the KKT point

pair of problem (15).

The convergence rate of the algorithm is discussed next. To make the algorithm converge

superlinear, assumptions 5–6 are added.

Remark 4.1 A5 illustrates (Xk, μk) is a Newton direction with a high order perturbation. A6

shows that F is continuously differentiable at each KKT point (X*, μ*).
Lemma 4.3 The above assumptions hold, then {k(Vk)−1k} and fkðV̂ kÞ

� 1
kg are uniformly

bounded. The accumulation matrix V* of {Vk} is nonsingular.

The proof is similar to Lemma 5.5 in [19].

Lemma 4.3 implies that the Theorem 4.2 holds.

Theorem 4.2 Assume A1-A6 hold, the algorithm is superlinearly convergent, i.e., (Xk, μk)

converges to (X*, μ*) superlinearly.
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Numerical results

In this section, the numerical results are shown. Problem 1 the section is taken from [19]. The

BFGS formula proposed by Broyden et al. is used to update Bk+1 as [20].

Tables 1 and 2 show the numerical experimental results of two test questions, where NIT is

the number of iterations, NF is the number of times the objective and constraint functions are

computed, and NG is the number of times the gradient is computed. and TIME(Unit in sec-

onds) is the CPU runtime. The numerical experiments were computed by Matlab R2020 on a

computer with 16.0GB RAM and Intel 11th Gen Intel(R) Core(TM) i5–11320H @ 3.20GHz.

The parameters involved in the algorithm are chosen as follows: B0 ¼ I 2 Rn�n
,τ = 2.5,

c = 0.2, �d ¼ 2, γ = 0.5, γ1 = 0.1, γ2 = 0.95, γ3 = 0.5, θ = 0.9, θ1 = 0.95, θ2 = 0.1, h0
max ¼ 0, ι0 = 1,μ

= [1, 0, . . ., 0, 1].

Test problem 1 [21].

Figure1 min FðxÞ

s:t: fiðxÞ ¼
Xn� 1

i¼1

ðx2

i þ x2

iþ1
þ xixiþ1 � 1Þ;

where

FðxÞ ¼ maxffiðxÞ ¼ x2
i ; i ¼ 1; . . . ; ng:

Test problem 2 [21].

min FðxÞ

s:t: fiðxÞ ¼ ð3:0 � 0:5xiþ1Þxiþ1 � xi � 2:0xiþ2 þ 1; i 2 ½1; n � 2�;

where

FðxÞ ¼ maxffiðxÞ ¼ x2
i ; i ¼ 1; . . . ; ng:

Table 2. Test Problem 2.

n NIT NF NG TIME(s)
3 7 38 44 0.083

4 4 19 22 0.065

5 13 172 184 0.173

https://doi.org/10.1371/journal.pone.0274497.t002

Table 1. Test Problem 1.

n NIT NF NG TIME(s)
2 2 2 2 0.045

3 9 9 16 0.079

4 8 71 78 0.107

5 9 88 96 0.109

6 9 88 96 0.113

7 8 103 110 0.127

8 9 92 100 0.131

https://doi.org/10.1371/journal.pone.0274497.t001
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Then we discuss the application of algorithms to investment portfolios. In the investment

problem proposed by Markowitz, there are two objective functions to be considered. One is to

maximize the return of the portfolio, and the other is to reduce the risk. In the traditional

model, the latter is to minimize the risk (variance) of a set of feasible portfolios for a given level

of expected returns. By varying the expected return level as the two objectives for a set of non-

dominant portfolios, the efficient frontier on returns is determined by the variance and aver-

age of the yields in the Markowitz model. Investors can get a suitable portfolio by analyzing

the expected investment and return.

In the traditional Markowitz mean-variance model, it is assumed that the investor has some

wealth and is ready to invest in a set of securities, which is recorded as a set P. Rk represents

the return value of each security k, which is a random variable. The mean value of Rk can be

calculated from historical data. Define the expected return of a security as μk = E(Rk), k = 1,

� � �, P. xk is the proportion allocated to a certain security. The weight vector xk needs to satisfy

the following constraints,

XP

k¼1

xke
Tx ¼ 1

where e = {1, � � �, 1}T 2 RP.

The expected returns of the portfolio are as follows:

EðRÞ ¼ EðxkR1 þ � � � þ xPRPÞ ¼ x1m1 þ � � � xPmP ¼ m
Tx

where μ = (μ1, � � �, μP)T.

The variance of the portfolio is

nðRÞ ¼ E

 "
XP

k¼1

xkRk � E

 
XP

k¼1

xkRk

!#2!

¼
XP

k¼1

XP

j¼1

E½ðRk � mkÞðRj � mjÞ�xkxj

where covariance matrix Q = {Qi,j} is a symmetric positive semi-definite matrix with uncertain

information. Assume that the short-term investment value is uncertain, but there are obviously

xk� 0, k = 1, � � �, n. we let Bk and Ak be the upper and lower bounds for xk, that is, Bk� xk�

Ak, k = 1, � � �, P.

According to the above definition, the base/mean-variance dual-objective optimization

problem [22] can be described as

min
x2RP

�
mTx
xTQx

min
x2RP

TðxÞ

s:t: eTx ¼ 1;

Bk � xk � Ak; k ¼ 1; � � � ; P;
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where TðxÞ ¼ kxk0 ¼
PP

k¼1
signðjxkjÞ, and

sign ¼

� 1; xk < 0;

0; xk ¼ 0;

1; xk > 0:

8
><

>:

Note that sign(kxkk) is discontinuous, so we introduce the following approximation func-

tion which is locally lipschitz continuity,

wkðxk; dÞ ¼

d

xk � 1þ d
þ dþ 1; xk � � d;

jxkj

d
; jxkj �; d;

� d

xk � 1þ d
þ dþ 1; xk � d;

8
>>>>>>><

>>>>>>>:

ð47Þ

where δ> 0. For any xk 2 R, lim
d!0þ

oðxk; dÞ ¼ signðkxkkÞ.

Let y = (x, yP+1)T 2 RP+1, we get the continuous approximation problem as follows:

min
y2RPþ1

wðyÞ ¼ ðw1ðx1; dÞ; � � � ;wPðxP; dÞ; yPþ1Þ
T

s:t: �
mTx
xTQx

;

eTx ¼ 1;

Bk � xk � Ak; k ¼ 1; � � � ; P:

ð48Þ

where w(y) = (ω1(x1, δ), � � �, ω(xp, δ), yP+1)T. (48) can be regarded as a minimax problem,

which can be solved using the algorithm 1. We take the case of P = 2, the optimal portfolio

obtained is [0.5;0.5]. This result illustrates that under the condition that the risk and return of

each stock are equal, the proportion of each stock in the optimal strategy is determined by the

investor’s investment willingness.

Conclusion

In this paper, we give the properties of global convergence and the global convergence of an

adaptive QP-free method for solving the minimization problem. Combining the NCP function

and the multiplier, in each iteration two systems of linear equations with the same coefficient

matrix are solved, which can be viewed as a perturbation of the primal Variables and dual vari-

ables of the KKT condition by the Newton-quasi interaction. A new filter substitution mecha-

nism is given, which retains the advantages of the filter method, avoids the selection of penalty

parameters, and eliminates potential storage problems that may arise from the filter. And the

objective function is tuned by introducing a flexible operator. A non-monotonic mechanism is

used to avoid the Maratos effect to some extent, and the introduction of working set further

reduces the workload. The effectiveness and convergence of the intensity algorithm are dem-

onstrated under the assumption of no stability point isolation.
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