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Abstract

Background

A wealth of human and experimental studies document a causal and aggravating role of iron

deficiency in neurodevelopmental disorders. While pre-, peri-, and early postnatal iron defi-

ciency sets the stage for the risk of developing neurodevelopmental disorders, iron defi-

ciency acquired at later ages aggravates pre-existing neurodevelopmental disorders. Yet,

the association of iron deficiency and neurodevelopmental disorders in childhood and ado-

lescence has not yet been explored comprehensively.

In this scoping review, we investigate 1) the association of iron deficiency in children and

adolescents with the most frequent neurodevelopmental disorders, ADHD, ASD, and

FASD, and 2) whether iron supplementation improves outcomes in these disorders.

Method

Scoping review of studies published between 1994 and 2021 using “iron deficiency / iron

deficiency anemia” AND “ADHD” OR “autism” OR “FASD” in four biomedical databases.

The main inclusion criterion was that articles needed to have quantitative determination of

iron status at any postnatal age with primary iron markers such as serum ferritin being

reported in association with ADHD, ASD, or FASD.

Results

For ADHD, 22/30 studies and 4/4 systematic reviews showed an association of ADHD

occurrence or severity with iron deficiency; 6/6 treatment studies including 2 randomized

controlled trials demonstrated positive effects of iron supplementation. For ASD, 3/6 studies

showed an association with iron deficiency, while 3/6 and 1/1 systematic literature review

did not; 4 studies showed a variety of prevalence rates of iron deficiency in ASD populations;
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1 randomized controlled trial found no positive effect of iron supplementation on behavioural

symptoms of ASD. For FASD, 2/2 studies showed an association of iron deficiency with

growth retardation in infants and children with prenatal alcohol exposure.

Conclusion

Evidence in favor of screening for iron deficiency and using iron supplementation for pediat-

ric neurodevelopmental disorders comes primarily from ADHD studies and needs to be fur-

ther investigated for ASD and FASD. Further analysis of study methodologies employed

and populations investigated is needed to compare studies against each other and further

substantiate the evidence created.

Introduction

Neurodevelopmental disorders (NDDs) are a leading cause of morbidity in children, charac-

terized by impairments in cognitive, adaptive and social functioning, and resulting in large

burdens to patients, caregivers, and society [1]. Attention deficit hyperactivity disorder

(ADHD), autism spectrum disorder (ASD), and fetal alcohol spectrum disorder (FASD) are

currently the most frequently diagnosed NDDs. Notably, ADHD and ASD are increasingly

seen in high-income countries such as Canada and the United States [2].

ADHD is defined as “impairing levels of inattention, disorganization, and/or hyperactivity-

impulsivity” and is prevalent in up to 7% of children and adolescents [3]. ASD is characterized

by persistent deficits in social and emotional interaction across multiple contexts, hampering

normal development in young children and frequently progressing to mental health condi-

tions in adulthood. The prevalence of ASD is 2.5% among US children [4]. FASD is a spectrum

of conditions related to prenatal alcohol exposure, which results in physical, behavioural, and

cognitive impairments. The global prevalence of FASD among children and youth in the gen-

eral population is estimated to be 0.8%, but ranges significantly between countries and certain

subpopulations with peak prevalence rates between 5 to 11% [5].

Iron deficiency (ID) has been positively associated with these NDDs with the common

underlying pathophysiology being derived from iron’s central role in the brain as a cofactor in

neurotransmitter (dopamine and serotonin) synthesis, as well as in ATP production and mye-

lination [6]. The impact of ID on the development and severity of NDDs depends on the devel-

opmental stage during which the brain is exposed to iron depletion. Intrauterine / maternal

and early postnatal ID is likely to impact the development of brain structures, resulting in irre-

versible neurocognitive and behavioural deficits as the end point of the pathophysiological cas-

cade [7]. The hippocampus appears particularly vulnerable, resulting in persistent

hippocampus-based cognitive deficits in adulthood despite iron supplementation [8, 9]. More-

over, a recent study found that iron deficiency anemia (IDA) diagnosed earlier in pregnancy

was associated with an increased risk of the development of ASD, ADHD, and particularly ID

in offspring [10].

There is also evidence that postnatal ID may aggravate pre-existing NDDs. For ADHD,

studies have shown that ID plays a role in the occurrence and the severity of hyperactive day

and nighttime symptomology [11–14], and that iron supplementation is beneficial in the treat-

ment of affected children [15]. Children with ASD are at particular risk for ID due to co-occur-

ring selective food intake, food sensitivities, and gastrointestinal problems. Indeed, studies in

children with ASD suggest a high prevalence of ID [16, 17] and a positive effect of iron
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supplementation on sleep, one of the most debilitating morbidities in patients on the spectrum

[18]. For FASD, experimental studies suggest a role of brain specific ID in FASD modulated by

iron status of the dam [19], and observational studies support the similarities of behavioural

phenotypes exhibiting challenging day and nighttime behaviours, including sleep [20].

According to the World Health Organization, ID is the most common and widespread

micronutrient deficiency worldwide, affecting more than 30% of the world’s population [21,

22]. However, despite all of the evidence outlined above, ID is not routinely investigated in

patients with NDDs, including ADHD, ASD, and FASD, and iron supplementation has not

been considered as a potentially effective treatment strategy.

We performed a scoping review with a twofold aim: first to assess existing evidence of an

etiologic relationship between postnatal ID and prevalence and severity of ADHD, ASD, and

FASD; second to determine effects of iron supplementation on outcomes of these NDDs. Fur-

thermore, we were interested in the types of iron markers used for the identification of ID.

Methods

Literature search

We performed a literature search in the electronic databases MEDLINE (OVID), CINAHL

(EBSCOhost), PsycINFO (EBSCOhost), and EMBASE (OVID) from 1994 to 2017, using the

search terms “iron deficiency an(a)emia” AND “ADHD” OR “autism” OR “FASD” (Table 1),

on February 3rd, 2017.

We updated our review in July 2019 by performing a literature search in the electronic data-

bases MEDLINE (OVID), CINAHL (EBSCOhost), PsycINFO (EBSCOhost), and EMBASE

(OVID) from January 1st 2016 to July 20th, 2019 using the same search terms “iron deficiency

anemia” AND “ADHD” OR “autism” OR “FASD”. In order to optimize the yield for treatment

studies, we amended these original search terms by “iron supplementation” OR “iron substitu-

tion” OR iron replacement” OR “iron fortification” OR “micronutrient”, but no additional ref-

erences were identified. We repeated the entire search in August, 2020, and again in May, 2021

to provide the most updated information by the time of acceptance for publication. Here we

have combined the results of all these searches.

Table 1. Detailed search strategies used in each database.

Medline (OVID) Embase (OVID) CINAHL (EBSCOhost) PsycINFO (EBSCOhost)

Iron Anemia, Iron deficiency/ OR iron

metabolism disorders/ OR iron/bl

[blood] OR iron/df [deficiency] OR exp

ferritins/bl, df [blood, deficiency]

exp iron deficiency anemia/ OR

(iron adj2 deficiency) OR (iron adj2

deficient)

MH “Anemia, Iron Deficiency”

OR MH “ferritin/BL/DF” OR

MH ‘Iron/DF” OR anemia OR

anaemia OR iron deficiency

DE “iron” OR DE “anemia” OR iron

status OR ferritin OR ((anemia OR

anaemia) AND iron deficiency)

ADHD exp “Attention deficit and disruptive

behaviour disorders”/ attention deficit

OR ADHD OR

attention deficit disorder/ OR

(attention deficit or ADHD)

MH “attention deficit

hyperactivity disorder” OR

adhd OR attention deficit

DE “Attention deficit disorder with

hyperactivity” OR attention deficit OR

ADHD

ASD exp Child Development Disorders,

Pervasive/ OR autism OR autistic OR

ASD

exp autism/ OR (autism or autistic or

ASD)

MH “autistic disorder” OR

autism OR autistic OR asd OR

autism spectrum disorder OR

DE “Autism spectrum disorders” OR

DE autism OR autistic OR ASD

FASD Prenatal exposure, delayed effects/

OR fetal alcohol spectrum disorders/

OR prenatal alcohol exposure OR PAE

OR fetal alcohol syndrome OR foetal

alcohol syndrome OR fetal alcohol

spectrum OR foetal alcohol spectrum

OR FASD

fetal alcohol syndrome/ OR prenatal

alcohol exposure OR PAE OR fetal

alcohol syndrome OR foetal alcohol

syndrome OR fetal alcohol spectrum

OR foetal alcohol spectrum OR FASD

MH “Fetal alcohol syndrome”

OR ((fetal OR foetal) AND

alcohol) OR prenatal alcohol

exposure OR PAE OR FASD

DE “fetal alcohol syndrome” OR

prenatal alcohol exposure OR PAE OR

fetal alcohol syndrome OR foetal alcohol

syndrome OR fetal alcohol spectrum OR

foetal alcohol spectrum OR FASD

Bolded words are subject headings.

https://doi.org/10.1371/journal.pone.0273819.t001
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Inclusion and exclusion criteria

The inclusion criteria for this review were 1) the study discusses the iron status of patients in

association with their pre-existing diagnosis of ADHD, ASD, FASD; 2) the iron status is deter-

mined quantitatively using one or more iron markers that are primarily reflecting iron metab-

olism (e.g. serum ferritin (SF), transferrin saturation (TSAT), total iron binding capacity

(TIBC) (primary iron markers)); 3) study methodologies including case reports, case series,

case controls, cross-sectional studies, cohort studies, clinical trials, controlled clinical trials,

randomized controlled trials (RCT), and systematic reviews.

References were excluded if: 1) subjects did not have iron deficient status reported; 2) iron

status was not reported quantitatively using primary iron markers; 3) iron status of subjects

was determined using only red blood cell (RBC)-related markers such as hemoglobin (Hb),

mean corpuscular volume (MCV), or measurements of serum iron (SI) only; 4) the NDD was

reported in association with prenatal / maternal / intrauterine ID; 5) study was not published

in English; 6) full-length text was not available; 7) specific study types, including non-system-

atic reviews, dissertations, animal studies, correspondences, editorials, conference proceed-

ings, health letters.

Study selection

Three investigators independently selected the studies (SM, IS, WL) and 3 investigators (SM,

IS, WL) classified the studies. SS and OI were consulted to settle any disagreement on study

selection.

Classification of study types

Studies identified after application of inclusion and exclusion criteria were subdivided:

1. According to the NDD investigated: ADHD, ASD, FASD.

2. Studies within each NDD were subdivided into:

a. Association studies describing an association between ID and the respective NDD. Stud-

ies which described the frequency of ID within an NDD population, not supported by

further statistical analysis, were termed as “prevalence studies”.

b. Treatment studies describing the effects of iron supplementation on symptoms of the

respective NDD.

c. Systematic reviews.

Association studies were classified as case control, case series, cohort- and cross sectional

studies [23]. A positive association was considered if a study showed a relationship between

one of the 3 NDDs and the presence of ID indicated by at least one primary iron deficiency

marker. No association was considered if the studies did not show a relationship between ID

and one of the 3 NDDs. Association studies were rated as positive associations when an associ-

ation between ID and an NDD was supported through statistical analysis such as 1) between

subjects with and without the neurodevelopmental disorder, 2) between subjects with and

without ID, 3) correlation between iron levels and symptom severity, 4) odds ratio showing

increased odds of having a NDD with ID. Studies reporting rates of ID in individuals with an

NDD without further correlation studies were separated as prevalence studies.

Treatment studies were categorized as experimental studies, which included clinical trials,

controlled clinical trials, and RCTs; and non- experimental studies, which included observa-

tional case series, and case reports. Experimental studies were analyzed for methodological
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quality using the Jadad scale [24], in which one point was awarded for each of 1) through 3).

One additional point was awarded if the study fulfilled each of 4) or 5), while and one point

was deduced for 6) and 7), yielding a maximum score of five.

1. The study was described as randomized (this includes the use of words such as randomly,

random, and randomization).

2. The method used to generate the sequence of randomization was described and appropriate

(e.g. use of computer program to generate random allocations).

3. The study was described as double blinded.

4. The method of double blinding was described and appropriate (e.g. use of identical

placebo).

5. The study included a description of withdrawals and dropouts.

6. The method used to generate the sequence of randomization was described and inappropri-

ate (patients were allocated based on where they lived or when they were born).

7. The method of double blinding was described and inappropriate (e.g., identical placebo not

used; study personnel and/or study participant could identify the intervention).

Systematic reviews were divided into those investigating the association of the various

NDDs with ID, and reviews investigating the effects of iron supplementation.

Results

Overview of studies (Fig 1)

Among the 54 studies selected for this review, 40 investigated ADHD, including 4 systematic

reviews, 30 association studies and 6 treatment studies (2 RCTs, 3 case reports, 1 case series).

12 studies investigated ASD including 1 systematic review, 10 association studies (including 4

prevalence studies), and 1 treatment study (RCT). Two association but no treatment studies

were found for FASD (Fig 1).

Overview of association studies

Among the 30 association studies identified for ADHD, 22 showed an association with ID and

8 did not. Among the 10 association studies identified for ASD, 3 showed an association with

ID and 3 did not. 4 studies showed prevalence rates of ID within groups of patients with ASD

without further statistical evaluation of associations / correlations. For FASD, both association

studies identified an association of ID with growth, an FASD related manifestation. Numbers

and types of studies, cases investigated as well as sex distribution are shown in Table 2.

Association ADHD and ID (Fig 2, S3 Table in S1 File and S4 Tables in S2

File)

Overall, 30 association studies were identified. All but 1 study [25] were carried out in chil-

dren/adolescents. The age of children/adolescents enrolled in the various studies was 4–19

years. The main instruments employed for the diagnosis and severity grading of ADHD were

the Conners Parent Rating Scale (CPRS), used in 18/30 studies, the Conners Teacher Rating

Scale (CTRS) used in 10/30 studies, and the Kiddie Schedule for Affective Disorders and

Schizophrenia (KSADS) used in 10/30 studies. The instruments used in the individual studies

are indicated in S3 and S4 Tables in S2 File.
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An association of ADHD and/or ADHD severity with ID was shown in 22/30 studies

including 1 cohort study, 12 case control studies and 8 case series, and 1 cross-sectional. Over-

all, 1018 cases were enrolled in the only cohort study, 1323 cases and 1124 controls were

enrolled in case control studies, 1568 cases were enrolled in the case series, and 205 records

analyzed in the cross-sectional study. 16/22 studies investigated the degree of ID and the sever-

ity of ADHD symptoms, with greater severity being associated with lower iron levels [11, 14,

25–38], and 10/22 studies concluded that SF levels were lower in the ADHD population [12,

13, 25, 30–32, 36, 39–41]. 10/22 studies showed an association with the hyperactivity symp-

toms of ADHD [25, 27–29, 32, 33, 35, 37, 38, 42]. Oppositional defiant/conduct disorder (10/

22 studies) was the most common comorbidity in the ADHD populations investigated [14,

26–29, 31, 33, 34, 39, 42].

No association of ADHD and/or ADHD severity with ID was found in 8/30 studies (4 case

control, 3 case series, and 1 cohort). 2805 cases were enrolled in the only cohort study showing

no association between ADHD and ID [43], 251 cases and 203 controls were enrolled in the

case control studies, and 458 cases were enrolled in case series studies. 7 studies investigated

the degree of ID and severity of ADHD symptoms, with greater severity not being associated

with lower iron levels [43–49], and 4 studies concluded that SF levels were not lower in the

ADHD population [44, 46, 49, 50]. 6 studies showed lack of association with the hyperactivity

Fig 1. Scoping review flow chart.

https://doi.org/10.1371/journal.pone.0273819.g001
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symptoms of ADHD [43–46, 48, 49]. Oppositional defiant/conduct disorder (2/8 studies) was

the most common comorbidity in the ADHD population investigated [44, 49].

Association ASD and ID (Fig 3, S4–S6 Tables in S2 File)

Overall, 6 studies investigated associations between ID and ASD and 4 additional case series

investigated the prevalence rates of ID in children with ASD. All studies were done in children

Table 2. Overview of studies investigating the association of ID and an NDD and / or prevalence studies.

Association No Association Prevalence

Case control Case Series Cohort Cross Section Case control Case Series Cohort Cross Section

ADHD

Studies 12 8 1 1 4 3 1

Cases 1323 1568 1018� 205 251 458 2805�

Controls 1124 - - - - - - - - - - - - 203 - - - - - - - -

Cases m/f 746/576 1279/219 519/499 137/68 212/39 355/103 1429/1376

ASD

Studies 2 1 1 2 4

Cases 408 96 154 64 556

Controls 408 - - - - 73 - - - - - - - -

Cases m/f 237/171 78/18 141/13 54/10 462/93

FASD

Studies 2

Cases 127

Controls - - - -

Cases m/f 61/66

m/f = number of male/female patients.

Association = studies showing an association between NDD and ID; No Association = studies not showing an association between NDD and ID.

�total number of participants in cohort study.

Prevalence studies only reported about rates of ID in children with an NDD without further correlation studies.

https://doi.org/10.1371/journal.pone.0273819.t002

Fig 2. Overview of ADHD association studies. Pediatric/adolescent studies: Age 19 years or less; adult studies: Age 19

years or greater.

https://doi.org/10.1371/journal.pone.0273819.g002
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and adolescents aged 1–18 years. Instruments employed for ASD assessment included the

Autism Diagnostic Observation Schedule (ADOS) (4/10 studies), the Childhood Autism Rat-

ing Scale (CARS) (4/10 studies), Autism Behaviour Checklist (AuBC) (2/10 studies), and the

Aberrant Behaviour Checklist (AbBC) (2/10 studies). The instruments used in the individual

studies are indicated in S4–S6 Tables in S2 File.

3 studies (2 case control with 408 cases and 408 controls, and 1 case series with 96 cases

enrolled) showed an association of ID and ASD and/or ASD-related symptoms. 3 studies (1

case control with 154 cases, 2 case series with 64 cases enrolled) did not. The 2 studies showing

correlations between severity of ASD (as determined by the various scores used) and ID [17,

51] were contrasted by 3 other studies not showing such correlations [18, 52, 53]. The study by

Dosman et al. [17] deserves a special explanation. The primary aim of this study was to investi-

gate the effect of iron supplementation in children with ASD on sleep in an n-of-1 trial setting

(each individual as their own control). As part of patient characterization at baseline, this

study also analyzed the association between the degree of ID and ASD diagnostic scores.

Fig 3. Overview of ASD association studies. Pediatric/adolescent studies: Age 19 years or less; adult studies: Age 19

years or greater.

https://doi.org/10.1371/journal.pone.0273819.g003
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Because no association was found between SF levels and total ADOS or ADI-R scores we

included these results in the no association category. Nonetheless, it must be mentioned that

in a subgroup of school-aged children, there was an inverse relationship between SF and the

ADOS sub domain communication (p = 0.009). We did not include this study as a treatment

study, as none of the ASD-specific scores was used as an outcome measure.

Lastly, among the 4 studies reporting ID prevalence in children diagnosed with ASD

(enrolling 556 participants), low SF levels were found in 6.6–24% [16, 54–56].

Association FASD and ID

We found 2 case control studies, including 85 and 42 cases, and 63 and 54 controls respec-

tively, investigating the effect of heavy prenatal alcohol exposure on postnatal growth and post-

natal ID compared to moderate/light exposure [57, 58]. Both studies found that in infants with

heavy prenatal alcohol exposure, the extent of growth restriction was associated with ID,

whereas there was no further modification of growth if ID or food insecurity persisted to the

age of 5 years [58]. One of these studies [57] also showed an association of maternal binge

drinking with an increased incidence of ID anemia at the age of 12 months. This study for-

mally did not meet our inclusion criteria as only RBC-related markers were used to determine

ID. We still included this study because of the paucity of studies identified for FASD in general

and its close relation to the other study identified [58].

Sex differences

Overall, there was a strong preponderance of male participants both in the ADHD and ASD

studies (Table 2). The 30 ADHD association studies included 4677 males versus 2880 females

(cases only). 12/30 studies examined potential sex differences in risk and severity of ADHD,

while 6/30 studies examined potential sex differences in iron levels. 4 of these studies found

that there were no significant differences between sex and ADHD symptoms [33, 39, 42, 47]. 5

studies found that males had more ADHD symptoms than females [11, 28, 34, 41, 50]. One

study [26] compared iron status (iron sufficient, ID without anemia, ID anemia) and sex, and

found a statistically significant difference (p<0.001) between the aforementioned groups. Sim-

ilarly, Cortese et al. [14] reported lower serum ferritin levels in males compared to females,

though this finding was not supported by any statistical analysis. The remaining 4 studies that

examined sex differences and ID did not find any significant correlations [28, 39, 47, 50].

The 10 ASD association and prevalence studies included 972 males and 305 females (cases

only). 2/10 studies examined potential sex differences in individuals with ASD. 1 study

reported no significant differences between sex and ASD symptoms [16], while another study

found a significant difference but did not elaborate on what this entailed [52]. 1 study analyzed

differences between sex and iron status (including ferritin, MCV, hematocrit (Hct), hemoglo-

bin), but did not find any statistically significant difference between males and females [16].

Iron markers used in ADHD and ASD association studies (Figs 4 and 5, S1

Table, S2, S3 Tables in S1 File, S4-S6 Tables in S2 File)

Apart from 4 ADHD studies which measured only SF as a primary iron marker [41–43, 46]

and 1 ADHD study which measured only SF and SI [50], all studies measured both iron-

related and RBC-related markers for ID. A significant association of SF, but not of RBC-related

or other iron markers was found in 9 ADHD [14, 28–32, 35, 37, 39] and 2 ASD studies [17,

54].

Overall, the most common indicators of statistically significant positive associations in

studies were SF (n = 21) [12–14, 17, 25, 27–34, 36, 37, 39–42, 48, 59], followed by Hb (n = 8)
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[12, 13, 17, 30, 33, 40, 51, 59], SI (n = 6) [12, 25, 37, 40, 51, 59], MCV (n = 5) [27, 33, 40, 51,

59], Hct (n = 2) [51, 59], and total iron binding capacity (TIBC) (n = 2) [25, 40]. Brain iron

(BI) [39], mean corpuscular hemoglobina concentration (MCHC) [40], red cell distribution

width (RDW) [34], sTfR/log ferritin index (SFI) [38], soluble transferrin receptor (sTfR) [38],

Fig 4. Overview of biomarkers used in ADHD association studies.

https://doi.org/10.1371/journal.pone.0273819.g004

Fig 5. Overview of biomarkers used in ASD association studies.

https://doi.org/10.1371/journal.pone.0273819.g005

PLOS ONE Iron deficiency and common neurodevelopmental disorders

PLOS ONE | https://doi.org/10.1371/journal.pone.0273819 September 29, 2022 10 / 22

https://doi.org/10.1371/journal.pone.0273819.g004
https://doi.org/10.1371/journal.pone.0273819.g005
https://doi.org/10.1371/journal.pone.0273819


and transferrin saturation (TSAT) [38], were indicators of a statistically significant positive

association in 1 study each. The remaining studies which used the aformentioned biomarkers,

but which did not represent a statistically significant positive association with ADHD or ASD

are presented in Figs 4 and 5. Additional biomarkers used in the association studies include

free erythrocyte protoporphyrin (FEP), transferrin (TF), and mean corpuscular hemoglobin

(MCH).

In the 4 prevalence studies, the most commonly employed ID biomarkers were SF (n = 4),

SI (n = 2), TSAT (n = 1), TIBC (n = 1), iron saturation (n = 1), Hb (n = 4), MCV (n = 2), Hct

(n = 1), and RDW (n = 1) (Fig 5).

4 association studies [38, 43, 52, 59] measured c reactive protein (CRP) in conjunction with

SF levels, while only 1 association study measured erythrocyte sedimentation rate (ESR) in addi-

tion to CRP [38]. The remainder of studies did not state the use of such inflammatory markers.

Serum ferritin (SF) cut off-values (S3 Table in S1 File, S4-S6 Tables in S2

File, S7, S8 Tables in S3 File)

Among the 30 ADHD studies, SF cut-off values were reported in 20 studies. 7 studies used

<12 μg/L and 13 studies used a range between<7 and 45 μg/L as cut-off value depending on the

age of participants and / or presence or absence of high CRP levels. Among the 10 ASD studies,

SF cut off levels were reported in 9, with cut off at< 10 μg/L for preschoolers and<12 μg/L for

older children. Studies which did not report SF cut-off values, investigated correlations between

SF and severity of ADHD / ASD scores without defining a ferritin-based threshold for ID.

Fasting state for iron markers

Only 11 association studies identified that fasting blood samples were taken for measuring

iron parameters [16, 28, 29, 31, 33, 35, 36, 40, 42, 45, 51]. In the remainder, no information on

timing of blood sampling was given.

Treatment studies (S7, S8 Tables in S3 File)

Studies investigating the effect of iron supplementation were available for ADHD and ASD.

No such intervention studies were found for FASD. Overall, for ADHD 6 studies (2 RCTs and

3 case reports, and 1 case series) investigated the effects of iron supplementation. All of them

demonstrated a benefit in treating symptoms with supplemental iron [15, 60–64], which

includes 2 RCTs [15, 60].

The first RCT [15] included 22 (17 male, 5 female) non-anemic children (17 treated; 5 pla-

cebo) who had SF levels <30 ng/mL. While there was no significant improvement in the pri-

mary outcome measure (CPRS) after 12 weeks of oral ferrous sulfate supplementation (80 mg/

d) in the treatment group, there was a significant improvement of the ADHD Rating Scale

(ADHD-RS), which was chosen as a secondary outcome measure. Both the hyperactivity and

the inattention subscales improved, but the improvement was more pronounced in the inat-

tention subscale. A similar result was observed in the second RCT, which included 42 children

(35 male, 7 female) treated with methylphenidate and serum ferritin levels <30 ng/mL [60]. 21

children (16 male, 5 female) were treated with additional ferrous sulphate, 21 served as con-

trols (19 male, 2 female). The study showed that the addition of ferrous sulfate resulted in an

increase of SF levels and improvements in both hyperactivity and inattention symptomatology,

measured using Child Symptoms Inventory-4 (CSI-4).

For ASD, 1 RCT was found, which included 20 children (17 male, 3 female) with insomnia.

9 children (6 male, 3 female) were treated with ferrous sulfate, 11 served as controls [65]. No

significant differences were found in behaviour, as was measured using the SNAP-IV scale.
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Systematic reviews

We identified 5 systematic reviews, of which 4 investigated the association of iron indices (SF)

with ADHD [66–69] and 1 with ASD [70]. The numbers and types of studies reviewed, and

the conclusions are shown in Table 3. Overall, the 3 systematic reviews on ADHD and ID con-

cluded that there is an association with SF levels (lower levels being associated with ADHD),

while one systematic review concluded that the association between ADHD pathophysiology

and ID has more to do with brain, rather than systemic iron [69]. The ASD study found no

Table 3. Systematic literature reviews analyzing the role of iron deficiency in ADHD and ASD.

Systematic reviews

N = 5

Reference Review Conclusion Comments

Scassellati

et al

ADHD Descriptive Not significant after Bonferroni correction

2012 [66] Systematic Review SF is a potential biomarker for ADHD

N = 7

case control studies Meta-analysis
SF is lower in patients with ADHD

Wang et al ADHD Descriptive
2017 [67] Systematic Review SF is lower in patients with ADHD

N = 11

case control studies

Cortese et al ADHD Descriptive No correlation with SI

2012 [68] Systematic Review 22 studies reviewed used SF as biomarker for ID;

N = 22

Cohort, case control, cross-sectional,

clinical trials, RCTs

Significant correlation between low SF and ADHD in 9/

22 studies using SF as biomarker

Tseng et al ASD Descriptive
2018 [70] Scoping Review No association of iron indices (including SF) with ASD

N = 25

Cohort and cross sectional studies

Multiple iron indices (SF< SI< TSAT,

TIBC, hair iron, iron in food)

Meta-analysis
Levels of SF in children with ASD did not differ

significantly from children without ASD

Degremont

et al

ADHD Descriptive

2021 [69] Systematic Review 18 studies measured SF; 10/18 found higher SF in those

with ADHD compared to controlsN = 20

Case control 10 studies measured SI; 2/10 reported lower SI in the

ADHD group

3 studies measured brain iron; all reported lower brain

iron in the ADHD group

Our review ADHD, ASD, FASD Descriptive Heterogeneity of study designs, outcome

measures and study participants.Association with ID

Scoping Review ADHD 22/30

Association and treatment studies ASD 3/6

FASD 2/2

Positive effect of iron supplementation

ADHD 5/5 (2RCTs, 5 case reports)

No effect of iron supplementation

ASD 1/1 (RCT)

https://doi.org/10.1371/journal.pone.0273819.t003
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difference compared to controls. We did not identify any systematic literature review investi-

gating the efficacy of iron supplementation.

Year and location of studies

Association studies: The majority of the association studies (n = 19) were conducted in Europe

[14, 16, 25, 28, 29, 32–37, 39, 42–44, 48, 51, 53, 54], followed by 7 in Asia [12, 31, 38, 40, 47, 52,

59], 6 in North America [11, 17, 18, 27, 49, 56], 5 in Africa [13, 30, 41, 46, 50], 2 in South Amer-

ica [26, 45], and 1 in Australia [55]. Moreover, these studies were predominantly (29/40) con-

ducted in the 2010 decade [11–13, 16, 25–28, 30, 31, 34, 35, 39–48, 50–53, 55, 56, 59] with the

remaining conducted in the 2020 [37, 38] and 2000 decades [14, 17, 18, 29, 32, 33, 36, 49, 54].

Treatment studies: The majority of the treatment studies were conducted in North America

[61, 64, 65], followed by 2 in Europe [15, 62], and 2 in Asia [60, 63]. Moreover, 1 study was

conducted in the 2020 decade [65], 2 conducted in the 2010 decade [60, 64], 2 conducted in

the 2000 decade [15, 62], and 1 conducted in the 1990 decade [61].

Discussion

We conducted this scoping review to obtain an overview of the role of ID in ADHD, ASD, and

FASD. We chose these conditions not only because they represent the most frequently diag-

nosed NDDs in children, but also because they have the tendency to occur comorbidly (e.g.

children with ASD often have phenotypical characteristics of ADHD and children with FASD

often have phenotypical characteristics of ADHD and ASD). Furthermore, these conditions

occur in combination with intellectual disability, which is prevalent in up to 3% of the popula-

tion worldwide. While causal treatment is available only for a minority of intellectual disabili-

ties [71], symptomatic treatment aiming to improve behaviours is a prerequisite to optimize

residual developmental outcomes. The common clinical characteristics of the three NDDs

investigated here are hypermotor restlessness and hyperarousability not only during the wake,

but also during the sleep state, and hypoarousability during performance of cognitive tasks

characterizing the circumscribed behavioural phenotypes (H-behaviours) [20, 72]. Together,

these clinical characteristics suggest a common pathophysiology of the dopaminergic system

for which iron is an important metabolic cofactor [73]. Our goal was to map the existing evi-

dence as a basis for the development of guidelines for screening and treatment of ID in these

conditions, and to develop a pragmatic best practice approach on how to further investigate

these behavioural phenotypes. Our scoping review also helped to identify gaps in evidence gen-

eration and ideas to further analyse existing and to create prospective data.

In our review, ADHD has been found to be the most extensively investigated condition,

whereas fewer studies have been conducted for ASD, and only 2 studies have been identified

for FASD.

For ADHD, 22 of the 30 identified association studies suggested a relation of types and

severity of ADHD-related symptoms with ID. These findings are supported by 4 systematic

reviews concluding that ID plays a role in the pathogenesis of ADHD. We also found 8 studies

which did not show evidence for an association of ID with ADHD.

There are several reasons for discrepant results in these ADHD association studies. One of

them is the inconsistency in the use of instruments employed for the diagnosis and severity

grading of ADHD. Overall, we identified 15 scales including a variety of self-report scales

(which potentially capture internalizing behaviours that may go unnoticed by caregivers) and

scales completed by adult informants (which mainly capture externalizing behaviours that are

publicly observable). There are also differences in the bandwidth of the scales. Narrow band

scales such as the CPRS and CTRS are robust measures to diagnose ADHD. In contrast,
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broadband scales cover the breadth of patients’ problems by eliciting information across an

array of symptoms which can be associated with ADHD (e.g., Child Behaviour Checklist). For

an overview see Collett et al [74].

When using narrow band scales, more than one baseline assessment should be performed

to account for a change in scores related to treatment. However, in most of the ADHD associa-

tion studies identified in our review, detailed information about the establishment of baseline

values is not provided. Another limitation of the currently available scales is that they origi-

nally have been developed for male elementary school-aged children. Suitability to other popu-

lations investigated in the ADHD association studies reported here, e.g., preschoolers [75],

girls [76], and children with comorbid intellectual disability and/or speech problems [77] has

not been evaluated.

Inconsistencies in the choice of ID markers and interpreting ID results are additional

concerns related to the discrepant results obtained in the ADHD association studies. In

approximately three quarters of those studies which measured both iron- and RBC-related bio-

markers, iron-related (predominantly SF), but not RBC-related markers were statistically asso-

ciated with the diagnosis of ADHD and / or ADHD severity. For example, the case-control

study by Konofal et al. [32], including 53 cases, and by Juneja et al. [31] including 25 cases,

concluded a positive association between ID and ADHD. However, the positive association

was only statistically significant for low SF levels in children with ADHD compared to con-

trols, while SI, Hct, and Hb were in the normal range for both groups. Similar results were

found in the series of 52 cases reported by Oner et al. [29], demonstrating a significant rela-

tionship between lower SF levels and ADHD symptom severity. Moreover, a case series by

Cortese et al. [14] only conducted a statistical analysis on low and high SF level comparisons in

students with ADHD, even though they had also used SI and Hb for the assessment of ID.

Similar to the ADHD association studies, contradictory results were also found in the ASD

studies. Although the 6 association studies were comparable in study design and participant

numbers, 3 found statistical evidence for an association of ID and ASD / ASD severity, and 3

did not. Further contradictory results were reported in the 4 studies investigating the preva-

lence of ID in children with ASD. While Hergüner et al. [16] found a prevalence of ID and

IDA in 24.1% and 15.5% of the 116 ASD children investigated, a similar sized study by Sidrak

et al. [55] found ID and IDA in only 6.6% and 4.1% respectively. Selective eating habits and

gastrointestinal comorbidities, which are frequently observed in ASD may be one reason for

these discrepancies [78, 79] along with discrepancies in the choice of tools and indicators to

assess the severity of ASD and ID.

For FASD, we found only 2 studies with both of them investigating the association of ID

and postnatal growth restriction in infants with heavy prenatal alcohol exposure [57, 58].

Although there is evidence from experimental studies showing that maternal iron status has a

unique influence upon FASD outcomes [19, 80, 81], the role of maternal ID as a synergistic

modifier of FASD risk has not been further investigated in humans. Studies investigating a

potential correlation of maternal and neonatal ID with FASD-related neurodevelopmental

outcomes as well as studies aiming to treat maternal ID are needed to demonstrate a potential

FASD risk-reducing effect of intrauterine alcohol exposure in humans.

SF is currently recommended as the most practical, universally available biomarker for the

detection of low iron stores [82]. One major advantage of SF over other primary iron markers

is its widely accepted independence of the fasting / postprandial state, compared to SI levels

and TSAT which are subject to postprandial elevations [83]. Indeed, in all studies analysed

here, SF was used as a primary iron marker. Low SF levels were found to be most frequently

associated with the NDDs investigated, whereas among the RBC-related iron markers, besides

low Hb, low MCV was most frequently observed in association with NDDs. However, like
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other RBC-related markers, MCV often remained unremarkable despite low SF levels. Like-

wise, most studies in our recently published scoping review about the role of ID in sleep disor-

ders used SF, but not RBC-related measures as the main biomarker of ID [84].

Ferritin is a multimeric protein composed of light (L-ferritin) and heavy (H-ferritin) sub-

units which have distinct functions in oxidizing and binding (H-ferritin) and storing (L-ferri-

tin) iron. While SF mainly contains L-ferritin for iron storage, the various ferritin species

localized in cellular compartments, such as cytosol, golgi, lysosomes, and mitochondria, play

roles in ferroptosis, a form of programmed cell death, ferrophagy, a form of autophagy, and

handling of oxygen radicals [85].

Despite all advantages, the following limitations of SF’s role as an indicator of ID should be

considered in the interpretation of the results of this review. SF also acts as an acute phase pro-

tein and any increase in SF due to systemic inflammation confounds its relationship with ID.

The parallel measurement of CRP as an independent indicator for acute inflammation

enhances SF’s value as an ID marker. In this review, CRP measurements in conjunction with

serum ferritin were provided in only 2 ADHD [38, 43] and 2 ASD association studies [52, 59],

while one study also measured erythrocyte sedimentation rate (ESR). In all 4 studies, none of

the participants had an elevated CRP. However, the single study that measured both CRP and

ESR found that ESR, but not CRP, was significantly higher in the ADHD group compared to

controls (p = 0.001) [38]. The parallel measurement of CRP or ESR and / or the use of other

biomarkers such as sTfR or sTfR/log ferritin ratio may be superior to SF alone, particularly in

the presence of systemic inflammation [86]. Serum hepcidin is another promising biomarker

indicating systemic iron regulation and inflammatory response, which could particularly use-

ful in cases with ID resistant to enteral iron supplementation [87].

Another limitation is that SF represents iron stores mainly from macrophages, but it does

not reflect ID contained to single organs [44]. For example, low brain iron (BI) levels, which

are not always reflected by SF, play a role in the pathophysiology of restless legs syndrome

(RLS), periodic limb movements in sleep [88], which can cause restless sleep disorders [89].

Given the presumptive overlap between RLS and ADHD, the use of BI imaging [39] has been

recommended for a presumed subgroup of ADHD patients who may have deficient BI trans-

port systems in the presence of normal SF levels. The finding of isolated BI deficiency in

ADHD helps consolidating the concept of functional ID, as described in RLS [88, 90].

A final aspect in the interpretation of the results obtained in this review is the variance in

normal SF values depending on age, sex and genotype. SF< 15 μg/L is generally accepted as

the threshold for absence of iron stores [91], however, studies have shown that thresholds for

ID in younger children are as low as<10–12 μg/L [92, 93]. Whereas the majority of the ASD

studies analysed here used SF cut-off values were between 10 and 15 μg/L, SF cut-off values

were higher than 15 μg/L in the majority of the ADHD studies.

The heterogeneous thresholds of SF as an indicator for ID might be another reason for dis-

crepant results in the numerous studies performed among various age groups in countries

across the globe. Also, if studies were performed in countries where infectious diseases are

more common than in high resource countries (e.g., Africa, Asia South America), or during

periods of seasonal infectious diseases, results based on SF only could have been confounded

by its additional function as an acute phase protein.

Compared to the relative abundance of association studies, the yield for treatment studies

in our search was low, with only 6 treatment studies for ADHD and 1 for ASD being identified.

Although the 2 ADHD RCTs [15, 60] demonstrated a benefit of iron supplementation on both

inattention and hyperactivity, they included low numbers of participants (18 treated cases vs 5

controls [15] and 21 treated cases vs 21 control [60]) and their Jaded scores were low at 2/ 5

and 3/5 respectively.
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The overall paucity of ID treatment studies for ADHD and ASD stands in stark contrast to

the abundance of clinical trials published for pharmacological treatments for ADHD. A scop-

ing review investigating interventional ADHD RCTs that used sleep as an outcome measure

identified 53 pharmacological RCTs published between 1995–2020 [94]. Importantly, this rep-

resents only a small proportion of pharmacological RCTs for ADHD, given that most studies

do not use sleep as an outcome measure.

In the light of frequent adverse reactions [95] and of unknown long-term outcomes in stim-

ulant users, well-designed and sufficiently powered clinical trials are needed to identify

whether, and for which sub-populations iron supplementation can be a beneficial alternative

or add on to pharmacotherapy for ADHD and other NDDs.

In conclusion, our scoping review identified a body of studies investigating a potential role

of ID in frequent NDDs. However, the methodological designs, choice of outcome measures,

and study participant numbers were quite heterogeneous. The paucity of treatment studies

and the low numbers of enrolled participants is of particular concern given the high prevalence

of the investigated NDDs and the easy access to iron supplementation.

While this review format allowed for a descriptive assessment of the identified studies, com-

parison of studies against each other was not attempted mainly due to the inconsistent meth-

odological quality of the single studies. We accepted associations and related statistical results

as described by the authors of the respective studies and did not exclude any study based on

methodological design, participant numbers, choice of outcome measures for NDDs, or labo-

ratory methods employed for measurement of iron markers.

The majority of studies identified in our scoping review supported the role of ID in NDDs,

however there were also studies using similar study protocols, which did not. Furthermore, the

paucity of treatment studies and the low numbers of enrolled participants deserves particular

consideration, given the high prevalence of the investigated NDDs and the easy access to iron

supplementation.

Given the global distribution of ID [22] paralleled by a similar distribution of NDDs [2],

affecting both low and high resource countries, studies to corroborate the importance of

prevention and treatment of ID are of utmost public health importance. In future studies,

standardized protocols using harmonized outcome measures for symptom severity scores

and iron indices will contribute to higher quality and consistency amongst studies. For

treatment studies, besides adherence to high evidence study designs, the use N-of-1 trial

designs with the treated individuals being their own control should be considered in single

case studies, small sample sizes, and populations with heterogeneous clinical characteristics

[96].

SF as the most accepted outcome measure for ID should be combined with iron markers

independent of inflammation and / or with markers indicating inflammation and cut off levels

should be harmonized. Additional markers addressing ID as a proxy for micronutrient defi-

ciency or familial predispositions, and iron’s spatial distribution (e.g., brain iron deficiency)

should be developed and utilized particularly for studies investigating NDDs.
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