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Abstract

The clinical course of COVID-19 is highly variable. It is therefore essential to predict as early

and accurately as possible the severity level of the disease in a COVID-19 patient who is

admitted to the hospital. This means identifying the contributing factors of mortality and

developing an easy-to-use score that could enable a fast assessment of the mortality risk

using only information recorded at the hospitalization. A large database of adult patients

with a confirmed diagnosis of COVID-19 (n = 15,628; with 2,846 deceased) admitted to

Spanish hospitals between December 2019 and July 2020 was analyzed. By means of mul-

tiple machine learning algorithms, we developed models that could accurately predict their

mortality. We used the information about classifiers’ performance metrics and about impor-

tance and coherence among the predictors to define a mortality score that can be easily cal-

culated using a minimal number of mortality predictors and yielded accurate estimates of

the patient severity status. The optimal predictive model encompassed five predictors (age,

oxygen saturation, platelets, lactate dehydrogenase, and creatinine) and yielded a satisfac-

tory classification of survived and deceased patients (area under the curve: 0.8454 with vali-

dation set). These five predictors were additionally used to define a mortality score for

COVID-19 patients at their hospitalization. This score is not only easy to calculate but also

to interpret since it ranges from zero to eight, along with a linear increase in the mortality risk

from 0% to 80%. A simple risk score based on five commonly available clinical variables of

adult COVID-19 patients admitted to hospital is able to accurately discriminate their mortality

probability, and its interpretation is straightforward and useful.
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Introduction

The pandemic produced by the SARS-CoV-2 virus in 2020–2022 has caused to date (Aug

2022) more than 560 million infections and more than six million deaths worldwide, already

ranking in many countries as one of the three main causes of death. In Spain, one of the Euro-

pean countries most affected by this pandemic, there have been more than 13 million infec-

tions and more than 109,000 deaths [1].

The clinical course of COVID-19 is highly variable, and although most infected patients

suffer minor flu symptoms, 10%—20% of them require hospitalization, (mainly due to the

development of bilateral pneumonia, and hypoxemia), and 10–15% of these develop a serious

respiratory illness requiring mechanical ventilation or ICU admission, which increases the risk

of death [2]. Progression to severe disease appears to be linked to damages to organs other

than the respiratory tract that occur through an organic inflammatory syndrome possibly

related to massive cytokines release [3].

In the clinical setting, it is essential to predict the severity level of the disease in a COVID-

19 patient who is admitted to the hospital, both from the individual point of view and for what

concerns potential health system collapses, whose prevention requires decisions about patient

management with appropriate triage criteria. This prediction involves identifying the contrib-

uting factors of mortality, which enables the adoption of targeted strategies in high-risk

patients [4]. Most of the therapies (monoclonal antibodies, remdesivir, molnupiravir, specific

protease inhibitors, etc.) that could improve the prognosis of this disease are useful applied

early, within the first days after the appearance of symptoms. Therefore, an early identification

of the risk of death from COVID-19 can be critical.

Several groups of researchers have published observational prognostic studies on COVID-

19 patients so as to identify predictive variables of death or severity of illness. However, later

works have highlighted the need of a clearer statistical assessment on these type of studies,

ensuring the statistical coherence and the prevention of bias in finally proposed models [5, 6].

The objective of this study are i) to determine key predictors of mortality in adult patients

admitted to the hospital with a diagnosis of SARS-CoV-2 infection, ii) to obtain a predictive

model of mortality for these patients, and iii) to propose a reliable and easy-to-use mortality

risk score that can be calculated readily and straightforwardly at hospital admission.

Materials and methods

Setting and patients

The data used in this study were obtained from the RERFAR-COVID-19-SEFH Registry, a

nationwide prospective registry sponsored by the Spanish Society of Hospital Pharmacy (SEFH).

It is a big repository of anonymized COVID-19 medical records of 15,628 patients admitted to

Spanish hospitals from March 20th to July 15th, 2020. The study protocol was approved by the

Spanish Agency for Medicines and Medical Devices (AEMPS) and the Institutional Review

Boards of the 174 participating hospitals. The protocol is available online at the European Net-

work of Centers for Pharmacoepidemiology and Pharmacovigilance (ENCePP)(R) website [7].

All registered patients were diagnosed using SARS-CoV-2 testing on nasopharyngeal swabs

(real-time reverse transcriptase-polymerase chain reaction) at the time of admission. Data

were collected and managed using REDCap electronic data capture tools hosted at SEFH [8].

This huge database contained up to 256 fields for each patient from patient admission to death

or 42 days following hospital discharge. A total number of 1,036 pharmacists from 174 hospi-

tals contributed to the collection of anonymized data from the patients’ electronic medical

records.
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In order to prevent over-representation bias arising from large hospitals, a maximum of

200 patients per hospital were recommended. Patient selection was carried out by centralized

randomization up to 200 patients in each hospital.

Outcomes and variables

The primary endpoint was all-cause mortality, codified as the binary variable “mortality” with,

levels “alive” (numerically as zero) or “deceased” (numerically as one). Baseline was the date of

hospital admission. The follow-up censoring date was July 15th, 2020; if a patient had not

reached the outcome (death) by the time the data were obtained, their outcome was considered

as null. Clinical routine data from medical records available in the database included demo-

graphic variables, clinical conditions at admission, comorbidities (type and number), chronic

medication treatments, biochemical and hematological analytics, and timing of events (from

the onset of symptoms to emergency room visit, admission or microbiological diagnosis)—see

Table 1.

Statistical analysis methodology

The work aimed to build a model that, provided a set of variables recorded at the hospital

admission, could predict the mortality risk of a patient with COVID-19 during admission and

until 42 days following hospital discharge. The methodology for model training, evaluation

and comparison is illustrated in Fig 1.

The initial data set (n = 15,628 with 2,846 deceased individuals) was preprocessed to obtain

a clean Basal data set (n = 12,509). This depuration process eliminated variables and observa-

tions with excessive missing values or errors in the data. A preliminary univariate study

(Table 2 and S1 Table) was conducted to explore potential significant predictors for the mor-

tality outcome. This way, the missing data percentage could be reduced while still being cau-

tious of keeping potentially important predictors. Technical details of these steps are described

in depth in the S1 File (pp 1–6).

Afterwards, as seen in Fig 1, the basal data set was randomly split into the calibration data

set (n = 10,008) and the validation data set, (n = 2,501). The calibration data set was used to fit

Table 1. Blocks of variables included in the data set registered at the admission event of a patient with COVID-19.

Block Number of

variables

Variable Names

Demographic variables 2 Age, Sex.

Clinical variables at admission 6 Fever within previous 24h (Fever 24), Conscience, Respiratory frequency > 24 breaths per minute (Rf 24),

Systolic Blood Pressure < 90 mmHg within the previous 24 hours (SBP 90), Affected quadrants, Oxygen

saturation.

Comorbidities 11 High Blood Pressure (HBP), Diabetes Mellitus (DM), Chronic Obstructive Pulmonary Disease (COPD),

Asthma, Cardiac Failure, Ischemic Heart Disease (IHD), Kidney failure, Cirrhosis, Neurological precedents,

Neoplasia, Number of comorbidities

Pharmacological treatments for

chronic conditions

4 Previous treatment with ACEI, ARB, Previous treatment with NSAID, Previous treatment with montelukast.

Analytics at admission 12 Creatinine, Lactate dehydrogenase (LDH), Leukocytes, Neutrophils, Lymphocytes, Platelets, C-reactive

protein (CRP), Hemoglobin, Procalcitonin (PCT), Neutrophils to Lymphocytes Ratio (NLR), Lymphocytes

to CRP Ratio (LCR), Platelets to Lymphocytes Ratio (PLR).

Admission event variables 3 Time between the initial symptoms and the arrival to emergency room (Time init—urg), Time between the

initial symptoms and the hospital admission (Time init—admission), Time between the initial symptoms

and the microbiological confirmation (Time init—micro).

ACEI—angiotensin converting enzyme inhibitors; ARB—Angiotensin II receptor blockers; NSAID—Non-steroidal anti-inflammatory drugs.

https://doi.org/10.1371/journal.pone.0274171.t001
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classifiers and to build a missing data imputation model using an adaptation of the Trimmed

Scores Regression method (S1 File p 6). The imputed Calibration data set was repeatedly (100

repetitions) split in a training subset and a test subset. Four supervised algorithmic techniques

were used as classifiers: Logistic Regression (LR) [9], Partial Least Squares Discriminant Anal-

ysis (PLSDA) [10], kernel-PLSDA (kPLSDA) [11], and Random Forest (RF) [12].

In each repetition of the calibration, all classifiers were trained and then used to predict the

mortality of the test subset. Next, all classifiers were compared in three different types of

assessment:

• Assessment of the classification performance. S4 Table describes the metrics used to evaluate

the performance of the models for the classification of survival and deceased individuals.

• Assessment of the importance and coherence of the measured variables:

1. The importance coefficient of each variable was calculated over the 100 repetitions.

These coefficients were calculated differently for each classification algorithm. A more

detailed explanation about the calculation of these coefficients for each model can be

found in S1 File (p 6). A set of variables’ importance coefficients was obtained, informing

about both the magnitude of the predictor’s importance and the sign of its relation to the

mortality: positive coefficients are interpreted as risk factors and negative coefficients

denote protection factors against the mortality by COVID-19.

2. Using the predictor importance coefficients, all the 38 predictors were ranked according to

the magnitudes of their corresponding coefficients. The coherence of the sign for each

coefficient was also calculated as the percentage of folds in which the sign was kept the

same. Predictors with a sign coherence below 75%, were eliminated from subsequent steps.

3. Then, an incremental strategy was followed using the set of most important and coher-

ent predictors. It consisted in the sequential construction of classification models

encompassing a progressively larger number of predictors. The predictors were sorted

according to the previous importance ranking. Thus, the performance of the model was

tracked along the inclusion of gradually less important predictors. This approach

enabled the identification of the minimal set of the most important variables recorded at

hospital admission that were linked to COVID-19 mortality.

Fig 1. Flux diagram of the data used for the mortality prediction model building and validation. Data were stored

in the REDCap storing service. The initial database (n = 15,628) was preprocessed and split into a calibration

(n = 10,008) and validation (n = 2,501) subsets, without replacement. The calibration data set was used to set the

optimal hyperparameters of the classifiers. The final model was chosen assessing the performance with the validation

data set. LR = Logistic Regression. PLSDA = Partial Least Squares—Discriminant Analysis. kPLSDA = kernel PLSDA.

RF = Random Forest.

https://doi.org/10.1371/journal.pone.0274171.g001
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• Assessment of the quality of risk calibration. An assessment of the quality of the prediction

risk was also performed as proposed in [4]. The underlying idea is that the assigned label

(alive or deceased) is chosen according to the predicted probability of pertaining to the cor-

responding class, i.e., the risk of mortality in this case. This is critical in medical problems

where, in fact, decisions may be based on the associated risk, and not directly on the final

label. With this purpose, a calibration curve is fitted between the predicted risk (x-axis) and

the observed proportion of deceased patients for that level of predicted risk (y-axis). In our

case, we divided the predicted risk (ranging from zero to one), into groups separated by a

Table 2. Characteristics of patients in the complete data set.

Complete data set

Total; n = 1400 Alive; n = 1243 Deceased; n = 157 Odds ratio pvalue

Variable m(s.d.) or n(%) m(s.d.) or n(%) m(s.d.) or n(%) (95%C.I.)

Age, years 63.82 (14.73) 62.44 (14.44) 74.75 (12.27) 1.07 (1.06;1.09) <0.0001

Oxygen saturation, % 92.9 (5.5) 93.36 (5.1) 89.27 (7.01) 0.91 (0.88;0.93) <0.0001

Platelets, 103/mm3 208.63 (87.55) 210.14 (88) 196.66 (83.21) 1 (1;1) 0.07

LDH, U/L 375.17 (193.31) 362.29 (178.78) 477.14 (262.37) 1 (1;1) <0.0001

Creatinine, mg/dl 1.01 (0.64) 0.97 (0.57) 1.34 (1.01) 1.73 (1.52;1.93) <0.0001

Lymphocytes, 103/mm3 1.68 (4.18) 1.73 (4.36) 1.3 (2.27) 0.95 (0.86;1.03) 0.21

Leukocytes, 103/mm3 7.34 (5.21) 7.17 (5.14) 8.65 (5.59) 1.04 (1.01;1.06) 0.006

Hemoglobin, 103/mm3 13.89 (1.95) 13.92 (1.94) 13.6 (2) 0.92 (0.83;1) 0.047

D dimer, 103/mm3 1,233.45 (2,488.68) 1,092.22 (2,017.04) 2,351.62 (4,662.09) 1 (1;1) <0.0001

Time init—admission, days 7.14 (4.83) 7.27 (4.64) 6.08 (6.07) 0.94 (0.89;0.98) 0.0028

N. of comorbidities 1.22 (1.23) 1.13 (1.2) 1.92 (1.31) 1.57 (1.44;1.69) <0.0001

Altered conscience 6.09 (5.62;6.55) <0.0001

No 1,312 (93.71%) 1,189 (95.66%) 123 (78.34%)

Yes 88 (6.29%) 54 (4.34%) 34 (21.66%)

Respiratory frequency> 24 bpm 2.58 (2.24;2.92) <0.0001

No 1,028 (73.43%) 942 (75.78%) 86 (54.78%)

Yes 372 (26.57%) 301 (24.22%) 71 (45.22%)

Cardiac failure 2.15 (1.52;2.79) 0.018

No 1,337 (95.5%) 1,193 (95.98%) 144 (91.72%)

Yes 63 (4.5%) 50 (4.02%) 13 (8.28%)

Neurological precedents 2.46 (2.05;2.86) <0.0001

No 1,219 (87.07%) 1,100 (88.5%) 119 (75.8%)

Yes 181 (12.93%) 143 (11.5%) 38 (24.2%)

Neoplasia 1.31 (0.7;1.92) 0.38

No 1,307 (93.36%) 1,163 (93.56%) 144 (91.72%)

Yes 93 (6.64%) 80 (6.44%) 13 (8.28%)

SBP< 90 4.09 (3.61;4.58) <0.0001

No 1,313 (93.79%) 1,183 (95.17%) 130 (82.8%)

Yes 87 (6.21%) 60 (4.83%) 27 (17.2%)

Kidney failure 2.8 (2.28;3.32) 0.00012

No 1,314 (93.86%) 1,178 (94.77%) 136 (86.62%)

Yes 86 (6.14%) 65 (5.23%) 21 (13.38%)

Summary of the univariate tests based on the odds-ratio yielded by univariate logistic regression models built between every predictor and the mortality response. p-

values in bold are < 1.10−6. For each numerical predictor, the mean and the standard deviation (in parentheses) values are indicated. For each categorical predictor, the

number, and the percentage (in parentheses) of cases are reported.

https://doi.org/10.1371/journal.pone.0274171.t002
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step of 0.1. The perfect risk calibration would have a zero intercept term and a slope of one,

having a death rate of 10% for the group of patients exhibiting a mortality risk of 0.1, a death

rate of 20% for the group of patients exhibiting a mortality risk of 0.2, and so on. This way,

progressively higher predicted risk values would be associated to higher mortality propor-

tions within the studied sample.

The optimal model was selected considering the model that, with the minimum number of

most important predictors, yielded the best classification performance and the best calibration

of the predicted risk [13]. Finally, the information about the optimal model was used to config-

ure the mortality score model. The idea of this procedure is to try to replicate a simplified clas-

sifier which is not based on a complicated and device-based calculus.

All data sets are accessible in ZENODO [14]. The statistical analysis was executed using

MATLAB (2020b), R 4.0.2, and Python 3.8.3.

Results

The first part of this section reports a descriptive analysis. Secondly, the results obtained by the

four classifiers to predict the mortality are presented and compared. Finally, the confection of

the mortality score based on the structure of the best model, is explained.

An initial univariate analysis was done to identify the variables that could be potentially

important in further steps of the study. Such analysis was done, first, with the data set of com-

plete observations. Table 2 shows the results only for those predictors that were found to be

the most relevant a posteriori, based on the results obtained by the four classification tech-

niques exploited in this study. S1 Table shows the results for non-relevant predictors from

Table 1 that are not included in Table 2. Moreover, univariate analysis were also carried out on

the imputed Calibration and Validation data sets, to check the coherence of the results from

Table 2. S2 and S3 Tables contain the results for the Calibration and the Validation data sets,

respectively, considering the variables from Table 2, and showing coherence between all three

data sets.

According to the preliminary analysis shown in Table 2, deceased patients presented higher

levels of the following risk factors at hospital admission: age, creatinine levels, SBP under 90

and respiratory frequency above 24 bpm. Deceased patients also exhibited a higher proportion

of altered conscience. Besides, the number of comorbidities (�2) was also significantly higher

in deceased individuals, with a higher prevalence of cardiac failure, neurological antecedents,

neoplasia, or kidney failure. On the contrary, deceased patients presented significantly lower

values for the following protective factors: oxygen saturation, platelets and lymphocytes at hos-

pital admission.

Next, we evaluated the different classification models for predicting COVID-19 outcome by

using the framework of repeated training and testing. The best performance was achieved by

the Random Forest classifier, with a median AUC of 0.8648, but results were very similar for

all the methods when including all predictors (S1 Fig and S5 Table). However, as reducing the

number of features eases the practical implementation of a classifier, we implemented a for-

ward step-wise approach to select the minimum number of predictors for the final model,

while maintaining the trade-off between performance and usability.

Using the predictor importance coefficients, all the 38 predictors were ranked according to

the values of their corresponding coefficients. Fig 2 displays the median predictor coefficients

over the 100 re-sampling folds. Color intensity indicates the strength of the relation between

each predictor and the mortality risk. Positive coefficients are represented in red and denote

risk factors (positively correlated with the mortality risk), while negative coefficients are

graphed in blue and connote protection factors against mortality by COVID-19.
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The coefficient sign consistency over the aforementioned 100 folds, instead can be inferred

from Fig 3, where each bar indicates the percentage of times the corresponding coefficient was

found to be positive or negative. Low consistency points out unclear relationships with the

mortality risk that may simply arise from the adopted re-sampling scheme and might not be

necessarily substantiated by biomedical rationales.

Based on both the magnitude of the coefficients and the consistency of their sign, a subset

of 18 features showing high median coefficient (absolute) values and high sign consistency

(above 75%), was selected. Fig 4 shows the absolute value of their median coefficients, sorted

in descending order.

The ranking of the most important features was finally used for the sake of model valida-

tion. To this end, an incremental strategy was implemented. A first model to predict mortality

Fig 2. Importance metrics for all predictors. Median values (over the 100 re-sampling folds) of the 38 predictor coefficients sorted by type of

data blocks (demographic variables, clinical variables at admission, comorbidities, pharmacological treatments for chronic conditions,

analytics at admission and information about the admission event).

https://doi.org/10.1371/journal.pone.0274171.g002

Fig 3. Coherence metrics for all predictors and classifiers. Bar charts representing the percentage of folds in which each predictor was found

to show a positive (red) or a negative coefficient (blue) for the LR model (A), the PLSDA model (B), the kPLSDA model (C), and the RF model

(D). Bars with high color consistency indicate highly consistent relationships between predictors and mortality.

https://doi.org/10.1371/journal.pone.0274171.g003
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was fitted using only the most important feature (age) and its corresponding classification met-

rics were obtained. Afterwards, the second most predictive feature (oxygen saturation), was

additionally considered for model calibration and the resulting classification metrics were

stored. This was iterated for all 18 features from Fig 5.

Fig 4. Importance of most relevant variables. Ranking (in descending order) of the 18 variables selected according to their importance and to the

consistency of their relationship with the mortality risk over the 100 re-sampling iterations.

https://doi.org/10.1371/journal.pone.0274171.g004

Fig 5. Assessment on the quality of the risk calibration. Intercept and slope of the risk calibration curve obtained for each incremental model with LR

(A), PLSDA (B), kPLSDA (C) and RF (D).

https://doi.org/10.1371/journal.pone.0274171.g005
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The results obtained when the trained models were used to classify the validation data set,

were assessed from two different perspectives. In first place, the metrics from S4 Table were

calculated to report the overall classification performance. The results (S2 Fig) showed that sat-

isfactory classification metrics were achieved by means of all the employed classifiers. The LR,

RF and kPLSDA classifiers yielded an AUC around 0.85 with the final validation data set.

Besides, their evolution with the number of important variables modeled seemed to be in

strong agreement. This coherence was a good indicator of the overall classification quality, but

it was important to account for another criterion for the determination of the best classifier:

the quality of the prediction risk.

A second assessment on the quality of the predicted risk completed the performance report.

This type of analysis is especially relevant for medical classification models, given the direct

implications that an over (or under) estimation of the mortality risk can have in the medical

decision-making. With this purpose a calibration curve was fitted using the information about

the predicted risk (x-axis) and the observed proportion of deceased patients among those

within that group of predicted risk (y-axis) [13]. Fig 5 shows the estimated intercept and slope

of the risk calibration curve fitted for each incremental model and classification technique.

Confidence intervals were calculated assuming a confidence level of 95% and using the stan-

dard error of the estimated coefficients.

Fig 6 shows the calibrated risk prediction curve for each classification technique at its

optimal variable number setting. These optimal calibration curves are the closest ones to the

dashed diagonal line. Curves located in regions aside the diagonal would indicate an underesti-

mation of the mortality risk (leading to under-treatment) or an overestimation (leading to

over-treatment).

In general, all the algorithms had a similar performance, although there were differences in

terms of the optimal number of variables. Six variables (age, oxygen saturation, platelets, LDH,

creatinine, and lymphocytes) were selected for LR and kernel PLSDA. The PLSDA model

reached an optimal performance with ten predictors (from age to rf-24) and RF with five pre-

dictors (from age to creatinine). Consequently, to the light of the results, Random Forest was

selected as the best classifier, showing slightly better results and with the minimum number of

Fig 6. Optimal calibration risk prediction curves. Observed mortality (%) vs. predicted risk of mortality for all the classification

algorithms under study at their respective optimal variable number setting. Predicted risk values were rounded to the first decimal

digit, i.e., predicted value 0.1 refers to predictions between 0.05 and 0.15.

https://doi.org/10.1371/journal.pone.0274171.g006
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predictors. Fig 7 shows violin plots with the distribution of the five most important variables

on this ranking for the deceased and the alive patients from the calibration data set.

The results yielded by the RF classification model suggested that five predictors encoded

enough information to accurately predict the mortality risk of a given patient. These five pre-

dictors were then explored in the attempt of devising a simplified classifier based on them. The

Fig 7. Marginal distributions of predictors used by the RF. Violin plots (blue: alive patients; red: deceased patients) for age (A), oxygen

saturation (B), platelets (C), LDH (D), and creatinine (E).

https://doi.org/10.1371/journal.pone.0274171.g007
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detailed procedure and the results obtained during intermediate steps of the mortality score

confection can be found in the S1 File (pp 7–9).

Initially, the marginal distributions of age, oxygen saturation, platelets, LDH and creatinine

for each class (“alive” and “deceased”), were inspected (Fig 8). Values of interest (such as the

intersection points between the group distributions of each variable and the percentiles delim-

iting such distributions) were chosen as thresholds for each predictor.

Moreover, the importance of each variable according to the model was accounted as well to

develop a realistic set of scoring rules (Fig 9). The final mortality score is a variable ranging

from zero to eight, increasing with the risk of mortality as can be observed in Fig 10.

Fig 8. Histograms with marginal distributions of final set of predictors. Age, oxygen saturation, platelets, LDH and creatinine

distribution within alive (blue) and deceased (red) patients.

https://doi.org/10.1371/journal.pone.0274171.g008

Fig 9. Final set of scoring rules. Formulation of the nine-levels mortality score for COVID-19 patients at their

hospital admission.

https://doi.org/10.1371/journal.pone.0274171.g009

PLOS ONE Machine-learning-derived mortality score for COVID-19 hospitalized patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0274171 September 22, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0274171.g008
https://doi.org/10.1371/journal.pone.0274171.g009
https://doi.org/10.1371/journal.pone.0274171


This information is displayed as well in the S1 File (p 9) and in S6 Table which shows the per-

centage of patients belonging to the two considered classes for each level of the mortality score.

Discussion

In this work, we applied machine learning and multivariate statistical classification techniques

to data prospectively collected from COVID-19 hospitalized patients in all regions of Spain to

build a model for the prediction of their mortality risk at their hospitalization. The final model

encompassed five predictors (age, oxygen saturation, creatinine, platelets, and LDH) and was

trained based on the Random Forest algorithm. It returned in external validation (when patients

not considered for model training and optimization were to be assessed) an AUC of 0.8454.

Virtually all published studies on COVID-19 populations agree that both age and oxygen

saturation at hospital admission are closely related to the likelihood of death [4, 15–24].

Besides, COVID-19 mortality is strongly linked to an specific inflammation process and a

coagulation disorder. There are patients who develop a severe inflammatory syndrome, which

results in uncontrolled activation of the immune system and a massive release of pro-inflam-

matory cytokines, which translates into an increase in acute-phase reactants such as C-reactive

protein, interleukin-6, ferritin, cell destruction markers such as LDH, and an increase in pro-

inflammatory cells such as neutrophils [15, 17, 21, 22, 25, 26].

Another complication that results in high mortality in these patients is coagulation disor-

ders. COVID-19 results in a systemic hypercoagulation state, producing pulmonary thrombo-

embolisms, ischemic strokes, and other disorders, and a markedly large number patients

experience severe complications. This complication can be assessed on the basis of 2 laboratory

parameters: D-Dimer and platelets [16, 18]. Most prognostic studies also identified creatinine

or urea as important factors related to mortality risk. [4, 15–24, 27]. Our data showed that the

laboratory parameter that most influences mortality in relation to renal function is creatinine,

which indicates whether renal filtering is effective.

Model calibration was carried out exploiting exclusively information that can be easily

recorded at the admission to the hospital of COVID-19 patients. However, even if this

Fig 10. Observed mortality vs. score curves. Observed mortality at each level of the score for the Calibration data set and for the Validation

data set.

https://doi.org/10.1371/journal.pone.0274171.g010
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information is available at the early stages of their hospitalization, we also tried to reduce as

much as possible the number of variables to obtain an accurate mortality risk prediction with-

out compromising its quality and performance.

A clear strength of our work is that the original database contains routinely obtained clini-

cal data easily available at the hospital admission of this kind of patients. Age, oxygen satura-

tion, platelets, LDH, and creatinine, have been previously identified among the core variables

related to both morality and severe disease development after SARS-CoV-2 infection in multi-

ple epidemiological studies. These five variables were also found to be the most predictive fea-

tures in our study, independently on the classification algorithm utilized. In practical terms,

this means that, for a given patient, just by recording the values for these five clinical parame-

ters, predictive models could accurately estimate his/her mortality risk. All these features are

coherent with the information already available about this disease [4, 22, 23]. Our results

showed that the probability of mortality for a COVID-19 depends on variables of different

nature, and not exclusively on those associated to respiratory functions. In addition to making

models more parsimonious, reducing the number of predictors to a minimum set that is easy

to measure also enables an easy implementation of this predictive strategy for its clinical use

and for further validation with other data sets.

Another strength of this analytical approach lies in the sample size, a prospectively recruited

cohort of 12,509 patients, including more than 2,000 deceased individuals. The sample size of

previous studies on mortality among COVID-19 inpatients performed at Spanish hospitals

ranged between 2,000 and 4,000 individuals, [18, 28] with 6.5% and 28.0% of mortality, respec-

tively. Conversely, other studies with a larger sample size could not achieve proper predictive

models [29]. Besides, the huge number of articles submitted during the pandemic in 2020,

forced editorial offices (even of well-known biomedical journals) to change their policies due

to scandals and polemics related to the reliability of the published data [30].

Furthermore, a systematic approach was implemented to compare statistical and machine

learning algorithms not only in terms of classification performance but also in terms of model

inference on the predictors. This is a very powerful (but barely used) approach that enables a

more comprehensive assessment in terms of inferential coherence among different methodo-

logical strategies, which otherwise would be simply exploited as black-box techniques. Conse-

quently, we consider that this additional validation increases the reliability of our results.

Our study showed, though, several limitations. This model was fitted in one of the worst

moments of the pandemic. The patients included in this study were hospitalized during the

first period of the pandemic, so the clinical characteristics of patients in our country today

could be different [31]. Moreover, now, in 2022, patients could have different outcomes given

the better knowledge of COVID-19 disease and the coverage of the vaccination campaign.

However, in many countries—especially less developed ones—the situation may differ greatly

from the scenario our current scenario here, and our findings may still be clinically useful

there. In any case, our final prediction model should, indeed, be tested with an updated and

more recent picture of the COVID-19 situation. Although it is not clear if the predictors of

mortality have changed, new conditions may overall result in lower mortality rates also for

patients with a high-risk profile. Such an assessment constitutes one of the main objectives of

our future research work.

In conclusion, we used several statistical and machine learning approaches to obtain a data-

driven model based on variables that could be easily acquired at COVID-19 patients’ admis-

sion to the hospital for the determination of their mortality risk. This resulted in a final model

based on five predictors (age, oxygen saturation, platelets, LDH, and creatinine) that yielded a

highly satisfactory classification performance (with an AUC of 0.8454). The interpretation of

this model and the investigation of the relationships between these five predictors and the
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mortality risk contributed to the definition of a mortality score for COVID-19 patients at their

admission that can be easily calculated and easily interpreted (it linearly increases along with

the mortality risk). Once it will be validated with a prospective cohort representative of the lat-

est COVID-19 management protocols, the mortality prediction model could be used as a pow-

erful tool for the early recognition of the gravity and priority needs of SARS-Cov-2-infected

hospitalized patients.

Supporting information

S1 Fig. Classification metrics (in calibration—n = 10,008; 38 predictors) for the four

machine learning algorithms under study. Bars indicate the median value of each coefficient,

and intervals indicate the 2.5% and 97.5% percentiles, Numerical values are in S5 Table.

(PDF)

S2 Fig. Classification metrics (in validation) yielded by models encompassing sequentially

higher numbers of important variables. Details on the incremental computational strategy

adopted here are given in “Statistical analysis methodology” in the Section Methods. The term

TNR stands for True Negative Rate, TPR for True Positive Rate, Acc. for Accuracy, MCC for

Matthew’s Correlation Coefficient and AUC for Area Under the Curve. Mathematical expres-

sions to compute each metric are provided in S4 Table.

(PDF)

S1 File. Supplementary methods appendix. Contains technical details about different steps

addressed in separate sections: 1) Missing data study; 2) Outlier assessment; 3) Preliminary

univariate tests; 4) Database partition; 5) Missing data imputation; 6) Metrics for model com-

parison; 7) Mortality score calculation. It contains its own figures and references.

(PDF)

S1 Table. Characteristics of patients in the complete observations data set. Summary of the

univariate tests based on the odds ratio yielded by univariate logistic regression models built

between every predictor and the mortality response. p-values in bold are< 10−6. For each

numerical predictor, the mean, and the standard deviation (in parentheses) values are indi-

cated. For each categorical predictor, the number, and the percentage (in parentheses) of cases

are reported. All variables from Table 1 not appearing in Table 2 are included, with a summary

of the univariate tests performed on the complete data set.

(PDF)

S2 Table. Characteristics of patients in the calibration data set. Summary of the univariate

tests based on the odds ratio yielded by univariate logistic regression models built between

every predictor and the mortality response. p-values in bold are< 10−6. For each numerical

predictor, the mean, and the standard deviation (in parentheses) values are indicated. For each

categorical predictor, the number, and the percentage (in parentheses) of cases are reported.

All variables from Table 2 are included, with a summary of the univariate tests performed on

the calibration data set.

(PDF)

S3 Table. Characteristics of patients in the validation data set. Summary of the univariate

tests based on the odds ratio yielded by univariate logistic regression models built between

every predictor and the mortality response. p-values in bold are< 10−6. For each numerical

predictor, the mean, and the standard deviation (in parentheses) values are indicated. For each

categorical predictor, the number, and the percentage (in parentheses) of cases are reported.

All variables from Table 2 are included, with a summary of the univariate tests performed on
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the validation data set.
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S4 Table. Metrics used to evaluate the performance of each classification algorithm. The

term TP stands for True Positives (TPR for True Positive Rate), TN for True Negatives (TNR

for True Negative Rate), FP for False Positives, FN for False Negatives.

(PDF)

S5 Table. Evaluation metrics from S4 Table for the calibration data set obtained over the

100 folds of training and testing with the calibration data set. The same values are illustrated

in S1 Fig. The classifier LR refers to Logistic Regression, PLS-DA to Partial Least Squares—

Discriminant Analysis, KPLSDA to Kernel PLS-DA and RF to Random Forest. The parame-

ters correspond to the 2.5% percentile (P2.5), to the 50% percentile (Median) and to the 97.5%

percentile (P97.5).

(PDF)

S6 Table. Percentage of observed mortality at each level of the score for the calibration and

validation data sets.
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