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Abstract

Educational virtual environments (EVEs) are defined by their features of immersion (degree

of sensory engagement) and fidelity (degree of realism). Increasingly, EVEs are being used

for career development and training purposes, which we refer to as career-oriented EVEs.

However, little research has examined the effects of immersion and fidelity on career-related

outcomes, like self-efficacy and interests, and the learning dynamics that may influence

these outcomes. We address these research needs across two studies using an inductive

approach. Study 1 compares welding career exploration in EVEs to traditional career explo-

ration and finds that individuals using EVEs report more positive career self-efficacy. Study

2 examines the influence of social learning dynamics, or how individuals learn from each

other through behavioral modeling, on performance and career-related self-efficacy and

interest. Groups were assigned to use either a high or low immersion and fidelity EVE. Find-

ings indicate strong social learning dynamics in both EVEs, but the effects were stronger for

groups using the higher immersion and fidelity EVE. Specifically, groups converged on two

performance measures, and the performance of individuals who were situated as behavioral

models significantly predicted the performance of other group members. Performance at

the individual level, in turn, predicted career self-efficacy and interest for men but not

women, and only for those using the higher immersion and fidelity EVE. Based on these

findings, we conclude with practical recommendations for and implications of implementing

career-oriented EVEs for career exploration and skills training.

Introduction

Educators are increasingly using immersive virtual reality (IVR) for a variety of education and

career-related purposes. Often referred to as educational virtual environments (EVEs), these

tools are employed in higher education, career exploration, and job skills training [1, 2]. EVEs
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are especially advantageous in these capacities for fields like welding and aviation for which

there are unique learning barriers. For example, it is challenging for educators to provide train-

ees with realistic job previews and opportunities to train alongside others due to the inherent

risk of injury in these trades (e.g., burns, crashes), especially for novices. Career-oriented EVEs

overcome these barriers and provide opportunities for career exploration and authentic job

previews in a virtual, low-risk learning context. They also create safe settings for group-based

skills training where trainees can engage in social learning by observing others and providing

feedback [3].

EVEs have characteristics that make them distinct from other educational and training

technologies; however, much remains unclear about how these features contribute to learning.

Among the features of EVEs are their immersive nature and fidelity to real-life scenarios.

Importantly, virtual environments can vary in their level of immersion and fidelity [4, 5]. In

accordance with extant literature, we refer to EVEs with full immersion and high fidelity as vir-

tual reality (VR) and those with relatively lower immersion and fidelity as desktop simulations.

Researchers have established links between higher immersion and fidelity and outcomes

like engagement, enjoyment [6, 7], and training performance [8]. Relatively little research,

however, has explored the associations between immersion and fidelity and important career-

related outcomes like career self-efficacy and career interest. Similarly, few studies have exam-

ined the learning dynamics that may contribute positively to attitudes and performance in the

contexts of EVE-based career exploration and skills training. As EVEs are increasingly used

for these purposes, it is important to explore both the outcomes associated with EVEs in these

contexts and the learning dynamics that explain these relationships.

We present two studies which each addressed one of these two research needs. In the first

study, we addressed the need to explore the associations between immersion and fidelity and

career-related outcomes by examining whether individuals report more positive career-related

self-efficacy and interest when using VR for welding career exploration compared to individu-

als using desktop simulation or more traditional media (e.g., video, literature). The second

study addressed the need to understand the learning dynamics that explain the affordances of

EVEs. Specifically, we used groups engaged in welding skills training with either VR or desk-

top simulation to examine social learning dynamics and their influence on performance and

career-related attitudes in this context. We then discuss the implications of our findings for

the use of EVEs to aid in career development and skills training among adult learners.

We also note here that our research approach in both studies was inductive. That is, we

posed exploratory questions to identify meaningful empirical relationships. This approach is

useful for theory development and to address practical issues, particularly in fields character-

ized by rapid technological development [9]. For example, exploratory research has aided the-

oretical development and provided practical recommendations in domains like remote test

proctoring [10]. Thus, IVR can benefit from inductive research because, as noted by Mak-

ransky and Petersen [11], there is still little theory to guide work in this field.

Educational virtual environments

Immersion and fidelity

EVEs are distinct from other training technologies in notable ways, namely immersion and

fidelity [5]. Immersion in a virtual environment provides users with the feeling that they are

participating in a comprehensive experience through the engagement of multiple senses [12].

In other words, an EVE is more immersive when it engages a higher number of senses or

engages senses more intensely. EVEs used in practice vary in their levels of immersion. For

example, VR that creates a 3-D, 360-degree environment through a head-mounted display is
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more immersive than a desktop simulation that engages users through a 2-D computer screen.

Fidelity is the degree of realism of a virtual environment. It provides users with the feeling that

they are participating in a realistic experience [5]. Virtual environments vary in their level of

fidelity; an EVE-based training has greater fidelity the more it accurately recreates the real-life

environment.

Attitudinal outcomes associated with immersion and fidelity

Research suggests that the experience of immersion in a virtual environment positively affects

the attitudes of learners. Compared to traditional methods of instruction, individuals using

highly immersive EVEs for training in a variety of STEM fields have demonstrated more posi-

tive attitudes and reactions such as engagement, interest, and motivation [7, 13]. Learners also

have reported higher levels of engagement with material after learning through a desktop vir-

tual environment [14]. Lastly, highly immersive EVEs are associated with increased self-effi-

cacy in learners [6]. For example, Makransky and colleagues found more positive changes in

self-reported intrinsic motivation, enjoyment, and self-efficacy related to performing labora-

tory safety protocols for students learning about laboratory safety in VR compared to reading

about it.

While less research has focused on the effects of fidelity on learning and training outcomes,

research shows that simulation fidelity is positively related to training transfer [15, 16] and

may increase user acceptance of simulation-based education [17]. Some research also indicates

that, like immersion, greater fidelity is associated with greater user engagement [18]. Overall,

though, understanding of learner attitudes associated with the fidelity of EVEs is limited.

The extant literature generally supports the idea that immersion and fidelity lead to positive

learner attitudes. Most existing studies, however, only compared EVEs to traditional forms of

instruction (i.e., presence vs absence of immersion and fidelity). Thus, the effects of varying
levels of immersion and fidelity is still largely underexplored [for exceptions see 19–21]. More-

over, although career-related attitudes are relevant outcomes to some of the ways that EVEs

are being used in practice, only a select few studies have investigated such outcomes and have

reported mixed results. One study found that EVEs improve career-related outcomes (e.g.,

outcome expectations) compared to traditional instruction [22], but another found no differ-

ence [23]. Further, both studies only compared EVEs to traditional learning. Thus, the effects

that relative levels of immersion and fidelity have on career-related outcomes remain

unexplored.

Career exploration in VR and career-related attitudes

Though empirical evidence is largely absent or inconclusive, career exploration is an applica-

tion of EVEs that shows potential in practice [24]. Adult learners and trainees use career-ori-

ented EVEs to explore careers and develop skill in a variety of fields like surgery, aviation, and

welding [8, 25, 26]. As described, EVEs are often used in such fields for practical reasons like

safety.

Importantly, these virtual environments may also lower psychological barriers to exploring

such careers by providing a low-stakes, low stress learning environment at a novice level [27,

28]. This notion is supported by research findings that learning in EVEs is associated with

exploratory learning behaviors. Studies have shown that individuals demonstrate a willingness

to take risks and make mistakes while learning in virtual settings more so than in traditional

learning settings [13, 29]. By providing a low-risk exploratory learning environment, career-

oriented EVEs give individuals opportunities to practice skills and develop positive attitudes

toward careers that they may have otherwise not pursued.

PLOS ONE Career-oriented educational virtual environments, social learning, and learning outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0273788 September 29, 2022 3 / 22

https://doi.org/10.1371/journal.pone.0273788


Although the use of EVEs for career exploration shows promise for promoting positive

career-related attitudes, research is needed that directly investigates this notion. Based on

existing career exploration and career decision-making literature, the attitudes of career self-

efficacy and interests are particularly important outcomes [30, 31]. Thus, we pose the following

research question:

Research Question 1: Do individuals using EVEs for career exploration differ in career self-

efficacy and interest from those using traditional methods for career exploration?

As noted, immersion and fidelity are defining features of EVEs that are associated with pos-

itive outcomes. Here, we explore whether using VR for career exploration is associated with

higher career-related attitudes than using desktop simulation for career exploration, allowing

for a direct comparison of EVEs that vary in immersion and fidelity. Therefore, we pose this

second research question:

Research Question 2: Do individuals using VR for career exploration differ in career self-

efficacy and interest from those using desktop simulation?

Social learning in VR

Exploring the potential association between EVEs and career-related outcomes is an important

first step. If we identify an association between immersion and fidelity and career-related out-

comes, it then becomes necessary to identify the psychological mechanisms that explain this

phenomenon. Identifying some of these mechanisms is the goal of Study 2. Recent scholarship

addressing the question of how EVEs promote positive learning outcomes theorizes that

instructional methods and context interact with technological features (e.g., immersion and

fidelity) to facilitate the unique learning affordances of IVR, which then promote positive out-

comes [11]. Because EVEs facilitate opportunities for skills training to take place in group con-

texts, social learning is relevant for understanding learning in EVEs. Broadly, social learning

theory contends that observing the experiences of others can vicariously influence an individu-

al’s beliefs and their subsequent behavior [32]. Below, we review the research on technology-

facilitated social learning. Then, as the basis for our third research question, we offer two com-

peting propositions, grounded in current theory regarding learning in IVR [11], for how social

learning dynamics may operate in groups training with EVEs. Lastly, we develop research

questions to explore the relationships between performance and career-related attitudinal out-

comes in this context.

Social learning and performance

Existing research supports the idea that group-based learning experiences may influence out-

comes positively (e.g., learning transfer) at the individual level [33]. Despite general support

for the performance benefits of social learning, meta-analyses have identified several boundary

conditions indicating that the social learning-performance relationship is complex. For exam-

ple, the nature of the group learning experience moderates the relationship between group

learning and academic performance. Specifically, in terms of academic performance, students

in informal learning settings (e.g., students meeting on their own outside the classroom)

benefited to a greater extent from social learning than students in structured, formal learning

settings [34]. Another meta-analysis exploring the effects of social context on achievement in

technology-mediated learning showed that the overall positive effect on individual outcomes

varied based on the characteristics of the technology [35]. Differences in the amount of feed-

back provided and the extent of learner-control afforded by the training technology both influ-

enced the relationship strength between group learning and performance. Overall, the
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technological context in which learning takes place determines, in part, the degree to which

social learning occurs and learners experience positive outcomes as a result.

Immersion, fidelity, and social learning dynamics

If the degree to which social dynamics facilitate learning depends on the form of technology

used, as evidenced in the research presented above, then studying how these dynamics operate

when EVEs are used to facilitate group-based learning is imperative. In accordance with this

existing scholarship, recent theory development in IVR posits that instructional methods and

context interact with the technological features of IVR, such as immersion and fidelity, to

influence learning outcomes [11]. The instructional context will promote positive outcomes to

the extent that it facilitates the unique affordances of IVR, one of which is presence.

Based on this theoretical framework, we suggest that there are two competing possibilities

for how social learning dynamics will operate in group-based training using EVEs. First, the

feelings of presence that are facilitated by high immersion and fidelity may minimize social

learning. The design of group skills training in EVEs often takes the form of trainees using the

EVE one-by-one while others observe from the physical environment. The experience of being

completely enveloped in a virtual environment while learning a skill could reduce trainees’

awareness of others in the physical environment around them. Social learning would be

diminished in this case and should not have much influence in facilitating the learning out-

comes of EVEs. Alternatively, high immersion and fidelity may create an experience that sus-

tains a high level of engagement among all group members even when they are not directly

interacting with the EVE (i.e., in the physical environment). Social learning would be

enhanced in this case, as each group member would act as a salient behavioral model for the

rest of the group. These social dynamics, in turn, may facilitate the learning affordances of

EVEs by allowing individuals to model their own learning experience based on the vicarious

experience gained by observing authentic behavioral models (i.e., peers). If social learning

dynamics are amplified, as in the second scenario, learning behaviors are likely to cluster

within groups and there should be evidence of behavioral modeling. Conversely, a lack of

group clustering and behavioral modeling would suggest little social learning. We pose the fol-

lowing research question to investigate these competing possibilities:

Research Question 3: To what degree does social learning take place during group-based

skills training with VR and desktop simulation?

Social learning, self-efficacy, and interest

If social learning does in fact influence learning behavior in group-based EVE skills training,

then these dynamics should influence individuals’ performance and, in turn, self-efficacy

beliefs through vicarious experience [32]. That is, observing a similarly situated individual per-

form well or poorly will influence one’s beliefs about his or her own likelihood of success or

failure [36, 37]. This similarly situated individual is often referred to as a behavioral model for

the task at hand. Schunk [38, 39] and Bandura and Schunk [40] showed that when learners

observed a behavioral model successfully complete a cognitive task, their own feelings of effi-

cacy toward that task improved.

Given the relationships between social learning, self-efficacy, and performance, one would

expect that in learning environments that facilitate behavioral modeling, performance and

self-efficacy should tend to cluster. That is, the success or failure of a behavioral model should

influence the learning approach of observers through vicarious experience, which will then

affect observers’ performance and subsequent self-efficacy beliefs. This is likely to be especially

true when individuals are engaged in a novel task. For such tasks, the absence of prior mastery
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experiences means they are likely unable to draw on past models of success or their own prior

behaviors to regulate self-efficacy expectations.

Beyond self-efficacy, the effects of social learning on performance are likely to influence

trainees’ interest in the content that was learned and their intention to pursue related content.

That is, experiencing success in performing a task is predictive of further interest in that task

[30, 41]. For example, Harackiewicz and colleagues [41] demonstrated a reciprocal relation-

ship between situational (i.e., short term) and enduring (i.e., long term) interest and academic

performance in a longitudinal study with adult learners. Thus, to the degree that social learn-

ing influences individual performance in group-based EVE skills training, it may also shape

individuals’ interests as a result.

Just as the degree to which social learning occurs within the context of group-based EVE

skills training is unknown, the more specific influence of social learning on performance and

its subsequent effects on self-efficacy and interest are also yet to be explored. It is important to

examine these effects because, as we have explained, the degree to which social learning occurs

has the potential to directly influence learner performance behaviors, self-efficacy, and interest.

Thus, we pose the following research question:

Research Question 4: How does behavioral modeling in group-based skills training in VR

and desktop simulation affect performance and, in turn, self-efficacy and interest?

Overview of studies

We present two studies that each take an inductive approach to better understand the effective-

ness of career-oriented EVEs to facilitate career exploration and group-based skills training,

respectively. In Study 1, individuals using EVEs and traditional methods for welding career

exploration were compared on career-related attitudes, which addressed Research Question 1.

Those using EVEs were assigned to use either VR or desktop simulation, which allowed us to

address Research Question 2 by examining differences in career-related attitudes as a result of

higher immersion and fidelity. Study 2 filled the second research gap identified in this paper.

We first examined the extent that social learning occurred in groups using EVEs for welding

skills training, which answered Research Question 3. Second, we analyzed how social learning

dynamics among groups affect performance and attitudes, which answered Research Question

4. We employed the same EVEs as Study 1 which allowed us to examine differences in the

effects of social learning between EVEs varying in immersion and fidelity.

Study context

We focus on the context of welding in both studies. Welding represents a profession at the

human-technology frontier, incorporates many STEM principles, and is a middle-skills occupa-

tion that is critical to the manufacturing sector [42]. Further, welding is an appropriate context for

our studies because EVEs are particularly useful for facilitating welding career exploration and

skills training due to the inherent risk of injury (e.g., burns) with traditional training methods.

EVEs have the potential to remove barriers in education and skills training for welding and other

technical fields [3]. Below, we describe the two welding EVEs used in both studies.

Equipment

Virtual reality (VRTEX 360). The VRTEX 360 is a VR welding device that replicates the

environment of real-life welding. It includes a head-mounted display, a replica welding gun

and mounted welding plate that are synched with the virtual environment, and a monitor for

observers that displays in real-time what the welder sees. The head-mounted display provides

feedback cues, and the monitor provides summary feedback after each welding trial. The
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feedback cues include three icons that are visible to trainees while they weld. Each icon corre-

sponds to an aspect of the weld (e.g., gun angle, gun distance from plate, speed) and provides

synchronous regulatory feedback (e.g., a visual cue becomes increasingly red when the gun is

too far or close to the plate, and lights green when the gun is at the correct distance). Following

each weld, summary feedback is provided including performance score for several welding fac-

ets (e.g., welding angle, welding distance, welding speed) and an average score across all facets.

Unlike welding cues, performance scores are not visible to welders in real time. To view these

scores, welders navigate to a separate screen on the monitor.

Desktop simulation (VRTEX engage). The VRTEX Engage is a desktop EVE. The

VRTEX Engage is identical to VRTEX 360 in terms of the welding visuals, sounds, feedback

cues, and performance scores provided; however, instead of viewing the virtual environment

through a head-mounted display, trainees observe their weld on a computer screen. Thus, it is

a less immersive experience and has less fidelity to the real-life welding environment and task.

Trainees use a replica welding gun to weld across a plate that is just below the computer moni-

tor that displays the weld in real time. As with the VR experience, following a weld, trainees

can navigate to a feedback screen displaying performance scores.

Study 1

Participants and procedure

Study 1 was conducted with 119 adult undergraduates from a private east-coast university.

The mean age of participants was 19.3 years old, 81% were female, and 49% were white. All

participants were randomly assigned to one of five welding education conditions: literature,

video, desktop simulation, short-exposure VR, and long-exposure VR. Across all conditions,

participants were given a very brief introduction to welding via a 2-minute welding video, and

then given 5 minutes (10 minutes for the long-exposure condition) to engage with their weld-

ing material or activity.

In the literature condition (n = 22), participants were given a packet with several brief arti-

cles about welding and how to weld and were instructed to read through as much as they

could in the allotted time. Participants in the video condition (n = 22) were shown a 5-minute

video in addition to the introductory video. This video presented a specific type of welding

and the technique for performing it. Participants assigned to the VRTEX Engage (n = 23) prac-

ticed welding on a desktop welding simulation that simulates the experience of welding. Weld-

ers use a replica welding gun to weld across a plate that is just below the monitor, which

displays the weld in real time. Finally, participants in the short exposure (n = 40) and long-

exposure (n = 12) VR conditions practiced welding on the VRTEX 360 –fully immersive VR.

Both the VR and desktop simulation provided participants with identical feedback about their

performance and a hands-on virtual welding experience. Because the VR has a slightly longer

learning curve, we included both longer and shorter durations to ensure that participants were

not adversely affected by the longer orientation period.

After completing their activity, participants filled out a 10-minute questionnaire with

demographic questions and the measures indicated below.

This study received IRB approval form from the Office of Human Research at The George

Washington University. All participants read and signed informed consent documents before

participating in the study.

Measures

Welding self-efficacy. A four-item self-efficacy scale was written for this study in order to

measure welding career self-efficacy. Items for the scale were operationalizations of general

PLOS ONE Career-oriented educational virtual environments, social learning, and learning outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0273788 September 29, 2022 7 / 22

https://doi.org/10.1371/journal.pone.0273788


self-efficacy applied to the context of welding. Two example items are: “In regard to the job of

welder: I have confidence in my ability to do the job” and “In regard to the job of welder:

There are skills required of the job that I could not develop” (reverse coded). Each item was

rated on a scale between Strongly Disagree (1) and Strongly Agree (5). The reliability of the

measure was α = .62 (see online supplement for a factor analysis of this scale).

Welding interest. We employed a four-item self-report scale of welding interest. As with

welding self-efficacy, the items were written specifically for the purposes of this study in order

to measure welding interest. An example item is: “I would be interested in learning more

about welding.” Items were rated on a scale between Strongly Disagree (1) and Strongly Agree.
The reliability of the measure was α = .82.

Results

Career attitudes. Demographics for Study 1 are reported in Table 1 and descriptive statis-

tics are reported for Study 1 outcome variables in Table 2. We began by addressing Research

Question 1, which asked whether individuals using EVEs for career exploration differ in career

self-efficacy and interest from those using traditional methods for career exploration. We con-

ducted two ANOVA tests with welding condition as a between-subjects factor to test for differ-

ences in career-related attitudes (one participant in the literature condition and one

participant in the desktop simulation condition failed to fully complete the self-efficacy items

so that analysis was run with n = 117). Omnibus effects revealed significant differences

between the five conditions for welding self-efficacy (F(4, 112) = 2.83, p = .028, hp2 = .09), but

not for welding interest (F(4, 113) = .581, p = .677, hp2 = .02) (see Fig 1). Due to the insignifi-

cant omnibus test for interest, we only ran subsequent analyses for self-efficacy.

Table 1. Demographic information and welding experience of student samples in Study 1 and Study 2.

Study 1 (N = 119) Study 2 (N = 181)

Gender

Male 19% 30%

Female 80% 69%

Other < 1% < 1%

Race/Ethnicity

White, not of Hispanic origin 51% 58%

Hispanic 8% 12%

African American or Black 8% 9%

American Indian <1% < 1%

Asian or Pacific Islander 33% 19%

Age M = 19.4, SD = 2.7 M = 19.7, SD = 1.6

18–20 83% 75%

21–23 14% 19%

24–26 < 1% 4%

27 and older < 1% 1%

Previous welding experience M = 1.2, SD = .67 M = 1.2, SD = .71

Very inexperienced 90% 85%

Somewhat inexperienced 5% 7%

Neither inexperienced nor experienced 2% 4%

Somewhat experienced 3% 2%

Very experienced < 1% 1%

Note. M = mean, SD = standard deviation.

https://doi.org/10.1371/journal.pone.0273788.t001
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Next, we conducted a linear contrast analysis to test for differences in self-efficacy between

the EVE conditions (desktop simulation, short-, and long-exposure VR) and the literature and

video conditions. This analysis directly addressed our first research question by comparing a

linear composite of the sets of EVE conditions to a linear composite of the video and literature

conditions. Results indicated a significant contrast whereby those in the set of EVE conditions

reported higher self-efficacy (t(112) = -2.65, p = .009).

Lastly, we answered Research Question 2, which asked whether individuals using VR for

career exploration differ in career self-efficacy and interest from those using desktop simula-

tion. We conducted another linear contrast analysis between the desktop simulation condition

and a linear combination of the short- and long-exposure VR conditions. Again, we only ran

this analysis for self-efficacy due to the nonsignificant omnibus test for interests. Results did

not show a significant difference in self-efficacy between the desktop simulation condition and

VR conditions (t(112) = -.58, p = .582).

We also note here that an exploratory factor analysis of the 4-item self-efficacy scale demon-

strated evidence that the scale was not unidimensional. In keeping with the exploratory nature

of our study, we conducted supplementary analyses to examine the effects of immersion and

fidelity on each factor of the self-efficacy scale. These analyses are presented in an online

supplement.

Table 2. Means, standard deviations, and correlations among Study 1 outcome variables.

Variables M SD 1

1. Welding Self-Efficacy 2.95 1.06 –

2. Welding Interest 2.85 1.25 .39��

Note. N = 117. M and SD represent mean and standard deviation. �indicates p< .05.

��indicates p< .01.

https://doi.org/10.1371/journal.pone.0273788.t002

Fig 1. Welding self-efficacy was higher for participants in the long-exposure VR condition. Welding self-efficacy

(left) and interest (right) by condition. The conditions are (from left to right) literature, video, desktop simulation, VR

(5-min), VR (10-min).

https://doi.org/10.1371/journal.pone.0273788.g001
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Study 1 discussion

Study 1 demonstrated that using EVEs for career exploration is associated with more positive

welding career self-efficacy. Compared to reading or watching a video about the job of a

welder, those who explored welding through EVEs reported significantly higher welding self-

efficacy. No differences in attitudes emerged between those using VR and desktop simulation,

suggesting no incremental benefit of the former compared to the latter. Overall, the pattern of

findings suggests that using EVEs for career exploration is associated with greater self-efficacy

regardless of the relative levels of immersion and fidelity.

Study 2

The results of Study 1 led to the development of Study 2, which examined the use of career-ori-

ented EVEs in the instructional context of group-based welding skills training. We explored

the extent to which social learning occurs in this context (Research Question 3) and the role

that it plays in influencing career-related outcomes (Research Question 4).

Participants

Data collection took place in 2019 and 2020 at a mid-sized private university. Participants

(N = 181) were between the ages of 18 and 28, with a mean age of 19.7 years old. Participants

received course credit for participation. The sample was 69% female, and 58% White, 19%

Asian or Pacific Islander, 9% African American or Black, and 12% Hispanic. Participants

reported their experience with VR and their experience with welding on a 5-point Likert scale,

with 1 indicating a very little experience and 5 indicating a very high degree of experience. On

average participants reported having very little experience with EVEs (M = 1.60, SD = .91) and

very little previous experience with welding (M = 1.24, SD = .71), indicating that virtual reality

welding largely represented a novel task for participants.

Procedure

The VR and desktop simulation used in this study were the same as Study 1. Participants were

assigned to groups of three or four when they registered for the experiment. Groups were

assigned to use either the VR or desktop simulation. Groups began by watching a brief intro-

ductory video on welding. Following this video, the facilitator provided an orientation for

proper use of the hardware and navigation of the software on the VR or desktop simulation. A

full welding demonstration was not given to ensure that group members served as behavioral

models for each other. A single weld typically takes 30 seconds to one minute. Though there

was variability in the time it took to complete one weld, five minutes was sufficient for partici-

pants to complete several welds (M = 4.18, SD = 0.18). Each group member, one at a time, was

provided a five-minute interval to weld. As one member in a group welded, all other members

were positioned around the welder to be able to observe their behaviors and performance

(mimicking a real group training environment). In both the VR and the desktop simulation

conditions, non-welding group members were able to simultaneously observe the welding

member directly (e.g., their body positioning and hand movements) while also viewing the

welding member’s virtual/simulated welds on a highly visible monitor. Additionally, all partic-

ipants were free to encourage and give feedback to each other throughout the experiment.

During their five minutes of welding, participants were allowed to ask for feedback and to

check the feedback screen as often as they wanted. To promote a learning motivation among

these participants who were not real-life welding skills trainees, facilitators told participants to

try to improve their skills on each weld, and that higher scores indicated better performance.
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Data were collected from two sources during the study. First, objective performance scores

for every welding trial were stored. Second, after each participant completed their 5-minutes

of welding they were instructed to complete a 10-minute questionnaire including demographic

questions, attitudinal measures (same as in Study 1), and open-ended questions (see online

supplement).

This study received IRB approval form from the Office of Human Research at The George

Washington University. All participants read and signed informed consent documents before

participating in the study.

Measures

Welding performance. Each welding trial was objectively scored on several technical

welding criteria (e.g., welding angle), and these welding criteria were averaged to create an

overall performance score for each trial. As mentioned, all performance scoring was auto-

mated. Performance was scored from 0 to 100 with 0 indicating the poorest performance and

100 indicating the best performance. Participants’ final performance scores were calculated as

the mean of their overall performance scores across all of their welding trials.

Learning strategy. Learning strategy is another indicator of trainees’ learning behavior

while using the EVE. It was operationalized as the number of trials that a participant com-

pleted in the 5-minute time period. This continuous variable was conceptualized as indicating

whether an individual took a more methodical approach or an approach of trying to complete

a high-volume of welds. Fewer trials indicated that an individual proceeded slowly, likely stop-

ping between each trial to monitor their feedback and ask questions of their peers or the exper-

imenter. A higher number of trials indicates that a participant attempted to fit in as many

trials as they could during the 5-minute period, hoping to improve through a greater volume

of practice.

Welding self-efficacy. Participants in Study 2 completed one of two welding self-efficacy

scales depending on whether they were assigned to VR or desktop simulation. We revised the

self-efficacy scale between the collection of data for the VR and desktop simulation conditions

to improve its psychometric qualities and the internal validity of this part of the study (see the

online supplement for more detail). Since these scales differed, any direct comparison between

VR and desktop simulation for self-efficacy in Study 2 is inappropriate. Individuals assigned to

VR (n = 131) completed two items measuring welding self-efficacy that were taken from the

four-item scale used in Study 1. These items asked participants about their confidence in

developing welding skill, which was of primary interest in this study, whereas the other pair

asked about participants’ current confidence in their ability to do the job (e.g., “I have confi-

dence in by ability to do the job”) (see the online supplement for the factor analysis of the full

4-item scale). The two scale items are: “In regard to the job of welder: I could develop all the

skills needed to perform the job well” and “In regard to the job of welder: There are skills

required of the job that I could not develop” (reverse coded). Participants rated their agree-

ment with each statement from Strongly Agree (1) to Strongly Disagree (5). The correlation

between these items was r = .56.

Participants assigned to desktop simulation (n = 50) completed a seven-item welding self-

efficacy scale. This measure was adapted to the context of welding from a scale of self-efficacy

for a college biology course that has been validated in previous work [43]. Participants rated

their confidence in performing the task described in each item from Not Confident (1) to

Extremely Confident (5). Example items are: “Understand the material taught in a welding

course”, “Develop the skills of a professional welder”, and “Comprehend the scientific and the-

oretical aspects of welding”. The reliability of this scale is α = .91.
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Welding interest. The interest scale used in Study 2 was the same scale used in Study 1

(see Study 1 Measures section).

Analysis and results

Data from several participants who did not complete measures or chose not to participate in

the welding simulation were removed before analysis. Of the final sample (N = 181), n = 131

(K = 42) used the VR and n = 50 (K = 14) used the desktop simulation. Unbalanced data were

due to a disruption in data collection in the spring of 2020 due to the COVID-19 pandemic.

We performed a series of exploratory quantitative analyses to address our third and fourth

research questions. Additionally, a supplementary qualitative analysis of participants’ open-

ended comments was conducted to provide a more detailed account of their attitudes toward

welding as career and toward learning with virtual environments (see online supplement).

Demographics and descriptive statistics for each variable are reported in Tables 1 and 3,

respectively. Of note, average participant welding performance significantly differed between

the two conditions. Those using the desktop simulation (Mperformance = 72.92, SD = 14.91) per-

formed better (t(180) = 6.44, p< .001) than those using VR (Mperformance = 49.19, SD = 15.70),

indicating that the highly immersive environment may add an extra layer of difficulty for

those inexperienced in both welding and virtual reality. Participants’ open-ended comments

support this notion (see online supplement). Given the study’s exploratory nature, sample size

differences, and difficulty differences, we analyzed the VR and desktop simulation groups sep-

arately rather than including condition as a moderator.

Group effects. We addressed Research Question 3, which asked to what degree social

learning takes place during group-based skills training with VR and desktop simulation, by

examining the degree to which our objective measure of welding performance and learning

strategy clustered by group membership. We calculated the intraclass correlation coefficient

(ICC (1)) for both criteria. These variables did not significantly relate to one another, suggest-

ing that they should be analyzed separately. An ICC reports the extent to which variables for

individuals within a group correlate with or resemble each other, indicating the strength of the

group effect for an outcome. For participants who used the VR, learning strategy (ICC = .61)

and welding performance (ICC = .48) displayed strong group effects. Differences between

Table 3. Means, standard deviations, and correlations among Study 2 variables.

Variable M SD 1 2 3 4 5 6 7 8 9

1. Condition 1.27 0.45 –

2. Gender 0.69 0.46 -.01 –

3. VR Experience 1.63 0.93 .06 .00 –

4. Welding Experience 1.24 0.70 .13 .02 .18� –

5. Group Size 3.37 0.63 .20�� .00 .04 .04 –

6. Learning Strategy (Total Welding Trials) 7.48 3.91 .15� -.08 -.09 .05 .07 –

7. Welding Performance 55.65 18.73 .57�� -.14 .15� .23�� .23�� .07 –

8. Welding Self-Efficacy (2-item) 3.71 0.96 NA -.30�� .03 .13 .01 -.12 .22� –

9. Welding Self-Efficacy (7-item) 2.27 0.94 NA -.42�� .13 .26 .00 -.27 .20 NA –

10. Welding Interest 2.81 1.11 .06 -.26�� .17� .27�� .01 .05 .18� .39�� .55��

Note. N = 181. For welding self-efficacy (2-item), n = 131. For welding self-efficacy (7-item), n = 50. M and SD represent mean and standard deviation. Condition:

1 = VR, 2 = desktop simulation. Gender: 0 = male, 1 = female.

� indicates p< .05.

�� indicates p< .01.

https://doi.org/10.1371/journal.pone.0273788.t003
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teams accounted for 61% of variance in strategy and 48% of variance in performance. ICCs

were relatively lower for the desktop simulation condition. Differences between groups in

strategy (ICC = .33) and performance (ICC = .26) accounted for 33% and 26% of variance,

respectively. Within group variance in strategy and performance were similar in both condi-

tions but between group variance was much greater for groups who used the VR. Overall,

group clustering of welding performance and learning strategy indicated that social learning

was present to a large extent in the VR condition, and to a lesser extent in the desktop simula-

tion condition.

Behavioral modeling. We took several steps to explore Research Question 4, which asked

whether behavioral modeling in group-based skills training in VR and desktop simulation

affects performance and, in turn, self-efficacy and interest. First, we explored the effects of

behavioral modeling within the welding groups using a linear mixed effects model. The first

welder (i.e., lead welder) was considered a salient behavioral model for all group members

because this individual was the first example of welding performance and learning strategy.

Therefore, the strategy and performance of each group member was regressed on the lead

welder’s strategy and performance, respectively. Group size and gender were initially exam-

ined as control variables, but both were not significant predictors and were removed. Group

membership was included as a higher order variable in each model.

The mixed effects model indicated that for VR (n = 89, K = 41), the strategy (b = .57 [95%

CI: .32; .81], p< .001) and performance (b = .46 [95% CI: .22; .71], p< .001) of the lead welder

significantly predicted subsequent group member strategy and performance. For the desktop

simulation groups (n = 35, K = 14), lead welder strategy predicted subsequent group member

strategy (b = .49 [95% CI: .18; .80], p = .003); however, lead welder performance did not signifi-

cantly predict subsequent group member performance (b = .30 [95% CI: -.11; .70], p = .160).

These results suggest, for the most part, that the learning strategy and the welding performance

of the lead welder set the course for group members that followed.

Next, we examined the degree that the learning strategy and welding performance of the

lead welder influenced participants with multiple behavioral models (i.e., two or more group

members welded prior to their turn), accounting for the strategy and performance of other

behavioral models. In other words, did the lead welder stand out as a behavioral model for

those with the chance to observe multiple behavioral models? Linear mixed effects models

were again used. Only participants with more than one behavioral model were analyzed and,

due to the small sample, we only analyzed the VR condition. We regressed the learning strat-

egy of group members with multiple behavioral models on the learning strategy of the lead

welder and of the behavioral model that welded immediately before them, with group mem-

bership included as a higher order variable. The same model was used for welding

performance.

Results indicated that, after controlling for the strategy and performance of the most imme-

diate behavioral model, the strategy (b = .13 [95% CI: -.11; .37], p = .278) and performance (b
= .21 [95% CI: -.05; .46], p = .110) of the lead welder was no longer predictive of the strategy

and performance of subsequent group members (n = 48, K = 35). On the other hand, results

indicated that the learning strategy (b = .67 [95% CI: .43; .91], p< .001) and welding perfor-

mance (b = .55 [95% CI: .29; .80], p< .001) of the most immediate behavioral model were

highly predictive. Thus, while the lead welder set the course for the group, the most salient

behavioral model for individual participants tended to be the peer that welded immediately

prior.

Performance as a moderator. We explored the possibility that the welding performance

of behavioral models influenced the degree to which subsequent group members imitated

their learning strategy. In other words, did the tendency to imitate the most immediate
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behavioral model’s learning strategy depend on how well the model performed? Using a linear

mixed effects model, we regressed the learning strategy of each group member on the learning

strategy of the group member that welded immediately before them, including an interaction

term between the behavioral model’s performance and learning strategy. No significant inter-

action was observed for either the VR (b = -.18 [95% CI: -.38; .02], p = .084) or desktop simula-

tion (b = -.34 [95% CI: -.72; .05], p = .085). The behavioral model’s average welding

performance was not found to significantly moderate the relationship between their own

learning strategy and subsequent group member learning strategy. These results suggest that

group members tended to imitate the learning strategy of behavioral models regardless of

whether they performed well or poorly. This finding was striking and is discussed further in a

later section.

Career-related attitudes. To examine the self-efficacy and interest components of our

fourth research question, we determined the direct effect of welding performance on self-effi-

cacy and interest in welding. A linear mixed effects model was again used to account for the

nested data. Self-report measures for welding self-efficacy and welding interest were both indi-

vidually regressed on participant welding performance. We included gender as a control vari-

able because gender was strongly related to performance, interest, and efficacy. Results showed

that while controlling for gender, performance in the VR condition did not significantly pre-

dict welding efficacy (b = .15 [95% CI: -.03; .23], p = .095) or welding interest (b = .09, [95%

CI: -.09; .26], p = .327), whereas performance on the desktop simulation did predict welding

efficacy (b = .38, [95% CI: .13; .63], p = .004), but not interest (b = .17 [95% CI: -.12; .46], p =

.254). To examine these findings in more detail, we included gender as a moderator in the rela-

tionships instead of as a control variable. Male was coded as 0 and female as 1. For the VR

there was a significant interaction effect between gender and performance in predicting both

welding efficacy (b = -.23 [95% CI: -.40; -.06], p = .004) and welding interest (b = -.14, [95% CI:

-.32; .03], p = .001). The relationship between performance and welding self-efficacy and inter-

est were stronger for males than females (See Fig 2). These same results were not observed for

the desktop simulation condition (see Fig 3), where gender did not moderate the relationship

between performance and welding self-efficacy (b = .07 [95% CI: -.17; .32], p = .340) or interest

(b = .009 [95% CI: -.26; .28], p = .885).

Study 2 discussion

The purpose of Study 2 was to investigate the degree to which social learning takes place in

group-based skills training using VR and desktop simulation, and how social learning dynam-

ics shape performance and attitudinal outcomes. We posed two research questions and

addressed them with specific analyses driven by observation and previous research on social

learning theory.

Regarding Research Question 3, results provide evidence for the presence of social learning

dynamics in varying degrees for both the VR and desktop simulation conditions. In both con-

ditions, groups converged on performance and learning strategy. Those in the VR condition,

though, demonstrated significantly higher convergence on both metrics, indicating a higher

degree of social learning. Second, we found that the welding performance and strategy of the

group’s lead welder strongly predicted the rest of the group members’ welding performance

and strategy, which demonstrates the effect of behavioral modeling. This finding prompted a

more detailed investigation of effects of behavioral modeling. We next examined participants

who observed multiple behavioral models (i.e., welded third or fourth) to see if they were more

strongly influenced by the person who welded right before them than the first welder. Analyses

showed that for these individuals, the welder who went right before them strongly predicted
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their welding performance and learning strategy while the first welder did not. Taken together,

these findings indicated that in both conditions the first welder set the tone for the group but

that individuals were more directly influenced by the performance and strategy of the welder

right before them.

The final aspect of behavioral modeling that we explored was whether an individual’s level

of welding performance affected whether subsequent group members modeled their learning

strategy. Surprisingly, analyses revealed a nonsignificant interaction between a behavioral

models’ learning strategy and performance in predicting the learning strategy of subsequent

group members. We interpreted these findings as a tendency for participants to model their

own learning strategy after the most proximate behavioral model regardless of how well that

model performed overall.

Next, we address the career-related attitudinal outcomes. Results demonstrated that weld-

ing performance was only predictive of male participants’ welding self-efficacy and interest in

the VR condition. These results indicate that performance in group-based EVE skills training,

which is evidently influenced by social learning dynamics, in turn influences welding self-effi-

cacy and interest for only a certain subset of trainees; namely, males using high immersion and

fidelity VR.

General discussion

In two separate inductive studies we explored the use of EVEs for the purposes of career explo-

ration and group-based skills training. By creating a safe learning environment for a variety of

Fig 2. Performance predicts welding self-efficacy and interest stronger for males than females in the VR

condition. Interaction effect of gender and performance on welding self-efficacy (top) and interest (bottom) for VR.

The darker line represents males and the lighter line represents females.

https://doi.org/10.1371/journal.pone.0273788.g002
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skill levels and removing barriers to group-based learning, career-oriented EVEs have the

potential to greatly expand learning opportunities. The cumulative results of these studies

demonstrate that EVEs may be useful training tools in these capacities, but they also highlight

some potential pitfalls particularly in the context of group-based training.

For career exploration, providing adult learners with the opportunity to experience welding

through an EVE was associated with greater expressions of self-efficacy than traditional meth-

ods of career exploration. This suggests that highly engaging and realistic career exploration

experiences can bolster feelings of agency toward a particular job more so than simply reading

or watching videos about that job. Welding interest was not significantly higher for those

using VR and desktop simulation. The reason may be attributable to our sample; largely afflu-

ent university students may report low interest in welding regardless of how they experience it.

If so, our findings may represent a lower bound of effects that would be larger in other sam-

ples. Lastly, neither career-related attitude differed between those using VR and desktop simu-

lation. Thus, there may be a ceiling for the positive effects of immersion and fidelity for these

outcomes. Career exploration using EVEs compared to traditional media appears to be benefi-

cial, but the relatively minor increase in immersion and fidelity of VR compared to desktop

simulation does not seem to provide an incremental benefit. Our findings highlight the poten-

tial utility of EVEs for promoting self-efficacy in technical careers and help to clarify the

career-related outcomes associated with the IVR features of immersion and fidelity.

Based on Study 2, we conclude that social learning dynamics are strong in group-based

EVE skills training. These findings are significant because, as we explained previously, it was

Fig 3. Gender did not moderate the relationships between performance and welding self-efficacy and interest in

the desktop simulation condition. Interaction effect of gender and performance on welding self-efficacy (top) and

interest (bottom) for desktop simulation. The darker line represents males and the lighter line represents females.

https://doi.org/10.1371/journal.pone.0273788.g003
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theoretically reasonable to argue that immersion and fidelity would have negative effects on

social learning dynamics by distracting learners from the task at hand and from the observa-

tion of others, rather than increasing their engagement with both. The clustering of welding

performance and strategy and the effects of behavioral modeling were remarkable in both con-

ditions, but they were even stronger in the VR than the desktop condition, providing signifi-

cant evidence that higher immersion and fidelity EVEs enhance social learning.

Study 2 also showed that participants tended to model their learning strategy based on

peers that welded before them, even when those models performed poorly. Thus, whether this

training experience improved performance was largely influenced by the level of proficiency

demonstrated by the behavioral model(s) that trainees observed. This finding is in line with

past research on social learning strategies. People do not engage in social learning indiscrimi-

nately, but rather tailor their strategies based on the learning context [44]. A salient character-

istic of the learning context in our study was participants’ unfamiliarity with welding and

virtual environments. In uncertain contexts (i.e., little prior task information), trainees tend to

rely more on social information when performing a task [45]. This idea has been supported by

research with novice learners [46], showing that they tend to incorporate exemplars even

when told that the example was ineffective or inappropriate. Our findings of strong social

learning effects are in line with this existing literature. This tendency has clear implications for

individual and group skill development, and subsequently career decision-making, which we

discuss in the section on practical implications.

Importantly, uncertainty in the learning context does not explain the larger social learning

effects observed for groups using VR compared to desktop simulation. In the development of

our research questions, we presented two possibilities whereby the use of EVEs could plausibly

enhance or diminish social learning. Our results suggest a positive relationship between social

learning and immersion and fidelity. Additionally, these findings support propositions made

by the CAMIL framework, which posits that instructional context interacts with the features of

IVR to influence learning [11]. In the case of the present study, the IVR features of immersion

and fidelity interact with the instructional context of behavioral modeling. Namely, in this

context there is a positive relationship between the level of these features and social learning.

In turn, social learning seems to predict career-related attitudes in specific cases (e.g., males

using VR), which may point to potential boundary conditions for relationships predicted by

the CAMIL framework. As we mentioned previously, the CAMIL framework also argues that

the link between IVR features of immersion and fidelity and learning outcomes is the psycho-

logical construct of presence [11]. Although we did not examine presence as a mediator in the

current study, future research should do so in order to test this proposition of the CAMIL

framework.

Lastly, performance did have some predictive ability for self-efficacy and interest; however,

the effects were limited to males using VR. This finding is in line with other research finding

gender differences in student outcomes with EVEs [20] and is significant in the context of the

current study because a gender gap already exists in technical fields with traditional training

methods [47]. If performance in group-based skills training in EVEs only increases career self-

efficacy for males, there is the potential for its use to widen the gender gap. We encourage

future research to explore this possibility in greater depth.

Finally, we want to highlight the relative brevity of the learning experience that participants

in our study had compared to what would be the norm in technical skills training or career

and technical education (CTE) programs. Each participant had just 5-minutes of direct inter-

action with the VR or desktop simulation and then another 10–15 minutes of observing others

for a total of 20 minutes of combined direct and vicarious learning. The fact that this brief

experience had significant effects on performance, learning strategy, and (to a lesser extent)
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attitudes speaks volumes about the potential of group training facilitated by career-oriented

EVEs. We discuss this practical potential more in the next section.

Practical implications

The first practical implication of our findings pertains to the implementation of EVEs to facili-

tate group-based training in CTE or other technical skills training. Our results show that if

learners are presented with a novel task in such a context, they tend to follow the example of

the task behavior that is modeled for them, regardless of its effectiveness. Consequently, it is

imperative that instructors provide trainees with authentic and credible task behavior model-

ing. This model could be the instructor, a subject or task expert, or another trainee who has

prior experience and expertise. The importance of expert behavioral modeling for training in

EVEs to be successful is echoed by other scholars [12]. Our findings also indicate that instruc-

tional design for group-based skills training in VR should consider the ordering of participants

to maximize the positive (and minimize the negative) effects of behavioral modeling. For

example, trainees who are known to be worse performers (or who have less experience) should

follow as closely as possible those who are known to be better performers. Importantly, due to

our use of a general student sample, future research that generalizes our findings to groups of

technical skills trainees using EVEs is needed. We discuss this idea more in following section.

A second implication of our study has to do with career decision-making and pipeline

development for technical careers. Social cognitive career theory (SCCT) [30, 31] proposes

that self-efficacy and career interests are two of the primary factors that lead to the setting of

career goals and ultimately intentions to pursue those careers. Based on this research, particu-

larly Study 1, exploring a technical job or learning technical skills in EVEs may be advanta-

geous for career self-efficacy. As we discussed earlier, EVEs also lower psychological barriers

to engaging in career exploration by creating a low-stakes, low stress learning environment for

novices. Thus, EVEs present opportunities for students to develop self-efficacy for careers that

they would not have otherwise considered. Further, SCCT is cyclical in nature, meaning that

repeated positive experiences reinforce beliefs and attitudes. Overall, if implemented correctly

with authentic behavioral modeling, EVEs show promise as a tool for facilitating individual

career pursuit and, consequently, talent pipeline development for important technical jobs like

welding.

Limitations and future research

There are a few potential limitations to the findings of this study to consider. The first has to

do with the generalization of these findings to other relevant populations. We drew our sample

from a population of undergraduate psychology students rather than from a population of

real-life welders or trainees. The purpose of the current study was to provide initial evidence of

the affordances of EVEs for the outcomes of career exploration and skills training, and the

effects of social learning dynamics in this context. Studies that establish phenomena empiri-

cally in a controlled setting are an important precursor to field research. Thus, a student sam-

ple was appropriate for our goals; however, our results may be limited in their applicability to

people who are actually participating in welding or other CTE training programs. The primary

differences between these populations are prior experience with welding or other technical dis-

ciplines and motivation. We encourage future research exploring the use of career-oriented

EVEs to facilitate career exploration and group-based skills training in CTE programs.

Another limitation lies in our measurement of welding self-efficacy. Since no such prior

measure existed, we were required to devise our own. While we attempted to write the items

for this measure based off prior measures of contextual self-efficacy, the four-item measure
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was not unidimensional. To further address this issue, we provided an online supplement that

presents the factor analysis of this scale and several supplementary analyses using the separate

dimensions of self-efficacy. A second caveat in regard to self-efficacy is that the directionality

of the relationship between self-efficacy and performance is somewhat contentious [48, 49].

Some have resolved this contention by conceptualizing feedback loops. That is, the observation

of others influences one’s self-efficacy beliefs, which in turn influence task approach, and

resulting performance, which then further influences self-efficacy. For instance, some have

found evidence for efficacy-performance spirals [50]. According to these findings, self-efficacy

and performance relate to each other over time such that initial self-efficacy influences perfor-

mance, which influences subsequent self-efficacy accordingly, and so on. These ideas should

be kept in mind when interpreting our findings regarding the relationship between perfor-

mance and self-efficacy.

Conclusion

In these two studies we sought to investigate the affordances of career-oriented EVEs for weld-

ing career exploration and group-based skills training, and the role that social learning plays in

facilitating these learning affordances. We discovered that EVEs are a potentially useful tool

for both purposes but that there are potential pitfalls that must be considered by educators and

further studied by scholars. Our findings inform theory and practice regarding the use of IVR

for education and training purposes and help to clarify the effectiveness of EVEs for promoting

career-related outcomes. Further, our findings expand the literature on the learning outcomes

associated with varying levels of immersion and fidelity as features of EVEs.
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