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Abstract

This paper is concerned with the sampled-data consensus of networked Euler-Lagrange

systems. The Euler-Lagrange system has enormous advantages in analyzing and design-

ing dynamical systems. Yet, some problems arise in the Euler-Lagrange equation-based

control laws when they contain sampled-data feedbacks. The control law differentiates the

discontinuous sampled-data signals to generate its control input. In this process, infinities in

the control inputs are generated inevitably. The main goal of this work is to eliminate these

infinities and make the control inputs applicable. To reach this goal, a class of differentiable

pulse functions is designed for the controllers. The pulse functions work as multipliers on the

sampled-data signals to make them differentiable, hence avoid the infinities. A new consen-

sus condition compatible with the pulse function is also obtained through rigorous consen-

sus analysis. The condition is proved to be less conservative compared with that of the

existing method. Finally, numerical examples are given to illustrate the findings and theoreti-

cal results.

Introduction

Multi-agent systems have become a popular research topic for more than a decade. The most

fundamental and widely studied problem of multi-agent systems is the consensus problem, for

it remains the most common control objective of multi-agent systems. And the studies such as

formation control are derived from the consensus problem. A central concern of such studies

is the dynamic models of the individual agents. For a theoretical formulation to properly

reflect the actual physical system, the model has to be capable of representing the physical

characteristics.

Euler-Lagrange system can describe a wide range of physical systems [1]. This advantage

has inspired great research interest in Euler-Lagrange systems [2–9]. The theoretical progress

has benefited the control of robotic arms [8], ships and robotic aerial vehicles [10], autono-

mous underwater vehicles [11], space crafts, and satellites [12, 13]. Yet much of the existing

works on this subject assume continuous communication.
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Discontinuities, e.g., event-triggering [14], constraints [15], and switching topology [16] are

marking characteristics of modern networked systems. Above all, computer-based networked

systems rely exclusively on sampled-data communication, the most common discontinuous

information exchange. However, when sampled-data communication is applied to networked

Euler-Lagrange systems [17], the control inputs go to infinity at the sampling instants, thus

obstructing real-world implementations. The infinities are caused by differentiation of the dis-

continuous piecewise constant sampled communication information from the network. It is

also worth mentioning that the Euler-Lagrange system with sampled actuation has already

been studied in [18]. But without the distributed manner, there is no infinity problem.

Several works are dedicated to solving similar problems caused by discontinuities in net-

worked Euler-Lagrange systems under continuous-time communication [19–22]. They all use

high-order linear systems to smoothen the discontinuities in the neighbors’ information and

avoid infinities. However, these methods all depend on exploiting real-time local information

to guarantee consensus, which is uncommon in sampled-data systems.

Though the methods mentioned above can’t be used to solve the sampled-data consensus

of networked Euler-Lagrange systems, the idea of smoothening the discontinuities is inspiring.

In sampled-data systems, although the piecewise constant information is an unchangeable fun-

damental fact in all networked systems, changes can still be made within individual subsystems

to work around. Conventional sampled-data controllers operate continuously with constant

inputs during each sampling interval. This requirement may hinder controllers’ implementa-

tion under certain constraints [23]. Pulse-modulated sampled-data control is developed in [23,

24] that has advantages over the conventional sampled-data control: 1) the control input can

be a time-varying during an interval; 2) the controller can work during part of the interval

instead of the whole.

In this work, we take advantage of the pulse function, propose the differentiable pulse func-

tion, and position the discontinuous sampling instants in idle times to eliminate the infinities

and make the controller applicable. A new consensus criterion is also obtained through rigor-

ous and straightforward proof. It is proven that this criterion is less conservative and is com-

patible with the new pulse function proposed, whereas the existing one is not.

The rest of the paper is organized as follows. In Section II, preliminaries on the problem

investigated are presented, and the problem of infinities is pointed out. Section III proposes

constraints on the pulse function under which the infinities are ruled out. The new consensus

criterion is given through consensus analysis and compared with the existing work in terms of

conservativeness and applicability. Finally, numerical examples are provided in Section IV to

verify the theoretical results.

Preliminaries and problem formulation

Graph theory

Communication links among the agents can be described by a weighted directed graph

(digraph) G ¼ V; E;Af g, where V = {1, 2, . . ., N} is the set of nodes, E ¼ V � V is the set of

edges, and A = (aij)(N×N) is the weighted adjacency matrix. fj; ig 2 E indicates that agent i
receives information from agent j. aij> 0 if and only if ðj; iÞ 2 E, otherwise aij> 0. Assume

that there’s no self-loop, i.e. aii = 0, i 2 V. Let deg ið Þ ¼
PN

j¼1
aij, D = diag(deg(1), . . ., deg(n)).

The Laplacian matrix is AL = (lij)(N×N) = D − A. All eigenvalues of L are in the open right half

plane except for the one zero eigenvalue: 0 = λ1� Re(λ2)� � � � � Re(λr) where λi 2 C (i = 1, 2,

. . ., r) are eigenvalues of L with multiplicity Ni. Obviously
Pr

i Ni ¼ N. There exists a non-sin-

gular matrix U ¼ 1Nffiffiffi
N
p ; u2; . . . ; uN

� �
such that the Laplacian matrix L can be transformed into
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a Jordan form

J ¼ U � 1LU ¼ diag 0; J2; . . . ; Jrf g

where U � 1 ¼
ffiffiffiffi
N
p

x; w2; . . . ; wN

� �T
and ξT L = 0, ξ is a vector such that 1T

Nx ¼ 1.

Jl ¼

ll 1 0

0 . .
.

1

0 0 ll

2

6
6
4

3

7
7
5

Nl�Nl

When the graph G is undirected, the Laplacian matrix L is symmetric and can be

diagonalized.

Networked Euler-Lagrange systems

Consider N networked Euler-Lagrange systems that are fully actuated and have the following

dynamics:

Mi qið Þ€qi þ Ci qi; _qið Þ _qi þ gi qið Þ ¼ ti; i ¼ 1; 2; . . . ; N ð1Þ

where qi ¼ qi1; qi2; . . . ; qim½ �
T
2 Rm is the generalized position, Mi qið Þ ¼ MT

i qið Þ 2 R
m�m is

the inertia matrix, Ci qi; _qið Þ 2 Rm�m
is the Coriolis and centripetal matrix, gi qið Þ 2 R

m
is the

gravitational torque, ti ¼2 R
m is the control input, and the following general assumptions

hold for the Euler-Lagrange system (1):

1. There exist positive-definite parameters kc and kd such that 0< kcIm�Mi (qi)� kdIm.

2. _Mi qið Þ � 2Ci qi; _qið Þ is skew-symmetric, i.e., for any r 2 Rm
; rT _Mi qið Þ � 2Ci qi; _qið Þ
� �

r ¼ 0.

Sampled-data consensus. The networked Euler-Lagrange systems in (1) are sampled at

tk, k = 0, 1, . . ., where 0 = t0 < t1 < . . .< tk< . . ., and tk!1 as k!1. The sampling inter-

vals can be time-varying: hk = tk+1 − tk. The control objective is to design sampled-data consen-

sus controllers that drive the networked Euler-Lagrange systems in (1) to achieve consensus,

i.e., 8 i; j 2 V:

lim
t!1

qi tð Þ � qj tð Þ
� �

¼ 0

The following sampled-data consensus control law is designed in [17]:

ti ¼ � Kisi þMi qið Þ€qr;i þ Ci qi; _qið Þ _qr;i þ gi qið Þ ð2Þ

where Ki is a positive-definite matrix. Eq 2 shows that the control law depends on the reference

quantity _qr;i and its derivative €qr;i. And the reference quantity _qr;i

_qr;i ¼ � ra t; tkð Þ

X

j2Ni

aij qi tkð Þ � qj tkð Þ
� �

; t 2 tk; tkþ1

� �
ð3Þ

is piecewise constant due to the sample-data communication. And si ¼ _qi � _qr;i is the auxiliary

variable, α(t, tk) is a pulse function:

a t; tkð Þ ¼
â t; tkð Þ; t 2 tk; tk þ dk½ �

0; t 2 tk þ dk; tkþ1

� �

(

; ð4Þ
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where â t; tkð Þ is the scaling function during dwell time whose value is allowed to be discontin-

uous. It is proved in [17] that the networked Euler-Lagrange systems (1) under the control

input (2) reach consensus when a criterion on the communication graph and the pulse func-

tion α(t, tk) is satisfied.

Since the sampled local consensus error
P

j2Ni
aij qi tkð Þ � qj tkð Þ
� �

is updated at each sam-

pling instant and is kept constant during the sampling intervals, the reference velocity _qr;i is

discontinuous at the sampling instants tk and the end of dwell times i.e. tk + dk. Under this con-

trol strategy, the €qr;i term in the controller (2) is the derivative of the discontinuous _qr;i:

€qr;i tð Þ ¼
d � ra t; tkð Þ

X

j2Ni

aij qi tkð Þ � qj tkð Þ
� �� �

dt
ð5Þ

thus is infinite at the sampling instants. Combining with that Mi(qi) is positive definite, the

term Mi qið Þ€qr;i is infinite and makes τi infinite at these instants.

Problem formulation

Infinities in the control input make the controller impractical for implementation despite its

mathematical correctness. Moreover, the consensus criterion in [17] is conservative and obtained

through complicated derivation. Considering these drawbacks of [17], the goal of this work is to:

1. Find a method to eliminate the infinities in the control input.

2. Establish for this method a compatible and less conservative consensus criterion.

Main results

To solve the problem formulated in Section II, we propose an improved control law that elimi-

nates the infinities in the controller by redesigning the pulse function â t; tkð Þ. It can be proved

that given some additional conditions on â t; tkð Þ, the control inputs τi no longer have the

infinity behavior discussed above.

Solution for the infinities

For ease of analysis, let function α(t) be the combination of the pulse functions α(t, tk):

a tð Þ ¼

a t; t0ð Þ; t 2 t0; t1½ Þ

a t; t1ð Þ; t 2 t1; t2½ Þ

..

.

8
>><

>>:

ð6Þ

Lemma 1: Control input (2) is finite and Lipschitz if the pulse function â t; tkð Þ is differen-

tiable with a Lipschitz constant l, i.e.

jâ x; tkð Þ � â y; tkð Þj � ljx � yj 8 x; y 2 tk; tk þ dk½ � ð7Þ
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if the following hold:

â tk; tkð Þ ¼ â tk; tk þ dkð Þ ¼ 0 ð8Þ

lim
t!tþk

_a t; tkð Þ ¼ lim
t! tkþdkð Þ�

_a t; tkð Þ ¼ 0; k ¼ 0; 1; . . . ð9Þ

Proof: It’s obvious that the pulse function α(t) is Lipschitz and differentiable when (8) and

(9) hold. Then we prove the differentiability of _qr;i at the endpoints of the dwell time, i.e. tk and

tk + dk.

Under condition (9), the left derivatives and right derivatives of _qr;i are

lim
t!tþk

€qr;i tð Þ ¼ � r lim
t!tþk

_a t; tkð Þ

X

j2Ni

aij qi tkð Þ � qj tkð Þ
� �

¼ 0

lim
t!t�k

€qr;i tð Þ ¼ � r lim
t!t�k

_a t; tk� 1ð Þ

X

j2Ni

aij qi tk� 1ð Þ � qj tk� 1ð Þ
� �

¼ 0

and

lim
t! tkþdkð Þ�

€qr;i tð Þ ¼ � r lim
t! tkþdkð Þ�

_a t; tkð Þ

X

j2Ni

aij qi tkð Þ � qj tkð Þ
� �

¼ 0

lim
t! tkþdkð Þþ

€qr;i tð Þ ¼ � r lim
t! tkþdkð Þþ

_a t; tkð Þ

X

j2Ni

aij qi tkð Þ � qj tkð Þ
� �

¼ 0

Note here that _qr;i is constantly zero out of dwell times, i.e. _qr;i tð Þ ¼ 0; t 2 tk þ dk; tkþ1

� �
,

and the above analysis ensures €qr;i tð Þ ¼ 0; t 2 tk þ dk; tkþ1

� �
. Therefore, €qr;i tkð Þ and

€qr;i tk þ dkð Þ exists and are zero. Combined with the given condition that â t; tkð Þ is differentia-

ble, _qr;i tð Þ is also differentiable during dwell times. Thus _qr;i is differentiable at t 2 (0,1),

therefore, €qr;i is Lipschitz and finite with

€qr;i tð Þ � l
X

j2Ni

aij qi tkð Þ � qj tkð Þ
� �

:

Applying controller (2) to the Euler-Lagrange system (1) yields

Mi qið Þ_si þ Ci qi; _qið Þsi ¼ � Kisi; i ¼ 1; 2; . . . ; N ð10Þ

Choose the Lyapunov function:

V tð Þ ¼
1

2

XN

i¼1

sT
i tð ÞMi qið Þsi tð Þ ð11Þ
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Its derivative along the trajectory of (10) is

_V tð Þ ¼
1

2

XN

i¼1

ð_sT
i tð ÞMi qið Þsi tð Þ þ sTi tð ÞMi qið Þ_si tð Þ þ sTi tð Þ _Mi qið Þsi tð ÞÞ

¼
1

2

XN

i¼1

� 2sT
i Ci qi; _qið Þsi � 2sT

i Kisi þ sT
i tð Þ _Mi qið Þsi tð Þ

� �

¼ �

XN

i¼1

sTi Kisi < 0

ð12Þ

Note here that inequality (12) holds on all t� 0, instead of just sampling intervals. This is

attributed to the controller design (2) and the subsequent closed-loop dynamics (10). There-

fore, si! 0 as t!1. Combine (3) with the auxiliary variable s yields

_qi ¼ si þ _qr;i ¼ si � ra tð Þ
X

j2Ni

aij qi tkð Þ � qj tkð Þ
� �

ð13Þ

Eq (13) can be represented in stack vector form:

_q ¼ _qr þ s ¼ � ra tð Þ L� Imð Þq tkð Þ þ s ð14Þ

where q and s are the stacked vectors for qi and si, respectively. Since s vanishes with time, the

stability of the dynamic Eq (14) is equivalent to that of

_q ¼ � ra tð Þ L� Imð Þq tkð Þ ð15Þ

Next, the consensus of system (15) is studied, and a consensus criterion is obtained.

Consensus analysis

In the following theorem, the consensus of system (15) is studied, and a consensus criterion

compatible with the new pulse function α is proposed.

Theorem 1: The multi-agent system composed of Euler–Lagrange systems in (1) with the

control inputs (2) can reach consensus if the following inequality holds for l = 2, 3, . . ., r and

k = 0, 1, . . .

�
�
�
�1 � rll

Ztkþ1

tk

a t; tkð Þdt
�
�
�
� < 1 ð16Þ

Proof: Solve the dynamic Eq (15). One has

q tð Þ ¼ q tkð Þ þ

Z t

tk

� ra tð Þ L� Imð Þq tkð Þdtþ

Z t

tk

s tð Þdt ð17Þ
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and

q tkþ1

� �
¼ q tkð Þ � r L� Imð Þq tkð Þ

Z tkþ1

tk

a t; tkð Þdt

þ

Z tkþ1

tk

s tð Þdt

¼ INm � r L� Imð Þ

Z tkþ1

tk

a t; tkð Þdt

0

@

1

Aq tkð Þ

þ

Z tkþ1

tk

s tð Þdt

ð18Þ

Let the consensus error be q̂i ¼ qi � x
Tq, and q̂ ¼ q̂T

1
; q̂T

2
; . . . ; q̂T

N

� �T
. Then we have

q̂ ¼ IN � 1Nx
T� �
� Im

� �
q. Applying this transformation on (18) yields

q̂ tkþ1

� �
¼ IN � 1Nx

T� �
� Im

� �
�

INm � r L� Imð Þ

Z tkþ1

tk

a t; tkð Þdt

0

@

1

Aq tkð Þ

þ IN � 1Nx
T� �
� Im

� �
Z tkþ1

tk

s tð Þdt

¼ INm � r L� Imð Þ

Z tkþ1

tk

a t; tkð Þdt

0

@

1

A�

IN � 1Nx
T� �
� Im

� �
q tkð Þ

þ IN � 1Nx
T� �
� Im

� �
Z tkþ1

tk

s tð Þdt

¼ INm � r L� Imð Þ

Z tkþ1

tk

a t; tkð Þdt

0

@

1

Aq̂ tkð Þ

þ IN � 1Nx
T� �
� Im

� �
Z tkþ1

tk

s tð Þdt

ð19Þ

The facts that L1N = 0 and ξT L = 0 are exploited to obtain (19).
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Let y ¼ U � 1 � Imð Þq̂ ¼ yT
1
; yT

2
; . . . ; yT

r

� �T
; yl 2 R

mNl , l = 1, 2, . . ., r, ŷ ¼ yT
2
; . . . ; yT

r

� �T
.

We get

y kþ 1ð Þ ¼ U � 1 � Imð Þ�

INm � r L� Imð Þ

Z tkþ1

tk

a t; tkð Þdt

0

@

1

A U � Imð Þy tkð Þ

þ U � 1 IN � 1Nx
T� �
� Im

� �
Z tkþ1

tk

s tð Þdt

¼ INm � r J � Imð Þ

Z tkþ1

tk

a t; tkð Þdt

0

@

1

Ay

þ U � 1 IN � 1Nx
T� �
� Im

� �
Z tkþ1

tk

s tð Þdt

¼ diag Im; Ĵ 2; Ĵ 3; . . . ; Ĵ r

� �
yþ

U � 1 IN � 1Nx
T� �
� Im

� �
Z tkþ1

tk

s tð Þdt

ð20Þ

where Ĵ l ¼ INlm
� r Jl � Imð Þ

R tkþ1

tk
a t; tkð Þdt, l = 2, 3, . . ., r. Note that

y1 ¼
ffiffiffiffi
N
p

x
T
� Im

� �
q̂

¼
ffiffiffiffi
N
p

x
T
� Im

� �
IN � 1Nx

T� �
� Im

� �
q

¼
ffiffiffiffi
N
p

x
T
� x

T
1Nx

T� �
� Im

� �
q ¼ 0

ð21Þ

which means y1 stays constantly zero. It can be deduced from (19) and (20) that

ŷ kþ 1ð Þ ¼ diag Ĵ 2; Ĵ 3; . . . ; Ĵ r

� �
ŷ kð Þ

þ U � 1 2 : Nð Þ IN � 1Nx
T� �
� Im

� �
Z tkþ1

tk

s tð Þdt
ð22Þ

Since
R tkþ1

tk
s tð Þdt! 0 as k!1 and matrix U is non-singular, q̂ kð Þ converges to zero if

and only if ŷ converges to zero. Eq (22) shows that limk!1ŷ kð Þ ¼ 0 if the spectral radii

r Ĵ l

� �
< 1 for l = 2, 3, . . ., r. Eigenvalues of Ĵ l is determined by its diagonal entries, which are

1 � rll

Ztkþ1

tk

a t; tkð Þdt; l ¼ 2; 3; . . . ; r

so it can be concluded that the closed-loop Euler–Lagrange systems can reach consensus if

(16) holds.
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Comparison between the consensus criterions

The geometric interpretation of our improved criterion (16) in the complex plane is rather

classical, that

1 � rll

Ztkþ1

tk

a t; tkð Þdt

is within the unit disc.

As is shown in Fig 1, the lengths of the line segments are:

jBDj ¼ r

Ztkþ1

tk

a t; tkð ÞdtRe lið Þ

jADj ¼ 2 � r

Ztkþ1

tk

a t; tkð ÞdtRe lið Þ

jCDj ¼ r

Ztkþ1

tk

a t; tkð ÞdtjIm lið Þj

Point C is within the unit disk if and only if |CD|2 < |AD| � |BD|. By this geometric interpre-

tation the criterion under which 1 � rll

Rtkþ1

tk

a t; tkð Þdt lies within the unit disk can be rewritten

Fig 1. The geometric interpretation.

https://doi.org/10.1371/journal.pone.0274461.g001
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Singling out the r
R tkþ1

tk
a t; tkð Þdt term, the above inequality becomes

r

Ztkþ1

tk

a t; tkð Þdt <
2Re lið Þ

Re lið Þð Þ
2
þ Im lið Þð Þ

2
ð23Þ

Next our new consensus criterion (16) is compared with the consensus criterion of [17]:

db2

2
r Re lið Þ þ jIm lið Þjð Þ

2
� b1Re lið Þ < 0 ð24Þ

where d is the upper bound of dk, β1 and β2 are the lower and upper bounds of the pulse func-

tion â, respectively. It can be inferred that the minimum lower bound of â t; tkð Þ, i.e. β1 is posi-

tive, so we can divide (24) by β1(Re(λi) + |Im(λi)|)
2 and get

b
2

2

b1

rd �
Re lið Þ

Re lið Þ þ jIm lið Þjð Þ
2
< 0

For every λi, criterion (24) is equivalent to

b2

b1

drb2 <
Re lið Þ

Re lið Þ þ jIm lið Þjð Þ
2

ð25Þ

It is intuitive to see that dβ2 is analogous to the term
R tkþ1

tk
a t; tkð Þdt as the area under the

image of α(τ, tk) with the relation

Ztkþ1

tk

a t; tkð Þdt < db2

Then, the comparison between criteria (16) and (24) is turned into that between (23) and

(25). Comparing the left-hand sides, we get

r

Ztkþ1

tk

a t; tkð Þdt <
b2

b1

drb2

comparing the right-hand sides yields

Re lið Þ

Re lið Þ þ jIm lið Þjð Þ
2
<

2Re lið Þ

Re lið Þð Þ
2
þ Im lið Þð Þ

2
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Therefore,

r

Ztkþ1

tk

a t; tkð Þdt <
b2

b1

drb2 <
Re lið Þ

Re lið Þ þ jIm lið Þjð Þ
2
<

2Re lið Þ

Re lið Þð Þ
2
þ Im lið Þð Þ

2

In other words, criterion (16) is a necessary condition of (24). This means when construct-

ing a pulse function, one that satisfies (24) also satisfies (16), while one that meets (16) doesn’t

necessarily satisfy (24). This implies that the range of selection of pulse functions under (16) is

wider than that under (24), i.e. the improved criterion (16) is less conservative compared to

(24).

Remark 1: A less conservative criterion gives an advantage when choosing the pulse func-

tion. One has wider choices with a less conservative criterion. The extreme case is the pulse

function that eliminates infinities, which should be differentiable everywhere and vanishes at

tk and tk + dk, which means its lower bound β1 = 0. This makes the left-hand side of (24) always

positive, thus creating a contradiction and making (24) inapplicable. While this pulse function

is compatible with (16). Such an example is included in the next section.

Numerical examples

In this section, we first illustrate the infinities in the control inputs with the example in [17],

then present a simulation with the differentiable pulse function that eliminates the infinities.

In addition, a comparison between different pulse functions is provided to illustrate the effects

of pulse functions on consensus speed.

Simulation for [17]

Consider the closed-loop networked Euler-Lagrange Systems. Choose the same network as in

Section IV of [17] with five agents, as shown in Fig 2:

The sampled-data communication is periodic with a sampling interval h = 1.

As is shown by the vertical lines in the figures, although the generalized positions reach con-

sensus as shown in Fig 3, the control input τ1 in Fig 4 becomes impulses at sampling instants

due to the derivation of the reference velocity _qr;1 in Fig 5. In fact, this issue affects agents. This

means although the network reaches consensus in simulation, the actuators of the agent have

to make impulsive infinities to achieve consensus, which is impossible in real-world scenarios.

Simulation with the differentiable pulse function

In the proposed pulse function example, we use the same multi-agent system with the same

sampled communication. The difference is the pulse function in the control law. Sinusoid

functions are selected to meet the requirements (8) and (9). According to the consensus condi-

tion (16), the pulse function â should be chosen such that

Ztkþdk

tk

a t; tkð Þdt <
2

3

The sampling interval h = 1 and dk = 0.5. Choose

a t; tkð Þ ¼
2

3
�

2

3
cos

t � tk
dk
� 2p

� �

ð26Þ
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so that the integral
R tkþdk

tk
a t; tkð Þdt ¼ 1

3
and satisfies the consensus condition. And the resulting

pulse function is shown in Fig 6(a), with more details in Fig 6(b):

The lower bound of the pulse function (26) is 0, and it fits the statement made in Remark 1:

putting this bound into (24), we get db2

2
r Re lið Þ þ Im lið Þð Þ

2
< 0, which makes (24) impossible

to hold, i.e. the pulse function doesn’t satisfy (24), in other words, the consensus condition of

[17] is incompatible with the pulse function.

Fig 3. The generalized positions of the system.

https://doi.org/10.1371/journal.pone.0274461.g003

Fig 2. The communication graph.

https://doi.org/10.1371/journal.pone.0274461.g002
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Since the chosen pulse function (26) satisfies the conditions in Lemma 1, it should be

expected that the reference velocities _qr;i in Fig 7 are differentiable, and the control inputs τi

are therefore finite.

As is shown in Fig 8, the control input of Agent 1 is finite, and the infinity problem is

solved.

And Fig 9 shows that the multi-agent system reaches consensus as calculated. On the sur-

face, consensus seems also to be attained in the simulation without the pulse function, but it

did so with infinite control input and is impossible in practice.

It can be inferred from (18) that consensus speed is only dependent on the sampling inter-

val and the value of
R tkþ1

tk
a t; tkð Þdt. A different α(t, tk) will not affect consensus speed when it

Fig 4. The control input τ1 of Agent 1.

https://doi.org/10.1371/journal.pone.0274461.g004

Fig 5. The reference velocity _qr;1 of Agent 1.

https://doi.org/10.1371/journal.pone.0274461.g005
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has the same
R tkþ1

tk
a t; tkð Þdt. Choose dk = h = 1 and

a t; tkð Þ ¼
1

3
�

1

3
cos

t � tk
dk
� 2p

� �

The resulting pulse function is shown in Fig 10, and
R tkþdk

tk
a t; tkð Þdt ¼ 1

3
is unchanged, we

get

Fig 11 shows the same consensus speed as in Fig 9, confirming the inference.

Fig 6. (a) The pulse function α(t). (b) the detailed view of α(t).

https://doi.org/10.1371/journal.pone.0274461.g006
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Consensus speed can also be tuned independently while maintaining condition (16). For

example, set the sampling interval to 0.5 and dk = 0.25, and choose

a t; tkð Þ ¼
4

3
�

4

3
cos

t � tk
dk
� 2p

� �

to preserve the value of
R tkþdk

tk
a t; tkð Þdt. The effect is that the consensus speed is doubled as

shown in Fig 12:

but the negative effect is that the value of €qr;i is quadrupled as shown in Fig 13, putting more

stress on the controller, as is shown in Fig 8. In fact, when the value of
R tkþdk

tk
a t; tkð Þdt is

Fig 7. The reference velocity _qr;1 of Agent 1 with the differentiable pulse function.

https://doi.org/10.1371/journal.pone.0274461.g007

Fig 8. Control input τ1 of Agent 1 with the differentiable pulse function.

https://doi.org/10.1371/journal.pone.0274461.g008
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Fig 9. Generalized positions of the networked Euler-Lagrange systems.

https://doi.org/10.1371/journal.pone.0274461.g009

Fig 10. The pulse function α(t).

https://doi.org/10.1371/journal.pone.0274461.g010
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Fig 11. Generalized positions of the networked Euler-Lagrange systems.

https://doi.org/10.1371/journal.pone.0274461.g011

Fig 12. Generalized positions of the networked Euler-Lagrange systems.

https://doi.org/10.1371/journal.pone.0274461.g012
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chosen, the only means to achieve faster consensus is to select a narrow and tall shaped α(t, tk),

which inevitably leads to larger _a t; tkð Þ and hence larger €qr;i.

Conclusion

This paper reviews existing work on the sampled-data consensus of networked Euler-Lagrange

systems. To address its flaw that steers the control inputs to infinity, a new controller with spe-

cially designed differentiable pulse functions is designed. It is proved that the networked

Euler-Lagrange systems can reach consensus when a criterion on the pulse function is satisfied.

Finally, numerical simulations are given to verify the theoretical results.
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