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Abstract

With the advances in technology and data science, machine learning (ML) is being rapidly

adopted by the health care sector. However, there is a lack of literature addressing the

health conditions targeted by the ML prediction models within primary health care (PHC) to

date. To fill this gap in knowledge, we conducted a systematic review following the PRISMA

guidelines to identify health conditions targeted by ML in PHC. We searched the Cochrane

Library, Web of Science, PubMed, Elsevier, BioRxiv, Association of Computing Machinery

(ACM), and IEEE Xplore databases for studies published from January 1990 to January

2022. We included primary studies addressing ML diagnostic or prognostic predictive mod-

els that were supplied completely or partially by real-world PHC data. Studies selection,

data extraction, and risk of bias assessment using the prediction model study risk of bias

assessment tool were performed by two investigators. Health conditions were categorized

according to international classification of diseases (ICD-10). Extracted data were analyzed

quantitatively. We identified 106 studies investigating 42 health conditions. These studies

included 207 ML prediction models supplied by the PHC data of 24.2 million participants

from 19 countries. We found that 92.4% of the studies were retrospective and 77.3% of the

studies reported diagnostic predictive ML models. A majority (76.4%) of all the studies were

for models’ development without conducting external validation. Risk of bias assessment

revealed that 90.8% of the studies were of high or unclear risk of bias. The most frequently

reported health conditions were diabetes mellitus (19.8%) and Alzheimer’s disease

(11.3%). Our study provides a summary on the presently available ML prediction models

within PHC. We draw the attention of digital health policy makers, ML models developer,

and health care professionals for more future interdisciplinary research collaboration in this

regard.
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Introduction

Primary health care (PHC) is considered the gatekeeper, where health education and promo-

tion are provided, non-life-threatening health conditions are diagnosed and treated, and

chronic diseases are managed [1]. This form of health maintenance, which aims to provide

constant access to high-quality care and comprehensive services, is defined and called for by

the World Health Organization (WHO) global vision for PHC [2]. Clinicians’ skills and expe-

rience and the further continuing professional development are fundamental to achieve these

PHC aims [3]. Additional health care improvement can be achieved by capitalizing on digital

health and AI technologies.

With the high number of patients visiting PHC and the emergence of electronic health rec-

ords, substantial amounts of data are generated on daily basis. A wide spectrum of data analytics

exist to utilize such data; however, meaningful interpretation of large complicated data may not

be adequately handled by traditional data analytics [4]. Tools that could more accurately predict

diseases incidence and progression and offer advice on adequate treatment could improve the

decision-making process. Machine Learning (ML), a subtype of Artificial Intelligence (AI), pro-

vides methods to productively mine this large amount of data such as predictive models that

potentially forecast and predict diseases occurrence and progression [5]. The variety of ML pre-

diction models’ characteristics provide broader opportunities to support the healthcare practice.

Integrating PHC with updated technologies allows for the coordination of numerous disci-

plines and views. Integrating PHC with such technologies allows for improvements in health

care, which may include patient care outcomes and productivity and efficiency within health

care facilities [5, 6]. ML models have been developed in health research–most significantly in

the last decade—to predict the incidence of diabetes, cancers, and recently COVID-19 pan-

demic related illness from health records [7]. A systematic overview of 35 studies published in

2021 investigated the existing literature of AI/ML, but exclusively in relation to WHO indica-

tors [8]. Other literature and scoping reviews examined AI/ML in relation to certain health

conditions, such as HIV [9], hypertension [10], and diabetes [11]. Other systematic reviews

targeted specific health conditions across multiple health sectors, such as pregnancy care [12],

melanoma [13], stroke [14], and diabetes [15]. However, reviews investigating PHC specifi-

cally have been fewer [16, 17]. It has been reported that research on ML for PHC stands at an

early stage of maturity [17]. Similar to ours, a recently published protocol of a systematic

review addressing the performance of ML prediction models in multiple different medical

fields was published [18]. However, this protocol does not focus specifically on primary care

and its search is limited to the years 2018 and 2019. Hence, the current literature is not enough

to identify what diseases are targeted by ML prediction models within real-world PHC. Fur-

thermore, literature investigating the validity and the potential impact of such models are not

abundant. To direct the focus toward this gap, we conducted this systematic review to encom-

pass the health conditions predicted through using ML models within PHC settings.

Materials and methods

We conducted a systematic review in accordance with the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) [19] and the CHecklist for critical Appraisal

and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) [20].

The protocol for our review was registered on PROSPERO CRD42021264582 [21].

Search strategy and selection criteria

A comprehensive and systematic search was performed covering multidisciplinary databases:

1. Cochrane Library, 2. Elsevier (including ScienceDirect, Scopus, and Embase), 3. PubMed, 4.
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Web of Science (including nine databases), 5. BioRxiv and MedRxiv, 6. Association for Com-

puter Machinery (ACM) Digital Library, and 7. Institute of Electrical and Electronics Engi-

neers (IEEE) Xplore Digital Library.

To find potentially relevant studies, we searched literature with the last updated search on

January 4, 2022, back to January 1, 1990. The utilized search terms included "machine learn-

ing", "artificial intelligence", "deep learning", and "primary health care". Boolean operators and

symbols were adapted to each literature database. Hand searches of citations of relevant

reviews and a cross-reference check of the retrieved articles were also performed. Conference

abstracts and gray literature searches were conducted using the available features of some data-

bases. The full search strategy for all the electronic databases is presented in S1 File. A reference

management software (EndNote X9) was used to import references and to remove duplicates.

The inclusion criteria were as follows: primary research articles (peer-reviewed, preprint, or

abstract) without language restriction, studies reporting AI, DL or ML prediction models for

any health condition within PHC settings, and using real-world PHC data, either exclusive or

linked to other health care data. We directed our focus toward these supervised ML models

(random forest, support vector machine (SVM), boosting models, decision tree, naïve bias,

least absolute shrinkage and selection operator (LASSO), and k-nearest neighbors) and the

neural networks.

Literature screening, data collection and statistical analysis

Title and abstract screening for all records were conducted independently by two researchers

through the Rayyan platform [22]. Discrepancies were resolved by discussion. All studies that

met the eligibility criteria were included in the systematic review. The process of data extraction

was performed by two authors. Items and definitions of extracted data is presented in Table 1.

Health conditions extracted were categorized according to the International Classification

of Diseases (ICD)-10 version 2019 [23]. This coding system was selected because it is applied

Table 1. Items and definitions for data extraction.

Item Extracted Definition

Meta-data First author and year of publication

Study Type According to CHARMS guidelines [20], the types of a prediction modelling studies are:

1. model development without external validation,

2. model development with external validation, or

3. external validation of a predeveloped model with or without model update.

The included studies are presented in the Results section in three tables categorized according to

these three types.

Study design Design of the included studies.

Models purpose 1. Incident diagnostic (occurrence probability of a disorder),

2. Prevalent diagnostic (identifying overlooked cases), or

3. Prognostic (occurrence probability of a future event).

Country Countries, from which health data were collected to train, test, or validate the models.

Source of data This represents the source of the health data used to train, test, or validate the model.

1. PHC (Data exclusively originated from a PHC settings)

2. Linked data (PHC data linked to other data sources, such as secondary or tertiary health

care)

Sample size Number of the population, whom health data were used to train, test, or validate the models.

Time span of

data

Time period, in which the health care data used for modelling were originally available in the

health care system.

Health

condition

Health condition addressed in the included studies.

https://doi.org/10.1371/journal.pone.0274276.t001
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by at least 120 countries across the globe [24]. Considering the countries that apply different

coding systems, we used the explicit names of the health condition mentioned in the included

studies included to match them to the closest ICD-10 codes.

Descriptive statistics of the extracted data was calculated. The overall number of popula-

tions was calculated with considering the potential overlap between the included datasets. This

overlap assessment was contemplated based on similarity of source of data, time span of data

within each included study, the targeted health condition and the inclusion and exclusion cri-

teria of the participants. The quantitative results were calculated using Microsoft Excel.

Risk of bias and applicability assessment

The ‘Prediction model study Risk Of Bias Assessment Tool’ (PROBAST) was used to assess the

risk of bias and concerns about the applicability of the included studies [25]. The four domains

of this tool, which are participants, predictors, outcome, and analysis were addressed. The

overall judgement for the risk of bias evaluation and concern of applicability of the prediction

models in PROBAST is ‘low,’ ‘high,’ or ‘unclear.’ In cases when all domains were graded ‘low’

risk of bias, assessment of ‘models developed without external validation’ was downgraded to

‘high’ risk of bias even if all the four domains were of low risk of bias, unless the model’s devel-

opment was based on an exceptionally large sample size and included some form of internal

validation. External validation was considered if the model was at least validated using a data-

set from a later time point in the same data source (temporal external validation) or using a

different dataset from inside or outside the source country (geographical or broad external val-

idation, respectively) [20]. Results of risk of bias and concern of applicability assessments were

presented in a color-coded graph.

Results

Our search strategy yielded 23,045 publications. After duplicate removal, 19,280 publication

abstracts were screened, and 167 publications were eligible for full text screening. A total of

106 publications met our inclusion criteria (Fig 1). A list of the excluded studies with the justi-

fication of exclusion is presented (S1 Table). The results of the data extracted in this review are

presented in the following subsections: geographical and chronological characteristics of the

included studies, studies’ type and design, and the ML models addressed, and (frequency of)

health conditions investigated.

Geographical and chronological characteristics

The earliest included study was published in 2002 [26], with the most publications occurring

over the past four years. Most (77.3%, n = 82/106) of the publications were published between

2018–2021 (Fig 2). The United States of America (US) and the United Kingdom (UK) were

reported in 57.1% of the included publications. While the 106 included publications reported

countries 126 times, the US was reported 41 times and the UK 31 times. Usage of exclusive

real-world PHC data for modelling was reported in 77.7% (n = 115 of 148 counts of data

sources) across the studies. The remaining 22.3% of the PHC data sources were linked to dif-

ferent data sources, such as health insurance claims, cancer registries, secondary or tertiary

health care, or administrative data. In the US, data were obtained mainly from PHC centers.

In contrast, the most common source of the UK data were the Clinical Practice Research Data-

link (CPRD), which is the largest patients’ data registry in the UK [27]. The overall time span

of health data across the studies ranged from 1982 [28] to 2020 [29]. The individual time span

of the included studies varied between 2 months to 28 years. Sample sizes across the included

studies ranged from 75 [30] to around 4 million [31] participants. The total number of the
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populations within all the included studies was of 23.2 million. After correcting the potential

overlaps, the total number of unique populations was reduced to be 22.7 million.

Studies type and design, and ML models

The main type of the included studies was prediction models development without external

validations (76.5%, n = 81 of 106). Of the remaining 25 studies, 13 studies (12.2%) developed

and externally validated the models, and 12 studies (10.3%) externally validated previously

existing models. Temporal validation [30, 32–36], geographical validation [37, 38], and using

different population sample validations [39–44] were reported but none of these studies

reported updating the assessed model.

All of the included studies were observational in design. Apart from 8 prospective studies,

92.4% (n = 98 of 106) of the studies were retrospective in design. Of the retrospective studies,

63 were retrospective cohorts. The other reported study designs were case control (n = 29),

nested case control (n = 3), and cross sectional (n = 3). The purpose of the models reported

was diagnostic in 77.3% (n = 82 of 106) of the studies, either incident (n = 62 of 82) or preva-

lent (n = 20 of 82). The remaining 23.5% (n = 25 of 106), including one study with two pur-

poses of the models [45]) predicted prognosis of health conditions, such as remission,

improvement, complications, hospitalization, or mortality. Despite all studies included used

Fig 1. Prisma flow diagram.

https://doi.org/10.1371/journal.pone.0274276.g001
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real-world patients’ data to develop and/or validate the ML models, four studies reported

applying the models develop in real-world primary health care settings [46–48].

Within the 106 included publications, 207 models were developed and/or validated. The

most frequently used type of ML was supervised learning 83.1% (n = 172 of 207 models across

the included studies). These supervised ML models were identified as follows: random forest

(n = 58), SVM (n = 30), boosting models such as extreme, light, and adaptive boosting

(n = 28), decision tree (n = 25), and others such as naïve bias, k-nearest neighbors, and LASSO

(n = 31). Deep learning techniques, such as neural networks, were reported 35 times (16.9%, of

207models), either exclusively or in comparison to other supervised ML models. Supplemen-

tary table (S2 Table) presents advantages and disadvantages of these models in addition to fur-

ther descriptive results of our included studies. The most frequently reported evaluation

approach of models’ performance was the area under the receiver operating characteristic

curve (AUROC), which was reported as “good” to “moderate” models performance in 62 stud-

ies. One study reported the performance measures using decision analysis curve [49]. Other

evaluation approaches were reported across the included studies, such as calculating sensitiv-

ity, specificity, predictive values, and accuracy.

The data used to develop the models were called predictors, features, or variables across the

included studies. These data were mostly textual. Demographic characteristics and clinical pic-

ture of the health conditions were the most frequently found data. Medications, comorbidities,

and blood tests performed within primary care unit were reported. Data, such as blood test

results and imaging results performed within secondary and tertiary health care were addition-

ally reported in some of the individual studies. Referral documentation and clinical notes

Fig 2. Number of studies for publication years.

https://doi.org/10.1371/journal.pone.0274276.g002
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taken by health care personnel were also reported. Five studies used the natural language pro-

cessing (NLP) technique to handle free text clinical notes [40, 45, 50–52].

Tables 2–4 present an overview of the included studies characteristics based on the type of

the study. They are grouped according to the ICD-10 classification and ordered alphabetically

within each classification. A quantitative panel summary of all the included studies is also pro-

vided (S1 Panel).

Health conditions

Out of the 22 classifications of the ICD-10, 11 classifications were addressed in the included

studies. Frequently reported classifications were the endocrine, nutritional, and metabolic dis-

eases classification (ICD-10: Class E00-E90) (n = 27 studies of 106, 25.5%), circulatory system

diseases (ICD-10: Class I00-I99) (n = 23, 21.7%), and the mental and behavioral disorders clas-

sification (ICD-10: Class F00-F99) (n = 21, 19.9%). Diseases of the respiratory system classifi-

cations (ICD-10: Class J00-J99) and neoplasms (ICD-10: Class C00-C97) were addressed in

(n = 10, 9.4% and n = 8, 7.5% respectively). 16% (n = 17) of the included studies investigated

other health conditions (ICD 10: Classes G00-G99, K00-K93, M00-M99, N00-N99, O00-O99,

and X60-X84).

Endocrine, nutritional, and metabolic diseases (E00-E90). In 27 studies addressing this

classification [31, 34, 39, 46, 49, 50, 52, 72–86, 119, 127–130], populations involved were from

12 countries, mainly the US (41.9%). The studies were published since 2008 with the highest

number of studies in 2019 (38.7%). 81% of the included studies reported the development

and/or training of the proposed models using exclusive primary health care data of a total

number of 4.2 million participants. Data were extracted from different sources covering a time

span of six months to 23 years. Four health conditions were identified, namely diabetes melli-

tus (E10, E11) with/without complications (n = 21), familial hypercholesterolemia (E78)

(n = 3), childhood obesity (E66) (n = 2), and primary aldosteronism (E26) (n = 1). Incident

diagnostic prediction was the most commonly reported outcome (42%). Prevalent diagnostic

and prognostic prediction were 32% and 26% respectively. Diabetic retinopathy was the most

common complication (n = 5 of 21 related diabetes mellitus studies) reported. Diabetic foot

was investigated in one study [50]. Two studies investigated prognostic predictive modelling

of the short- and long-term levels of HbA1c after insulin treatment [49, 83].

Mental and behavioral disorder (F00–F99). In 21 studies addressing six health condi-

tions [28, 30, 35, 92–107, 120, 121, 133], the populations were from eight countries, mainly the

US and the UK (n = 13). These 21 studies were published since 2013 with the highest number

published in 2020 (44.4%). Data were collected from different data sources with time span of

data from one year to 28 years. Alzheimer’s disease (F00) was addressed in 12 studies for

mostly incident or prevalent diagnosis, apart from three studies. Depression (F32) was tackled

in three studies, one of which predicted depression prognosis within two years [92]. Psychosis

(F29) [35] and anxiety (F41) in cancer survivors seeking care in PHC [97] were addressed in

one study each. Lastly, one study used PHC data to predict any mental disorder using different

ML models [104].

Circulatory and respiratory health conditions (I00-I99 and J00-J99). In 33 studies, pop-

ulations involved were from 11 countries, mainly the US and the UK. The included studies

were published since 2010 with the highest number in both groups published in 2020 (30.8%).

Data were extracted from the different data sources over time span one month to 23 years. Six

circulatory health conditions were identified in 23 studies [29, 36, 37, 40, 45, 53–70]. These

conditions were hypertension (I10-I15) (n = 5), heart failure (I50) (n = 5), atrial fibrillation

(I48) (n = 2), stroke (I64) (n = 2), atherosclerosis (I70) (n = 1), myocardial infarction (I21)
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Table 2. Overview of the included studies with the type of ML prediction models development without conducting external validation (n = 81).

Study Study design Models purpose Country Source of

data

Sample

size

Time span of

data

Health condition

Circulatory System Diseases

Chen et al. 2019 [53] Retro. nested case

control

Incident diagnostic United States PHC 34,502 05/2000-05/

2013

Heart failure

Choi et al. 2017 [54] Retro. case control Incident diagnostic United States PHC 32,787 05/2000-05/

2013

Heart failure

Du et al. 2020 [55] Retro. cohort Prognostic China Linked data 42,676 2010–2018 Hypertension

Farran et al. 2013 [56] Retro. cohort Incident diagnostic Kuwait Linked data 270,172 12 years Any cardiovascular disease

Hill et al. 2019 [57] Retro. cohort Incident diagnostic United

Kingdom

PHC 2,994,837 01/2006-12/

2016

Atrial fibrillation

Karapetyan et al. 2021

[29]

Retro. cohort Prognostic Germany PHC 46,071 02-2020-09/

2020

Any cardiovascular disease

Lafreniere et al. 2017

[58]

Retro. cohort Incident diagnostic Canada PHC 379,027 Not reported Hypertension

Li et al. 2020 [59] Retro. cohort Incident diagnostic United

Kingdom

Linked data 3,661,932 01/1998-12/

2018

Any cardiovascular disease

Lip et al. 2021 [60] Retro. cohort Prevalent diagnostic Australia Linked data 926 Not reported Hypertension

Lorenzoni et al. 2019

[61]

Pros. cohort Prognostic Italy Linked data 380 2011–2015 Heart failure

Ng et al. 2016 [62] Retro. nested case

control

Incident diagnostic United States PHC 152,095 2003–2010 Heart failure

Nikolaou et al. 2021

[63]

Retro. cohort Prognostic United

Kingdom

PHC 6,883 2015–2019 Any cardiovascular disease

Sarraju et al. 2021 [64] Retro. cohort Incident diagnostic United States PHC 32,192 01/2009-12/

2018

Any cardiovascular disease

Selskyy et al. 2018 [65] Retro. case control Prognostic Ukraine PHC 63 2011–2012 Hypertension

Shah et al. 2019 [45] Retro. cohort Prognostic/Incident

diagnostic

United

Kingdom

Linked data 2,000 Not reported Myocardial infarction

Solanki et al. 2020 [66] Retro. cohort Prevalent diagnostic United States PHC 495 2007–2017 Hypertension

Solares et al. 2019 [67] Retro. cohort Incident diagnostic United

Kingdom

PHC 80,964 entry– 01/

2014

Any cardiovascular disease

Ward et al. 2020 [68] Retro. cohort Incident diagnostic United States PHC 262,923 01/2009-12/

2018

Atherosclerosis

Weng et al. 2017 [69] Retro. cohort Incident diagnostic United

Kingdom

PHC 378,256 01/2005-01/

2015

Any cardiovascular disease

Wu et al. 2010 [70] Retro. case control Incident diagnostic United States PHC 44,895 01/2003-12/

2006

Heart failure

Zhao et al. 2020 [40] Retro. cohort Incident diagnostic United States Linked data 4,914 Not reported Stroke

Digestive System Diseases

Sáenz Bajo et al. 2002

[26]

Retro. cohort Prevalent diagnostic Spain PHC 81 01/1999-06/

1999

Gastroesophageal reflux

Waljee et al. 2018 [71] Retro. cohort Prognostic United States Linked data 20,368 2002–2009 Inflammatory bowel disorders

Endocrine, Metabolic, and Nutritional Diseases

Akyea et al. 2020 [31] Retro. cohort Incident diagnostic United

Kingdom

PHC 4,027,775 01/1999-06/

2019

Familial hypercholesterolemia

Á-Guisasola et al. 2010

[72]

Pros. cohort Incident diagnostic Spain PHC 2,662 Not reported Diabetes mellitus

Crutzen et al. 2021 [73] Retro. cohort Incident diagnostic The

Netherlands

PHC 138,767 01/2007-01/

2014

Diabetes mellitus

Ding et al. 2019 [74] Retro. case control Prevalent diagnostic United States PHC 97,584 1997–2017 Primary Aldosteronism

Dugan et al. 2015 [75] Retro. cohort Prognostic United States PHC 7,519 Over 9 years Obesity

Farran et al. 2019 [76] Retro. cohort Prognostic Kuwait PHC 1,837 Over 9 years Diabetes mellitus

(Continued)
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Table 2. (Continued)

Study Study design Models purpose Country Source of

data

Sample

size

Time span of

data

Health condition

Hammond et al. 2019

[77]

Retro. cohort Prognostic United States PHC 3,449 01/2008-08/

2016

Obesity

Kopitar et al. 2020 [78] Retro. case control Incident diagnostic Slovenia PHC 27,050 12/2014-09/

2017

Diabetes mellitus

Lethebe et al. 2019 [79] Retro. cohort Prevalent diagnostic Canada PHC 1,309 2008–2016 Diabetes mellitus

Looker et al. 2015 [80] Retro. case control Prognostic United

Kingdom

PHC 309 12/1998-05/

2009

Diabetic nephropathy

Metsker et al. 2020 [81] Retro. cohort Incident diagnostic Russia NR 54,252 07/2009-08/

2017

Diabetic polyneuropathy

Metzker et al. 2020 [82] Retro. cohort Incident diagnostic Russia NR 58,462 Not reported Diabetic polyneuropathy

Nagaraj et al. 2019 [83] Retro. cohort Prognostic The

Netherlands

PHC 11,887 01/2007-12/

2013

Diabetes mellitus

Pakhomov et al. 2008

[50]

Retro. cohort Prevalent diagnostic United States PHC 145 07/2004-09/

2004

Diabetic foot

Rumora et al. 2021 [84] Cross sectional Incident diagnostic Denmark PHC 97 10/2015-06/

2016

Diabetic polyneuropathy

Tseng et al. 2021 [52] Cross sectional Incident diagnostic United States PHC NR 07/2016-12/

2018

Diabetes mellitus

Wang et al. 2021 [85] Retro. cohort Incident diagnostic China PHC 1,139 2017–2019 Gestational diabetes

Williamson et al. 2020

[86]

Pros. cohort Incident diagnostic United States Linked data 866 Not reported Familial hypercholesterolemia

External Cause of Mortality

DelPozo-Banos et al.
2018 [87]

Retro. case control Incident diagnostic United

Kingdom

Linked data 54,684 2001–2015 Suicidality

Penfold et al. 2021 [88] Retro. cohort Incident diagnostic United States Linked data 256,823 Not reported Suicidality

van Mens et al. 2020

[89]

Retro. case control Incident diagnostic The

Netherlands

PHC 207,882 2017 Suicidality

Genitourinary System Diseases

Shih et al. 2020 [90] Retro. cohort Incident diagnostic Taiwan Linked data 19,270 01/2015-12/

2019

Chronic kidney disease

Zhao et al. 2019 [91] Retro. cohort Incident diagnostic United States PHC 61,740 2009–2017 Chronic kidney disease

Mental and Behavioral Diseases

Dinga et al. 2018 [92] Pros. cohort Prognostic The

Netherlands

Linked data 804 Not reported Depression

Ford et al. 2019 [93] Retro. case control Incident diagnostic United

Kingdom

PHC 93,120 2000–2012 Alzheimer’s disease

Ford et al. 2020 [94] Retro. case control Incident diagnostic United

Kingdom

PHC 95,202 2000–2012 Alzheimer’s disease

Ford et al. 2021 [95] Retro. case control Prevalent diagnostic United

Kingdom

PHC 93,426 2000–2012 Alzheimer’s disease

Fouladvand et al. 2019

[96]

Retro. cohort Prognostic United States PHC 3,265 Not reported Alzheimer’s disease

Haun et al. 2021 [97] Cross sectional Incident diagnostic Germany PHC 496 Not reported Anxiety

Jammeh et al. 2018 [98] Retro. case control Incident diagnostic United

Kingdom

PHC 3,063 06/2010-06/

2012

Alzheimer’s disease

Jin et al. 2019 [99] Retro. cohort Incident diagnostic United States PHC 923 2010–2013 Depression

Kaczmarek et al. 2019

[100]

Retro. case control Prevalent diagnostic Canada PHC 890 Not reported Post-traumatic stress disorder

Ljubic et al. 2020 [101] Retro. cohort Incident diagnostic United States PHC 2,324 Not reported Alzheimer’s disease

Mallo et al. 2020 [102] Retro. case control Prognostic Spain PHC 128 2008 Alzheimer’s disease

Mar et al. 2020 [103] Retro. case control Prevalent diagnostic Spain Linked data 4,003 Not reported Alzheimer’s disease

(Continued)
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Table 2. (Continued)

Study Study design Models purpose Country Source of

data

Sample

size

Time span of

data

Health condition

Półchłopek et al. 2020

[104]

Retro. cohort Incident diagnostic The

Netherlands

PHC 92,621 2007-12/2016 Any mental disorder

Shen et al. 2020 [105] Retro. cohort Incident diagnostic China PHC 2,299 2008–2018 Alzheimer’s disease

Suárez-Araujo et al.
2021 [106]

Retro. case control Prevalent diagnostic United States PHC 330 Not reported Alzheimer’s disease

Tsang et al. 2021 [28] Retro. cohort Prognostic United

Kingdom

PHC 59,298 1982–2015 Alzheimer’s disease

Zafari et al. 2021 [107] Retro. cohort Incident diagnostic Canada PHC 154,118 01/1995-12/

2017

Post-traumatic stress disorder

Musculoskeletal and Connective Tissue Diseases

Emir et al. 2014 [108] Retro. cohort Incident diagnostic United States PHC 587,961 2011–2012 Fibromyalgia

Jarvik et al. 2018 [109] Pros. cohort Prognostic United States PHC 3,971 03/2011-03/

2013

Back pain

Kennedy et al. 2021

[110]

Retro. case control Incident diagnostic United

Kingdom

Linked data 23,528 Over 6 years Ankylosing spondylitis

Neoplasms

Kop et al. 2016 [111] Retro. cohort Incident diagnostic The

Netherlands

PHC 260,000 Not reported Colorectal cancer

Malhotra et al. 2021

[112]

Retro. case control Incident diagnostic United

Kingdom

PHC 5,695 01/2005-06/

2009

Pancreatic cancer

Ristanoski et al. 2021

[113]

Retro. case control Incident diagnostic Australia PHC 683 2016–2017 Lung cancer

Nervous System Diseases

Cox et al. 2016 [114] Retro. case control Prevalent diagnostic United

Kingdom

PHC 3,960 01/2007-12/

2011

Post stroke spasticity

Hrabok et al. 2021

[115]

Retro. cohort Prognostic United

Kingdom

PHC 10,499 01/2000-05/

2012

Epilepsy

Kwasny et al. 2021

[116]

Retro. case control Incident diagnostic Germany PHC 3,274 01/2010-12/

2017

Progressive supranuclear palsy

Respiratory System Diseases

Afzal et al. 2013 [117] Retro. cohort Prevalent diagnostic The

Netherlands

PHC 5,032 01/2000-01/

2012

Asthma

Doyle et al. 2020 [118] Retro. case control Incident diagnostic United

Kingdom

PHC 112,784 09/2003-09/

2017

Non-tuberculous mycobacterial

lung

Kaplan et al. 2020 [32] Retro. cohort Prevalent diagnostic United States Linked data 411,563 Not reported Asthma/obstructive pulmonary

disease

Lisspers et al. 2021 [41] Retro. cohort Prognostic Sweden Linked data 29,396 01/2000-12/

2013

Asthma

Marin-Gomez et al.
2021 [42]

Retro. cohort Incident diagnostic Spain PHC 7,314 03/04/2020 COVID-19

Ställberg et al. 2021

[33]

Retro. cohort Prognostic Sweden Linked data 7,823 01/2000-12/

2013

Chronic obstructive pulmonary

disease

Stephens et al. 2020

[51]

Retro. case control Incident diagnostic United States PHC 7,278 2009–2019 Influenza

Trtica-Majnaric et al.
2010 [43]

Retro. cohort Prognostic Croatia PHC 90 2003–2004 Influenza

Zafari et al. 2022 [44] Retro. cohort Incident diagnostic Canada PHC 4,134 Not reported Chronic obstructive pulmonary

disease

https://doi.org/10.1371/journal.pone.0274276.t002
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Table 3. Overview of the included studies with the type of ML prediction models development with conduction of external validation (n = 13).

Study Study design Models purpose Country Source of

data

Sample

size

Time span of

data

Health condition

Endocrine, Metabolic, and Nutritional Diseases

Hertroijs et al. 2018 [49]a Retro. cohort Prognostic The

Netherlands

PHC 10,528 01/2006-12/

2014

Diabetes mellitus

The

Netherlands

PHC 3,337 01/2009-12/

2013

Myers et al. 2019 [39] a Retro. case

control

Incident

diagnostic

United States PHC 33,086 09/2013-08/

2016

Familial hypercholesterolemia

United States Linked data 7,805

United States Linked data 35,090

United States Linked data 8,094

Perveen et al. 2019 [34] a Retro. cohort Prognostic Canada PHC 911 08/2003-06/

2015

Diabetes mellitus

Canada PHC 1,970

Weisman et al. 2020 [119] a Retro. cohort Prevalent

diagnostic

Canada PHC 5,402 2010–2017 Diabetes mellitus

Canada Linked data 29,371

Mental and Behavioral Diseases

Amit et al. 2021 [120] a Retro. cohort Prevalent

diagnostic

United

Kingdom

PHC 24,612 2000–2010 Post-partum depression

United

Kingdom

PHC 9,193 2010–2017

United

Kingdom

PHC 34,525 2000–2017

Levy et al. 2018 [30] a Retro. cohort Incident

diagnostic

United States PHC 49 Over 9

months

Alzheimer’s disease

United States Linked data 26 Not reported

Perlis 2013 [121] a Retro. cohort Prognostic United States PHC 2,094 1999–2006 Depression

United States PHC 461

Raket et al. 2020 [35] a Retro. case

control

Incident

diagnostic

United States PHC 145,720 1990–2018 Psychosis

United States PHC 4,770

Musculoskeletal and Connective Tissue Diseases

Fernandez-Gutierrez et al.
2021 [122] a

Retro. cohort Incident

diagnostic

United

Kingdom

Linked data 19,314 2002–2012 Rheumatoid arthritis & Ankylosing

spondylitis

United

Kingdom

Linked data 1,868

Jorge et al. 2019 [123] a Retro. cohort Incident

diagnostic

United States Linked data 400 Not reported Systematic lupus erythematous

United States Linked data 173 Not reported

Zhou et al. 2017 [124] a Retro. cohort Incident

diagnostic

United

Kingdom

Linked data Not

reported

10/2013-07/

2014

Rheumatoid arthritis

United

Kingdom

Linked data 475,580 03/2009-10/

2012

Neoplasms

Kinar et al. 2016 [125] a Retro. cohort Incident

diagnostic

Israel PHC 606,403 01/2003-07/

2011

Colorectal cancer

United

Kingdom

PHC 30,674 01/2003-05/

2012

Pregnancy, Childbirth, Puerperium

Sufriyana et al. 2020 [126] a Retro. nested case

control

Incident

diagnostic

Indonesia Linked data 20,975 2015–2016 Preeclampsia

Indonesia Linked data 1,322 Not reported

Indonesia Linked data 904 Not reported

aEach row per study represents a different dataset that was used to develop and/or validate the prediction models.

https://doi.org/10.1371/journal.pone.0274276.t003
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(n = 1), and any cardiovascular event or disease (n = 7). Five respiratory health conditions

were investigated in 10 studies [32, 33, 41–44, 51, 117, 118, 132, 134, 135]. Four studies pre-

dicted mortality and hospitalization risks on top of chronic obstructive pulmonary disease

(COPD) (J40). Two studies investigated prevalent diagnosis of Asthma (J45) and its exacerba-

tion risk. Influenza was predicated in two studies [117, 124] for incident cases and prognosis.

COVID-19 (U07) incident cases were predicted within routine PHC visits in one study [42].

Other health conditions. Eight studies colorectal cancer (CRC) (C18) (n = 6), lung cancer

(C34) (n = 1), and pancreatic cancer (C25) (n = 1). Four studies addressed the same incidence

prediction model known as ColonFlag (previously MeScore) to identify CRC cases [38, 47, 48,

125]. Each study predicted incident cases within different time windows before diagnosis;

from three months to two years. Three health conditions affecting the nervous system were

addressed [114–116], which were post stroke spasticity, epilepsy specifically mortality four

years before and after its diagnosis (G40) [115], and a rare neurodegenerative disease progres-

sive supra-nuclear palsy (G23) [116]. A few studies investigated musculoskeletal and

Table 4. Overview of the included studies with the type of reporting external validation of previously developed ML prediction models (n = 12).

Study Study design Models purpose Country Source of

data

Sample

size

Time span of

data

Health condition

Circulatory System Diseases

Kostev et al. 2021 [37] Retro. cohort Incident

diagnostic

Germany PHC 11,466 01/2010-12/

2018

Stroke

Sekelj et al. 2020 [36] Retro. cohort Incident

diagnostic

United

Kingdom

PHC 604,135 01/2001-12/

2016

Atrial fibrillation

Endocrine, Metabolic, and Nutritional Diseases

Abramoff et al. 2019 [127] Pros. cohort Prevalent

diagnostic

United States PHC 819 01/2017-07/

2017

Diabetic retinopathy

Bhaskaranand et al. 2019

[128]

Retro. cohort Prevalent

diagnostic

United States PHC 1,017,001 01/2014-09/

2015

Diabetic retinopathy

González-Gonzalo et al. 2019

[129] a
Retro. case

control

Prevalent

diagnostic

Spain PHC 288 08/2011-10/

2016

Diabetic retinopathy

Sweden PHC

Denmark PHC

United States Linked data 4,613 Over 2014

United

Kingdom

Linked data

Kanagasingam et al. 2018

[130]

Pros. cohort Incident

diagnostic

Australia PHC 193 12.2016-05/

2017

Diabetic retinopathy

Verbraak et al. 2019 [46] Retro. cohort Prevalent

diagnostic

The

Netherlands

PHC 1,425 2015 Diabetic retinopathy

Neoplasms

Birks et al. 2017 [38] Retro. case

control

Incident

diagnostic

United

Kingdom

PHC 2,550,119 01/2000-04/

2015

Colorectal cancer

Hoogendoorn et al. 2016 [131] Retro. case

control

Prevalent

diagnostic

The

Netherlands

PHC 90,000 07/2006-12/

2011

Colorectal cancer

Hornbrook et al. 2017 [47] Retro. case

control

Incident

diagnostic

United States Linked data 17,095 1998–2013 Colorectal cancer

Kinar et al. 2017 [48] Pros. cohort Incident

diagnostic

Israel Linked data 112,584 07/2007-12/

2007

Colorectal cancer

Respiratory System Diseases

Morales et al. 2018 [132] Retro. cohort Prognostic United

Kingdom

PHC 2,044,733 01/2000-04/

2014

Chronic obstructive pulmonary

disease

aEach row per study represents a different dataset that was used to develop and/or validate the prediction models.

https://doi.org/10.1371/journal.pone.0274276.t004
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connective tissue disorders as well as gastrointestinal and kidney diseases [122–124, 108–110].

The musculoskeletal and connective tissue condition were back pain (M54) prognosis within

PHC settings [109], ankylosing spondylitis (M45) [110]. The gastrointestinal and kidney dis-

eases were examined in four studies, namely inflammatory bowel diseases (K50-K52), includ-

ing Crohn’s disease and ulcerative colitis [26, 71], peptic ulcers (K27)/gastroesophageal reflux

(K21), and chronic kidney disease (N18) [90, 133]. Three studies tackled suicidality (X60-X84)

[87–89]. Lastly, one study addressed preeclampsia (O14) [126].

Quality assessment

Quality was assessed using the PROBAST tool and 90.5% (n = 96 of 106) of the included stud-

ies were of high and unclear risk of bias (Fig 3). Analysis domain was the main source of bias,

because of underreporting. It was found that only a few studies (n = 11) were reported in

accordance with transparent reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) guidelines [136]. Nevertheless, studies of low risk of bias

were downgraded to be of high risk of bias due to the of lack of external validation of the pro-

posed models (n = 20). The second concern assessed using this tool was the concern of applica-

bility, which was estimated as low to moderate concern (66%). The dependence of the

predictive models on not-routine PHC data as a concern of models’ applicability within PHC

settings was raised in 34% of the studies.

Most of the included studies (n = 98 of 106, 92.5%) were published as peer-reviewed articles

in biomedical (e.g., PLOS ONE, n = 8) and technical journals (e.g., IEEE, n = 3). Eight studies

were preprint and abstracts. National research institutes and universities were the most fre-

quently reported funding support. Most of the studies reported that the funders were not

involved in the published work.

Fig 3. Percentage presentation of the results of (PROBAST) tool. The tool has two components. Component 1. Risk of bias (4 domains: Participants,

predictors, outcome, and analysis). Component 2. Concern of applicability (3 domains: Participants, predictors, and outcome).

https://doi.org/10.1371/journal.pone.0274276.g003
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Discussion

ML prediction models could have an immense potential to augment health practice and clini-

cal decision making in various health sectors. Our systematic review provides an outline of the

health conditions investigated with ML prediction models using PHC data.

Summary of findings

In 106 observational studies, we identified 42 health conditions targeted by 207 ML prediction

models, of which 42.5% were random forest and SVM. The included models used PHC data

documented over the past 40 years for a total of 22.7 million patients. Half of the studies were

conducted in the US and the UK. While the majority of the included studies (77.3%) focused

on diagnosis prediction, a significant portion also addressed predictive aspects related to com-

plications, hospitalization, and mortality. The most frequently targeted health conditions

included Alzheimer’s disease, diabetes mellitus, heart failure, colorectal cancer, and chronic

obstructive pulmonary diseases, while other conditions such as asthma, childhood obesity, and

dyspepsia received comparatively less attention. A considerable portion of the models (76.4%

of the included studies) were trained and internally validated without evaluating their

generalizability.

Results in perspective

Detection and management of health conditions, particularly those that are preventable and

controllable like diabetes mellitus, stand for the fundamental role of PHC [3]. Advances in

such technologies might enhance health care and quality of life. Noticeably, they have gained

more attention in many countries [11]. Our findings of common and rare health conditions

targeted by ML prediction models in PHC indicates increase of research interest. However,

clinical implication of such models is still limited to the theoretical good performance. Fur-

thermore, the unequal distribution of publications across countries could be related to the low

publication rate or lack of proper health data documentation systems in lower income coun-

tries, which impose further limitation to validate and implement such models.

The coding system used in health records does not universally follow the same criteria for

all diseases, posing challenges for the consistency of models’ performance [137]. Moreover, the

lack of globally standardized definitions and terminology of diseases and the wide variability

of the services provided across different health systems further limit the effectiveness of the

models [137]. For example, uncoded free-text clinical notes as well as using ‘race’ and ‘ethnic-

ity’ or ‘suicide’ and ‘suicide attempts’ to be documented as a single input can affect the predic-

tive power of the models [138]. Other drawbacks reported include underrepresentation of

healthy persons, retrospective temporal dimension of predictors, and the absence of confirma-

tory diagnostic services in PHC pose significant limitations [139, 140].

Technical biases can significantly influence the clinical utility of technologies. Models

trained on historical data without adaptation to policy changes may reinforce outdated prac-

tices, leading to erroneous results [141]. Additionally, validating models using different popu-

lations data can create a mismatch between the data or environment on which the models was

trained; this mismatch may impact the accuracy of the models’ prediction [141]. Therefore,

documenting characteristics of the health systems may highlight the discrepancies between the

data used to train and validate the models. This may improve the validation and implementa-

tion processes of the models. Models that are known for their high prediction accuracy, such

as random forest and SVM might support better health outcomes when developed using high

quality health data [139]. Additionally, the variety of the ML prediction models characteristics

provide opportunities to improve healthcare practice. Using large data documented as

PLOS ONE Machine learning prediction models in primary health care

PLOS ONE | https://doi.org/10.1371/journal.pone.0274276 September 8, 2023 14 / 25

https://doi.org/10.1371/journal.pone.0274276


electronic health records, random forest models and ensemble models such as boosting models

have the ability to handle large datasets with numerous predictors variables [140]. Artificial

neural network can also perform complex images processing that can boost the primary health

care services [140]. Furthermore, SVM and decision tree models can provide nonlinear solu-

tions, thus will support our understanding of complex and dynamic diseases for earlier health

conditions prediction [142].

Nature of diseases append further challenges. The most challenging diseases for ML pre-

diction are multifaceted long-term health conditions, such as DM, that are influenced by

combination of genetic, environmental, and lifestyle factors. The complex health conditions

further tangle the models, making it harder to identify accurate predictive patterns. Further-

more, the subjective nature of symptoms, especially symptoms related to mental health dis-

orders, pose additive challenges toward ML models accuracy. Rare diseases, if documented,

often suffer from limited data availability, leading to difficulty to train ML models effectively

[143].

Health care professionals are fundamental to the process of implementing and integrating

ML prediction models in their healthcare practice. Despite that, our review did not report out-

comes related to healthcare professionals. Significant variability of opinions on the utilization

of ML in PHC among primary health care providers hinder its acceptance. Furthermore, the

black-box nature of ML prediction models precludes the clinical interpretability of models’

outcomes. Additional workload and training are needed to implement such technology in the

routine practice. Trust, data protection, and ethical and clinical responsibility legislation are

further intractable issues that represent major obstacles toward ML prediction models imple-

mentation [5].

A considerable lack of usage of studies reporting guidelines across the included studies lead

to deficient description of the populations’ demographics and underreporting of the models’

related statistical analysis, which lead to high risk of bias of majority of studies. These short-

comings negatively affect the reproducibility of the models [144]. Navarro and colleagues

investigated this underreporting, and they claimed that the available reporting guidelines of

modelling studies might be less apposite for ML models studies [145].

Implication of results and recommendation for future contributions

This review provided a comprehensive outline of ML prediction models in PHC and raises

important considerations for future research and implementation of this technology in PHC

settings. Interdisciplinary collaboration among health care workers, developers of ML models,

and creators of digital documentation systems is required. This is especially important given

the increasing popularity of digitally connected health systems [5]. It is recommended to aug-

ment the participation of health professionals through the development process of the PHC

predictive models to critically evaluate, assess, adopt, and challenge the validation of the mod-

els within practices. This collaboration may assist ML engineers to recognize unintended nega-

tive implications of their algorithms, such as accidentally fitting of confounders, and

unintended discriminatory bias, among others, for better health outcomes [146]. Health care

systems need to provide comprehensive population health data repositories as an enabler for

medical analyses [137]. Well-designed and -documented repositories which provide represen-

tative health data for the healthy and diseased populations are needed [137, 139]. These high-

quality data repositories might provide future modelling studies with data that match the stud-

ies’ clinical research questions for more accurate prediction. Further ML prediction studies are

needed to target more health conditions using PHC data. Despite the additional burden, it is

beneficial also to continuously assess the potential significance of models, such as improved
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health outcomes, reduced medical errors, increased professional effectiveness and productiv-

ity, and enhanced patients’ quality of life [147]. It is recommended to follow reporting guide-

lines for producing valid and reproducible ML modelling studies. Developing robust

frameworks to enable the adoption and integration of ML models in the routine practice is

also essential for effective transition from conventional health care systems to digital health

[148, 149]. Sophisticated technical infrastructure and strong academic and governmental sup-

port are essential for promoting and supporting long-term and broad-reaching PHC ML-

based services [138, 150]. However, balanced arguments [151, 152] regarding the potential

benefits and limitations of ML models support better health care without overestimating or

hampering the use of such technology. It is also suggested to integrate the basic understanding

of ML concepts and techniques in education programs for health science and medical

students.

Strengths and limitations of the review

Our review was conducted following a predesigned comprehensive protocol [21]. We identi-

fied the health conditions targeted within PHC settings and identified the gaps that need to be

addressed. The main limitation of our review is the low quality of evidence of the primary evi-

dence. It is also possible due to the wide array of descriptors that exist to describe ML, our

search strategy could have missed some studies if they exclusively used terms outside of our

search string [153]. Limiting the scope of our review to clinical health conditions might have

excluded other conditions, such as domestic violence and drug abuse [3]. Guiding our work

using ICD-10 might have led to the exclusion of some health conditions, such as frailty studies

[154]. Lastly, we did not present the statistical analysis of the models’ attributes or conduct a

meta-analysis, because of the broad heterogeneity across studies. In the future, we plan to

update our review–considering the noticeable rise of ML studies within PHC, while also modi-

fying our methodology to reduce the identified limitations. It is also planned to use the specific

ML guidelines TRIPOD-AI and PROBAST-AI when published to strengthen quality and

reporting of our findings [155].

In conclusion, ML prediction models within PHC are gaining traction. Further studies

examining the use of ML in real PHC settings are needed, especially those with prospective

designs and more representative samples. Collaborating amongst multidisciplinary teams to

tackle ML in PHC will increase the confidence in models and their implementations in clinical

practice.
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104. Półchłopek O, Koning NR, Büchner FL, Crone MR, Numans ME, Hoogendoorn M. Quantitative and

temporal approach to utilising electronic medical records from general practices in mental health

PLOS ONE Machine learning prediction models in primary health care

PLOS ONE | https://doi.org/10.1371/journal.pone.0274276 September 8, 2023 22 / 25

https://doi.org/10.2196/10144
http://www.ncbi.nlm.nih.gov/pubmed/29934287
https://doi.org/10.1016/j.jad.2021.06.057
http://www.ncbi.nlm.nih.gov/pubmed/34265670
https://doi.org/10.1016/j.invent.2020.100337
http://www.ncbi.nlm.nih.gov/pubmed/32944503
https://doi.org/10.3390/ijerph17144973
http://www.ncbi.nlm.nih.gov/pubmed/32664271
https://doi.org/10.1016/j.mbs.2019.02.001
https://doi.org/10.1016/j.mbs.2019.02.001
http://www.ncbi.nlm.nih.gov/pubmed/30768948
https://doi.org/10.1038/s41398-018-0289-1
https://doi.org/10.1038/s41398-018-0289-1
http://www.ncbi.nlm.nih.gov/pubmed/30397196
https://doi.org/10.1186/s12911-019-0991-9
https://doi.org/10.1186/s12911-019-0991-9
http://www.ncbi.nlm.nih.gov/pubmed/31791325
https://doi.org/10.12688/wellcomeopenres.15903.1
https://doi.org/10.12688/wellcomeopenres.15903.1
http://www.ncbi.nlm.nih.gov/pubmed/32766457
https://doi.org/10.1136/bmjopen-2020-039248
http://www.ncbi.nlm.nih.gov/pubmed/33483436
https://doi.org/10.1002/cam4.4048
http://www.ncbi.nlm.nih.gov/pubmed/34076372
https://doi.org/10.3399/bjgpopen18X101589
http://www.ncbi.nlm.nih.gov/pubmed/30564722
https://doi.org/10.2196/13610
http://www.ncbi.nlm.nih.gov/pubmed/31573900
https://doi.org/10.1016/j.cmpb.2020.105765
http://www.ncbi.nlm.nih.gov/pubmed/33011665
https://doi.org/10.1017/S1041610219001030
http://www.ncbi.nlm.nih.gov/pubmed/31455461
https://doi.org/10.3233/JAD-200345
http://www.ncbi.nlm.nih.gov/pubmed/32741825
https://doi.org/10.1371/journal.pone.0274276


prediction. Comput Biol Med. 2020;125. https://doi.org/10.1016/j.compbiomed.2020.103973 PMID:

32916386

105. Shen X, Wang G, Rick Yiu-Cho Kwan, Choi KS. Using dual neural network architecture to detect the

risk of dementia with community health data: Algorithm development and validation study. JMIR Med

Informatics. 2020; 8: e19870. https://doi.org/10.2196/19870 PMID: 32865498
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