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Abstract

A vehicular network offers diverse beneficial services related to video streaming in different

types of setups, including rural and urban. Some of the recent issues in vehicular communi-

cation include prospect of leveraging machine learning and blockchain for privacy and secu-

rity enhancement, and resource allocation for video streaming coupled with integration of

6G networks for high data rate. Considering the extreme mobility and dynamic structure of

vehicular networks and the high data rates of video streams, a unitary route may not support

the required quality of a video stream. To achieve load balancing, connectivity among vehi-

cles, path diversity, and low delay, the multipath transmission with a delay-tolerant network

(DTN) concept based on a node disjoint algorithm is considered. In this proposed study,

video frames are categorized in accordance with priority and forwarded via two graded

paths. The first path carries the video reference frame, which is the most important frame for

video decoding. The second path carries neighboring frames during video transmission. For

the efficient selection of an optimal relay vehicle, a communication cost function is intro-

duced into the existing DTN. This communication cost function is based on three key

enhancement parameters: link stability rate, accessible bandwidth estimation, and transmis-

sion delay. The improvement in this study, is the integration of store-carry-forward strategy

to the existing multipath data forwarding strategy. On the basis of the simulation outcomes,

the proposed multipath video data communication in a vehicular DTN (MVDTN) scheme

can enhance video data delivery in terms of packet loss ratio, end-to-end delay, structural

similarity index measure, and peak signal-to-noise ratio. Considering the aforementioned

metrics, our proposed schemes outperform the baseline schemes, namely, road-based

multi-metrics forwarder selection evaluation for multipath video streaming and quality of ser-

vice-aware multipath video streaming for an urban vehicular ad hoc network by using ant

colony optimization.

1. Introduction

Current developments in the domain of intelligent transportation systems have led to the

exploration of different techniques, including the delay-tolerant network (DTN) approach [1,
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2]. DTN performs better in situations wherein traditional networks fail. DTN is a concept that

accepts some level of latency during communication to achieve optimal data delivery. A vehic-

ular DTN (VDTN) applies the concept of conventional DTN [3]. It is a network in which com-

munication is performed with the aid of vehicles as nodes and a roadside unit (RSU) as an

immovable node. Important applications of VDTN include on-road accident warning, traffic

status notification, vehicle collision prevention, real-time advertisements, and infotainments

[4–8]. A vehicular network is characterized by a highly dynamic topology that can be discon-

tinuous in some scenarios. VDTN is frequently used in a challenging network environment

wherein the direct path from the source node to the destination node is unknown. A vehicular

network takes advantage of this opportunistic concept and adopts the store-carry- forward

approach similar to that of DTN [9]. At present, the key challenge in dynamic topology is pro-

viding a strategy that can ensure reliable communication. Several proposals have been made in

the aspect of VDTN in recent years because VDTN is an efficient approach for handling the

disconnection problem in vehicular networks. However, VDTN design still faces challenges,

including unpredictable delivery time, incomplete data forwarding, and packet drop due to

topology/route change of a vehicular node [10, 11]. Apart from these challenges, multimedia

data, such as video files, are frequently large and require a stringent low delay time for efficient

delivery. Video streaming services has achieved considerable relevance in wireless communi-

cation, including vehicular networks [12, 13]. A vehicular node streams video through mobile

terminals, and sophisticated cameras are embedded into vehicles and RSUs. The transmission

rate and bandwidth requirements for video streaming are increasing, leading to the use of mul-

tipath data forwarding to attain path diversity and concurrent transmission for efficient data

delivery [14]. In the multipath approach, video data are segmented into many parts and simul-

taneously transferred along multiple routes [15]. Considering existing VDTNs, a certain level

of latency that is acceptable for non-video data but unacceptable for video data is still experi-

enced. The disconnection of vehicular nodes due to frequent changes in location of the RSU

that supplies video data and other streaming vehicles also contributes to latency. High latency

in video streaming leads to playback frozen, which can affect the quality experience of users.

Thus, minimum delay is required when video streaming in a vehicular network. Meanwhile,

multipath forwarding decreases the delay encountered during the store-carry-forward

approach in VDTNs. Vehicular node experiences intermittent disconnection due to high

mobility thus, requires a strategy such as the store-carry-forward in order to transmit video

data reliably. This is because, in store-carry-forward strategy node can store data into its buffer

for a certain amount of time until there is connection with another node before data if for-

warded. The consideration of multipath transmission is to achieve load balancing since video

data are split and can be forwarded via more than one path. Hence, the multipath strategy can

be used to reduce the duration of delay in the conventional DTN, and reliability of video data

delivery can be attained using the store-carry-forward strategy. At the time of writing this

paper, there are no studies that considered both multipath and the store-carry-forward strate-

gies for video data transmission in vehicular network. In addition, the estimation of video data

communication cost for selection of relay node is essential for choosing most efficient and reli-

able node for video data transmission. Thus, this has motivated our research, and we propose

a multipath video data communication in VDTN (MVDTN). The actual contributions of the

present study are as follows:

• Design of the store-carry-forward approach that considers multipath video data

transmission.

• Estimation of video data communication cost for relay nodes and path selection based on

VDTN.
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• Priority-based video frame forwarding that considers multiple paths.

The remaining sections of this paper are structured as follows. In Section 2, related work

based on current trends in VDTNs is discussed. The proposed MVDTN scheme is described

in Section 3. Section 4 presents the implementation and simulation results with their analyses.

Finally, Section 5 provides the conclusions and recommendations of the study.

2. Related work

This section presents an extensive review of VDTNs and multipath concepts in video data

transmission. VDTN Fu, Zhang, Feng and Zheng [16] aims to augment a category of vehicular

network applications; in its nature, this category is characterized by asynchronous data traffic

and delay-tolerant data. Such applications do not require end-to-end connectivity and may

tolerate a certain level of data loss. VDTN exhibits the concept of asynchronous, end-to-end,

and bundle (i.e., variable length message) oriented communication [17]. All these concepts are

inherited from conventional DTN. VDTN uses a layered architecture that varies from the

DTN architecture, such as the Internet Protocol (IP) based on the VDTN concept and the use

of control and data plane parting that considers out-of-band signaling. The disparity between

DTN and VDTN network architectures is that the former integrates a variable length layer

between the application and transport layer, facilitating the store and forward edge network

that enables multiple connections of heterogeneous networks. By contrast, the VDTN architec-

ture incorporates a variable length message into the network layer, presenting an IP over the

VDTN strategy. A variable length message can be considered a protocol data unit placed at the

VDTN network layer, and it signifies the collection of IP datagrams with similar attributes,

e.g., quality of service (QoS), destination node, and application. A distribution storage is based

on infrastructure that can partition data across multiple physical servers, which is usually

across more than one data center. On the other hand, the store-carry-forward strategy is

where each node stores data packets in the buffer, and whenever the node meets at another

node, then it forwards the duplicated data packet.

As shown in (S1 Fig), that is, the illustration of video packet forwarding, which includes the

I-frame, the P- and B-frames are transmitted via two paths: pt1 and pt2. pt1 carries the I-frame,

while pt2 carries the P- and B-frames from the source to the destination. This concept is

adopted to achieve load balancing and path diversity for effective video packet delivery.

Meanwhile, recent advancements in the domain of VDTNs should be discussed to explore

their limitations and advantages for further improvement. Recent studies have been catego-

rized into multipath oriented video data for vehicular networks (discussed in Subsection 2.1)

and delay-tolerant oriented vehicular networks (discussed in Subsection 2.2).

2.1. Multipath oriented video data for vehicular networks

Multipath video data forwarding in vehicular networks refers to the transmission of video

frames or sub-streams through more than one part to achieve lower traffic load than through a

single part and attain load balancing. Overall, the multipath approach helps achieve QoS in

video data routing. On the basis of baseline studies, a parallel multipath communication that

used forward error correction in video application was proposed in [18]. In this previous

work, a recovery approach for loss of actual data with redundant data information was consid-

ered. Furthermore, a few suggestions that cover several characteristics of multipath video

streaming were presented. These suggestions include storage capacity and delivery latency [8,

19–21], video data replication [22], and buffer enhancement and management [11, 23–25]. An

encounter-based routing approach that considers only the node with a maximum degree of

PLOS ONE Multipath video data communication in vehicular delay tolerant network

PLOS ONE | https://doi.org/10.1371/journal.pone.0273751 September 16, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0273751


connectivity was recommended in [26]. The node with the highest connectivity guarantees

higher video data delivery from the forwarding node to the targeted node. With regard to data

replication, an adaptive replica strategy that implements restriction on the amount of packet

copies to be stored by an individual node was proposed in [27]. The restriction can be tuned

by considering the number of fresh messages received and transmitted by a node. However,

the aforementioned studies did not consider DTN for improved video data delivery. In Kumar

and Kim [28], a probabilistic trust-centric data replication scheme was considered in VDTN.

This scheme adopts five different strategies, namely, replica cost function, data communica-

tion cost, data storage cost, data update cost, and trust calculation metrics.

A QoS-aware multipath video data forwarding scheme in urban vehicular networks that

applies the ant colony optimization (ACO) algorithm to improve video quality delivery was

proposed in [29]. This study used the ACO technique for determining primary and secondary

paths and improving the QoS routing path. In addition, the user datagram protocol (UDP)

and transmission control protocol (TCP)-expected transmission count have been used for

inter-frame and intra-frame transmissions, respectively. To minimize packet loss ratio in mul-

tipath routing over an urban vehicular network, optimal video stream distribution via multiple

paths that also satisfies QoS parameters was presented in [30]. The considered QoS parameters

included the amount of transferred video packets and freezing delay constraints. Thus, the

reconstruction and playback of video were attained with assured QoS. Furthermore, a multi-

path routing strategy for improving QoS in video streaming over a mobile ad hoc network was

suggested in [31]. The study used a real-time multimedia application to evaluate two promi-

nent multipath routing protocols: multipath ad hoc on demand distance vector and multipath

destination-sequenced distance vector. However, this previous work did not consider high-

speed nodes and topology-restricted patterns, such as in the case of vehicular networks. In

most multipath video data streaming approaches, VDTN that handles the intermittent discon-

nection issue has not been considered. DTNs adopt the carry-store-forward technique, which

exhibits the capability of handling packet losses due to disconnection problem.

2.2. Delay-tolerant oriented vehicular network

Considering the concept of DTN, a relay selection approach that considers multiple hop con-

nection to a targeted vehicle was proposed in [32]. The vehicle with the maximum number of

connections to the targeted node is selected as the preferred relay vehicle. Similarly, a relay

strategy that investigated network performance and outage gain was suggested for improving

data delivery in Feteiha, Hassanein and Kubbar [33]. In this strategy, vehicles are used as brid-

ges/connectors between on-road infrastructure to extend communication coverage. An adap-

tive carry-store-forward concept that considers two hop communication was proposed for

retransmitting missing data in [34]. The retransmission of missing data is performed by the

RSU through a relay node that stores data for onward forwarding to the targeted vehicular

node. Furthermore, the target vehicle adopts the speed of the relay vehicle for efficient delivery.

A cooperative store-carry-forward scheme for reducing outage during data forwarding was

suggested in [35]. This scheme uses two directional vehicles as a relay node for the store-carry-

forward process through inter-RSU collaboration. The initial relay vehicle is selected by the

RSU for data forwarding, and it subsequently forwards the data to the next available RSU. The

next available RSU evaluates the suitability of the initial relay vehicle to continue forwarding.

If it is unsuitable, then a new relay vehicle is selected for data forwarding. However, the scheme

is complex during the collaboration/cooperation phase, which can take more time during

relay vehicle selection. In another scheme, an enhanced bivios relay selection concept based on

VDTN was presented in [17]. This adaptive approach applies the multi-copy-relay concept to
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RSU. The RSU uses multiple criteria for selecting multiple vehicles. In this scheme, the relay

vehicle is only selected when the target vehicle receives an incomplete data. However, the RSU

can only connect to two vehicles at one time, minimizing the possibility of selecting the most

efficient vehicle as the relay node. A decision scheme for data forwarding, called the probabilis-

tic bundle relaying scheme, was proposed for improving relay selection. In this scheme, the

RSU estimates the suitable vehicle and makes a decision on whether to release the data bundle

to a moving vehicle. Suitability estimation and decision-making are determined on the basis of

several criteria [36]. Furthermore, density adaptive routing based on a node-aware strategy

was presented for enhancing data packet delivery. In this adaptive scheme, epidemic routing is

performed when the relay node is located in a low-density area [16]. Moreover, the node deter-

mines the importance of a data packet on the basis of a metric known as utility incremental

value. A replication-centric strategy, called GeoSpray, which is based on the spray-and-wait

procedure, was proposed in [9]. The procedure limits the number of packet copies that can be

forwarded by the sending node. In this strategy, the multi-copy concept is adopted during the

initial stage and restricted copies of the packets are spread. This strategy offers better delivery

possibility compared with some existing schemes, such as Geopps [37], which focus only on

multi-copy routing without considering spreading. The preceding studies may be effective in

handling the intermittent disconnection problem in a vehicular network; however, they may

not efficiently support a high-data-rate network, such as video streaming in a vehicular net-

work. The splitting and distribution of video streams via multiple paths that consider frame

priority may minimize packet loss due to high data rates.

3. MVDTN

The MVDTN is discussed in this section. The system model and problem formulation are pre-

sented in Subsection 3.1, while MVDTN is comprehensively discussed in Subsection 3.2.

3.1. Problem formulation and system model

The illustration of the system architecture with its interconnected components is presented in

(S1 Fig). As shown in the figure, two paths are determined for forwarding video streams: pt1
and pt2. pt1 forwards a video frame, called the inter-frame or I-frame. pt2 forwards a video

frame, called the intra-frame or B- and P-frames. The structure of video frames is depicted in

(S2 Fig). Considering the importance of the I-frame, which is typically used to predict the P-

and B-frames for the meaningful decoding of a video file, it is given higher priority by storing

multiple copies of the I-frame during the store-carry- forward process. The neighboring

frames (B- and P-frames) are forwarded via a secondary path, i.e., pt2, which has less priority.

Further discussion regarding group of pictures and Moving Picture Experts Group is provided

by [38]. Meanwhile, video streaming requires a backbone for continuous access to the video

data until complete download/upload of the video file is achieved. Therefore, a strategy for

storing video files must be developed to maintain continuous connectivity during video

streaming. The time required by a vehicle to exit a network is probabilistic in nature, and it

must be considered as an adaptive measure by the vehicular node to regulate network topol-

ogy. In addition, video streaming is frequently characterized by a high data rate, and thus, it

requires more bandwidth for successful transmission from the forwarding vehicle to the target

vehicle. Accordingly, splitting a video stream is necessary, and the split video frames are for-

warded through multiple paths to achieve path diversity and load balancing during

transmission.

Assume a graph G = (P, E) G = (P, E), where P represents the vertices P = p1, p2,. . .,pn and E
the edges E = e1, e2,. . .,en, such that 8P indicates an existing homogeneous communication

PLOS ONE Multipath video data communication in vehicular delay tolerant network

PLOS ONE | https://doi.org/10.1371/journal.pone.0273751 September 16, 2022 5 / 18

https://doi.org/10.1371/journal.pone.0273751


range. The relay vehicle can only store copies of the I-frame. However, the I-frame is for-

warded through the path with the highest performance, which has the lowest cost. Thus, an

optimized selection of relay node is implemented for enhanced performance. Therefore, we

formulate the cost of selecting a suitable vehicle for video transmission as the data forwarding

cost (DFC). DFC is a function of several parameters, namely, accessible bandwidth (AB), link

stability rate (LSR), and time of data delivery. AB is an important parameter that considers a

high data rate, such as a video.

The efficient transmission of video streams strongly relies on AB in the communication

channel. The medium contention is estimated based on Eq 1.

Medium Contention ¼ probability ðvpþ N þ SpÞ ð1Þ

Medium contention is estimated as the probability of the video packet collision vp of a

given value N, the vehicle with a mean speed Sp. The vp is considered as the unsuccessful data

packet transmitted, which is due to channel medium contention. In other words, it can be esti-

mated as number of packets dropped in the course of data forwarding. The Sp is expressed

based on Eq 2.

Sp ¼
Dv

TE
ð2Þ

Available bandwidth is estimated between the present relay vehicle (PRV) and the candi-

date relay vehicle (CRV). The expression of AB is given in Eq 3.

ABCRV ¼ ð1 � KÞ � ð1 � ðprobðvp;N; SpÞÞ � IDrv � IDtv � C; ð3Þ

where IDrv and IDtv represent the idle time of the receiving and transmitting vehicles, respec-

tively. The probability of the video packet collision vp of a given value N the vehicle with a

mean speed Sp, and the capacity of link C are considered for bandwidth estimation. In addi-

tion, the back-off estimation mechanism is represented as K, and K is expressed in Eq 4.

K ¼
DIFSþ back � off

Ddiff
ð4Þ

The period variation between the forwarding of two video frames is denoted as Ddiff, while

DIFS indicates the distributed coordination function inter-frame space. Back-off is the mean

value of the decreased back-off slot for a specific frame. The ABCRV value is normalized to be

between the range of 0 and 1, i.e., 0�ABCRV�1.

LSR relies on the density of the vehicular network and the intensity of mobility. Thus, LSR
is expressed in Eq 5.

LSRCRV ¼ de
� at; ð5Þ

where δrepresents the density of vehicles at a relay node area, α is the vehicle speed, and t is the

time series for each candidate vehicle. In addition, time series is used for different timings to

estimate the value of communication cost.

Transmission delay (TD) is one of the key parameters for achieving efficient video data

delivery, and it can justify the existence of load in a communication channel and vehicle den-

sity. The delay for forwarding a packet q is determined using Eq 6.

TDL ¼ Ts � Tr; ð6Þ

where Ts is the time when a video frame is sent from the relay node, and Tr is the time when a

video frame is received at the next forwarding vehicle. The mean delay for a time range T is
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expressed in Eq 7.

TDCRV ¼

PNr
q¼1

TDL

Nr
; ð7Þ

where Nr denotes the amount of received frames for the duration of T. Further delay difference

in an actual interval T is expressed in Eq 8.

TDF ¼

PNr
q¼1
ðDTS � DTrÞ

2

Nr
ð8Þ

Therefore, the communication cost of video data (CCVD) can be represented as Eq 9.

CCVD ¼ ABCRV þ LSRCRV þ TDF ð9Þ

By integrating weight values, i.e., β1+β2+β3 = 1, we derive Eq 10.

CCVD ¼ b1 � ABCRV þ b2 � LSRCRV þ b3�TDF ð10Þ

Hence, CCVD is evaluated for every path before video data transmission.

3.2. Information gathering phase

During this phase, which is (S1 Algorithm), the information required for vehicles to communi-

cate is exchanged via a hello message (HM). Information from HM is used by the present

forwarding vehicle or the source vehicle node (SVN) to select among candidate next forward-

ing vehicles (C-NFVs). The HM format comprises the time stamp for the HM receipt, the num-

ber of neighbors of a C-NFV, and the HM counter is set, providing the total number of HMs
received within every minute from each C-NFV. In addition, the position, direction, and speed

of a vehicle are also part of the HM format and comprise the content of the information table

of a neighbor node (ITN). An exchange of HM occurs every 1s between intermediate nodes,

and such exchange is called HM packet interval. This phenomenon is realistic because an

urban scenario is considered for network settings. Meanwhile, vehicles in both directions are

used in video data packet forwarding. All these details are stored in ITN and considered in

selecting the optimal relay node for video streaming. The information format of ITN is

depicted in (S3 Fig).

The general assumption in geographic routing states that SVN is aware of the location and

direction of the destination vehicle node (DVN) within the network by using a location service

system. The Global Positioning System is used in the current research. Thus, the DTN concept

is integrated into a greedy algorithm, such that important video data are stored, carried, and

forwarded to the relay node to minimize packet loss due to disconnection. In addition, the

greedy algorithm is enhanced, enabling it to consider the given cost communication and

become aware of vehicles closer to the DVN. Considering the high data rate of a video file,

multiple route data forwarding is adopted to attain load balancing, low delay, and path

diversity.

Considering line-by-line explanation of the (S1 Algorithm), Hello packet is created in Line

1 after which the hello timeout is checked whether it has elapsed or not at Line 2, if it has

elapsed then Hello message is created, and ID with all other information of the node is inserted

into the hello message in Line 3–5. Afterwards, hello message is disseminated with present

time and new timeout is created in Line 6 and 7. Then hello message procedure is terminated

in Line 8 and 9. A fresh procedure for Hello message receive is triggered in Line 10 and 11. It

checked whether hello message is received or not, if received the system checks whether the ID
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is presents in the ITN of the receiving node at Lines 12 and 13. Once the node ID is not present

in ITN, new record is created that contains all details of the senders’ node in Lines 14 and 15.

Otherwise, ID and all information of sender node is updated in the ITN in Lines 17 and 18.

The HM is discarded at Line 21, after which the procedure is terminated.

3.3. Data forwarding phase

From (S2 Algorithm), video packet forwarding that uses communication cost in relay node

selection is discussed. Video frames, including I-, B-, and P-frames, with their corresponding

frame IDs are initiated in Lines 1 and 2. The algorithm applies DTN and communication cost

concepts when forwarding video data. The store-carry- forward strategy is used to minimize

frame loss due to network disconnection. Communication cost evaluates all intermediate

nodes labeled as C-NFV from which relay nodes are selected. For CCVD, three important met-

rics, namely, AB, LSR, and TD, are introduced into the video data forwarding algorithm to

realize an optimal selection of relay node/NFV. ID of the intended destination node is inserted

in the video packet and the forwarding of video packet from source to destination node is trig-

gered in Lines 3 and 4, respectively. Lines 6 to 12 computes the metrics and then estimate

CCVD for each of C-NFV in the network. Thereafter, the first two suitable nodes that exhibit a

connection with the SVN are selected as relay nodes for multiple routes forwarding in Line 13.

The IDs of the two chosen relay nodes are inserted in the ITN at Line 14. Otherwise, C-NFV is

not selected as the relay vehicle, thus, the forwarding vehicle ID is deleted in Lines 15 and 16.

The condition for the best cost is tested on each candidate node, after which the I-frame video

packet is stored in the memory of the relay node in Lines 17 and 18. Communication cost is

evaluated when selecting the optimal node. The intermediate vehicle with the minimum cost is

preferred. The same weighting factor is assigned to the three metrics to allocate equal priority

to the metrics. The I-frame is transmitted via the path with the highest minimum cost and

other video frames including P-frame and B-frame are forwarded through second highest

minimum cost in Lines 19 and 20. The I-frame is carried for a random amount of time before

being retransmitted in the case of a packet drop in Lines 21 and 22. The retransmission guar-

antees the delivery of the important frame, thus, improving the quality of video streaming.

Whenever the relay vehicle receives video packet based on Line 25, CCVD is computed to

select other intermediary vehicles, and data packets are forwarded in Lines 25 to 28. Subse-

quently, the details of successful and suitable nodes are stored in ITN in Line 29. It is further

checked whether the candidate node is optimal in terms of minimum cost, when the node is

not optimal then the detail of the vehicle is deleted based on Lines 32 and 33. Otherwise, video

packet is forwarded to the suitable candidate vehicle in Line 26, hence, data packet forwarding

is continuously performed until one of the C-NFVs is identified as the DVN in Lines 37 and

38. Then, transmission terminates at the target node. The destination vehicle receives a video

frame, compares it, and then deletes duplicate I-frames on the basis of video packet ID in Lines

39 and 41. The procedure terminates when the DVN for optimal video delivery is found in

Lines 42 to 44. The flowchart of the video data forwarding procedure is presented in (S4 Fig).

It highlights the steps and connections of the video communication process that considers the

communication cost function.

4. Performance evaluation

The performance assessment of the proposed scheme is conducted through computer simula-

tion in this section. The proposed MVDTN scheme is benchmarked against state-of-the-art

schemes, including road-based multi-metrics forwarder selection evaluation for multipath

video streaming (RMF-MVS) [39] and QoS-aware multipath video streaming for urban
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VANETs using ACO (QoSM-ACO) [29]. The proposed MVDTN communication process is

implemented using the well-known network simulator version 2.3 (NS-2.3) developed by

Chen, Wang, Tsai, Chang, Liu, Guo, Lien, Sum and Hung [40]. The mimicking of vehicle

movement is performed using the simulation of urban mobility tool (SUMO) of Krajzewicz,

Hartinger, Hertkorn, Mieth, Ringel, Rössel and Wagner [41]. SUMO uses a mobility model

generator for a vehicular network called MOVE. To generate video frames, the popular Evalvid

tool developed by Klaue, Rathke and Wolisz [42] is used. Evalvid also provides the video qual-

ity evaluation framework. For the simulation area, Manhattan City’s electronic map, which

has a longitude of −96.574 to −96.563 and a latitude of 39.191 to 39.184 is considered for traffic

and mobility environment configuration as shown in (S5 Fig). The electronic map topology

and data are obtained from OpenStreetMap contributors.

The summary of information regarding the simulation parameters are provided in Table 1.

This information includes urban simulation region, simulation duration, vehicle speed, num-

ber of vehicles, media access control (MAC) protocol used, video strength, video streaming

duration, signal coverage, frequency of bandwidth used, propagation model, antenna system,

traffic type, channel type, transmission protocol, hello packet time-out, scenario time-out,

comparison schemes, and evaluation metrics used.

The performance evaluation of MVDTN is performed on the basis of two circumstances:

vehicle density and video packet sending rate (packet per seconds). The performance metrics

used for evaluation comprises packet loss ratio (PLR), end-to-end delay (E2ED), structural

similarity index measure (SSIM), and peak signal-to-noise ratio (PSNR). PLR is estimated on

the basis of the ratio of video packets dropped to the main quantity of video packets forwarded

from the source vehicle to the destination vehicle [43, 44]. E2ED is the overall time consumed

for a video packet to be forwarded from the source vehicle to the destination vehicle [45, 46].

SSIM is used to calculate the apparent similarity between the main video image and that of the

image received after transmission [47, 48]. PSNR indicates the ratio for the highest value of a

signal and the degree of distortion that disturbs video quality [23, 49].

Table 1. Simulation parameters.

Parameters Values

Urban simulation area 1000 × 1000 m2

Simulation time 600 s

Vehicle speed 2.78–13.89 m/s (10–50 km/h)

Number of vehicles 50 to 500

MAC protocol IEEE 802.11p

Video resolution 352 × 288

Video play duration 139 s

Transmission range 250 m

Frequency bandwidth 5.9 GHz

Propagation model Shadowing

Antenna model Omni-directional

Traffic type Constant bit rate

Channel type Wireless

Transmission protocol TCP and UDP

Hello packet time-out 1 s

Scenarios High-density urban scenario

Comparison protocol RMF-MVS and QoSM-ACO

Metrics PLR, E2ED, SSIM, and PNSR

https://doi.org/10.1371/journal.pone.0273751.t001
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4.1. Video packet sending rate

In this subsection, MVDTN is evaluated against RMF-MVS and QoSM-ACO on the basis of

the PLR, E2ED, SSIM, and PSNR metrics by considering various video packet sending rates.

In (S6 Fig), the PLR of the video data that considers various video packet sending rates is pre-

sented. In this figure, the number of vehicles is kept constant at 300, which is above the average

number of total vehicular nodes considered in the current study. A total of 300 vehicles are

considered because an urban scenario is used in this evaluation. The results indicate that PLR

increases as video packet sending rate increases. Video packet loss is minimal when data

packet sending rate is 1 to 3. The packet loss increases as the number of packets sending rate

increases. This is in connection with the fact that there is frequent signaling during communi-

cation between all neighbor vehicles. In video streaming, the delivery of data packets with few

losses is more important than the delay of�5 seconds experienced. Because the loss of packets

affects quality of the video streaming. Thus, there is balance in the tradeoff between cost and

performance. An increase in the PLR can be related to the high queuing rate at the receiving

and sending vehicular nodes and the intermittent disconnection between communicating

vehicles. However, packet loss is reduced due to the store-carry-forward strategy. The TD of

the video packet is also considered when selecting the most suitable vehicle as the relay node

in MVDTN, this assists in the selection of optimal performance. Therefore, the proposed

MVDTN outperforms the two baseline schemes, i.e., RMF-MVS and QoSM-ACO, with per-

formance percentage differences of 16.7% and 11.4%, respectively. Table 2 depicts the average

values of data packet loss ratio for the proposed MVDTN against the two benchmarking

schemes namely, RMF-MVS and QoSM-ACO.

In (S7 Fig), PLR is presented against varying vehicle densities. The video packet sending

rate is kept constant at six packets per seconds. The PLR of the video data decreases as the den-

sity of vehicles increases. This finding may be related to the improved connectivity approach

between vehicles during communication. The improved connectivity approach is based on

LSR and the store-carry-forward process for important video frames (I-frames). RMF-MVS

and QoSM-ACO have higher PLR compared with the proposed MVDTN scheme because the

link breakage issue that leads to packet loss is addressed via the DTN concept and the proposed

communication cost, namely, transmission delay, and bandwidth availability. Thus, MVDTN

outperforms RMF-MVS and QoSM-ACO with performance percentage differences of 13.2%

and 9.3%, respectively. Table 3 shows the average values of data packet loss for the proposed

MVDTN against the two benchmarking schemes namely, RMF-MVS and QoSM-ACO.

In (S8 Fig), E2ED is plotted against various video packet sending rates. The graph shows an

increase in delay as video packet sending rate increases. Probably, this is due to the connection

Table 2. Average results for video packet loss ratio.

Video packet sending rate (packet/sec) RMF-MVS QoSM-ACO MVDTN

1 0 0 0

2 0.5 0.3 0

3 0.7 0.5 0

4 1.0 0.8 0.3

5 1.3 1.1 0.6

6 1.7 1.5 0.8

7 2.2 2.0 1.0

8 2.7 2.4 1.3

9 3.3 2.9 1.6

10 3.9 3.5 2.0

https://doi.org/10.1371/journal.pone.0273751.t002
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with queuing delay at the receiving vehicular node. However, this phenomenon is minimized

in the proposed scheme by using the store-carry-forward method when selecting the optimal

node. In addition, the TD of various vehicular nodes at the multipath is estimated before

selecting the node for data packet forwarding. This procedure assists in achieving lower delay

throughout the video data streaming process. The percentage delay is estimated on the basis of

the maximal allowable delay of 5s. The proposed MVDTN performs better than RMF-MVS

and QoSM-ACO in terms of lower delay with performance percentage differences of 1.8% and

2.5%, respectively. Table 4 shows the average values of data packet end-to-end delay of the pro-

posed MVDTN against the two benchmarking schemes namely, RMF-MVS and QoSM-ACO.

In (S9 Fig), E2ED is plotted against different vehicle densities. The graph depicts a decrease

in delay as vehicle density increases. Thus, both QoSM-ACO and MVDTN have lower delay

compared to RMF-MVS. This could be due to the congestion in communication with the

numerous vehicular nodes that serve as relay nodes with an insufficient store-carry-forward

strategy, reducing store-carry-forward delay for each video packet during transmission. In

addition, the TD of various vehicular nodes at the multipath is estimated before selecting the

node for data packet forwarding. This procedure helps in decreasing delay during video data

streaming. The percentage delay is estimated on the basis of the maximal allowable delay of 5s.

The proposed MVDTN performs better than RMF-MVS and QoSM-ACO in terms of lower

delay with performance percentage differences of 1.1% and 1.6%, respectively. Table 5 depicts

the average values of data packet end-to-end delay with respect to vehicle density of the pro-

posed MVDTN against the two benchmarking schemes namely, RMF-MVS and QoSM-ACO.

Table 3. Average results for video packet loss considering vehicle densities.

Vehicle density RMF-MVS QoSM-ACO MVDTN

50 13.0 11.0 5.0

100 9.0 8.0 4.5

150 7.0 6.0 4.0

200 5.5 5.0 3.4

250 5.0 4.5 3.0

300 4.8 4.2 2.6

350 4.5 3.8 2.2

400 4.0 3.4 2.0

450 3.5 3.1 1.6

500 3.0 2.8 1.1

https://doi.org/10.1371/journal.pone.0273751.t003

Table 4. Average results for end-to-end delay considering data rate.

Video packet sending rate (packet/sec) RMF-MVS QoSM-ACO MVDTN

1 0.15 0.17 0.10

2 0.19 0.21 0.12

3 0.22 0.23 0.14

4 0.23 0.23 0.16

5 0.24 0.25 0.16

6 0.25 0.255 0.16

7 0.25 0.26 0.17

8 0.26 0.27 0.18

9 0.26 0.28 0.19

10 0.27 0.31 0.21

https://doi.org/10.1371/journal.pone.0273751.t004
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(S10 Fig) presents SSIM index on the basis of various video packet sending rates. The vari-

ous packet sending rate is used to demonstrate that the proposed scheme can carry out fast

selection of relay node. The SSIM of video data increases with a slight difference as video

packet sending rate increases for all the values considered. The increase in the value of the

SSIM index reaches its top when the data rate is above 8packets/sec. The SSIM index value

continues to increase when the data rate is above 10packets/sec. Interestingly, the SSIM values

for all three schemes are above the average acceptable value. The number of vehicles is 300,

which is kept constant during the simulation. RMF-MVS and QoSM-ACO have lower SSIM

than the proposed MVDTN possibly due to the relationship between the improved LSR con-

cept and the distributed video frame forwarding concept used for effective video data packet

delivery. Thus, the structure of the transmitted video image is nearly the same as the original

image before transmission. Therefore, MVDTN outperforms the two baseline schemes, i.e.,

RMF-MVS and QoSM-ACO, with performance percentage differences of 7.1% and 3.6%,

respectively. Table 6 shows the average values of SSIM index with respect to different data rate

of the proposed MVDTN against the two benchmarking schemes namely, RMF-MVS and

QoSM-ACO.

(S11 Fig) depicts the SSIM index based on different number of vehicles. The structural qual-

ity index of video data increases with a slight difference as video packet sending rate increases

for all the values considered. Interestingly, the SSIM values for all the three schemes are above

the average acceptable value. The number of video packets being sent is six, which is kept con-

stant during the simulation. RMF-MVS and QoSM-ACO have lower SSIM values compared

with the proposed MVDTN probably due to the relationship between the improved link

Table 5. Average results for end-to-end delay considering vehicle density.

Video packet sending rate (packet/sec) RMF-MVS QoSM-ACO MVDTN

50 0.24 0.26 0.20

100 0.22 0.24 0.19

150 0.21 0.22 0.18

200 0.20 0.21 0.17

250 0.195 0.20 0.17

300 0.19 0.20 0.17

350 0.19 0.20 0.16

400 0.19 0.20 0.16

450 0.19 0.20 0.16

500 0.19 0.20 0.15

https://doi.org/10.1371/journal.pone.0273751.t005

Table 6. Average results for SSIM index considering various data rate.

Vehicle density RMF-MVS QoSM-ACO MVDTN

1 0.820 0.840 0.860

2 0.810 0.850 0.865

3 0.800 0.840 0.868

4 0.805 0.838 0.880

5 0.820 0.850 0.885

6 0.830 0.860 0.889

7 0.831 0.860 0.892

8 0.831 0.860 0.897

9 0.832 0.860 0.897

10 0.832 0.870 0.910

https://doi.org/10.1371/journal.pone.0273751.t006
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stability concept and the distributed video frame forwarding concept adopted for effective

video data packet delivery. Thus, the structure of the forwarded video image is nearly the same

as the main image before transmission. Therefore, MVDTN outperforms the two baseline

schemes, i.e., RMF-MVS and QoSM-ACO, with performance percentage differences of 6.4%

and 5.1%, respectively. Table 7 depicts the average values of SSIM index with respect to vehicle

density of the proposed MVDTN against the two benchmarking schemes namely, RMF-MVS

and QoSM-ACO.

In (S12 Fig), PSNR that considers different video packet sending rates is presented. When

the video packet is one, PSNR starts at its peak but decreases as video packet sending rate

increases. The PSNR at when the packet sending rate is 3–9 packet/sec continue to decrease

rapidly as the packet sending rate increase. Meanwhile, the number of vehicles is 300, which is

kept constant during the simulation. PSNR continues to decrease, but it is still greater than the

average value of 20 dB, which is an acceptable value for various video packet sending rates.

The improved performance may be related to the splitting of video frames and forwarding

them via multiple paths. This step helps in minimizing congestion that can lead to noise in

video data. CCVD also assist in selecting the optimal node for video data packet transmission.

Different parameters, including link stability and AB estimation, are introduced into the

greedy and MVDTN routing approach. RMF-MVS and QoSM-ACO have lower PSNR values

than the proposed MVDTN probably because both baseline schemes do not consider the

MVDTN strategy in the selection of the optimal node for relay vehicles. Therefore, the pro-

posed MVDTN outperforms RMF-MVS and QoSM-ACO with performance percentage dif-

ferences of 7.3% and 5.1%, respectively. Table 8 depicts the average values of PSNR with

Table 7. Average results for SSIM index considering various vehicle densities.

Vehicle density RMF-MVS QoSM-ACO MVDTN

50 0.780 0.800 0.856

100 0.810 0.820 0.860

150 0.800 0.810 0.850

200 0.815 0.830 0.870

250 0.810 0.820 0.865

300 0.820 0.840 0.870

350 0.831 0.843 0.880

400 0.829 0.839 0.892

450 0.831 0.845 0.900

500 0.830 0.843 0.890

https://doi.org/10.1371/journal.pone.0273751.t007

Table 8. Average results for PSNR considering various data rate.

Video packet sending rate (packet/sec) RMF-MVS QoSM-ACO MVDTN

1 33.0 33.5 35.0

2 31.0 32.0 34.0

3 30.0 31.0 33.0

4 28.0 29.0 31.0

5 27.0 28.0 30.0

6 26.0 27.0 29.0

7 25.8 26.0 28.0

8 25.6 25.8 27.0

9 25.4 25.7 26.0

10 25.1 25.4 25.7

https://doi.org/10.1371/journal.pone.0273751.t008
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respect to data rate of the proposed MVDTN against the two benchmarking schemes namely,

RMF-MVS and QoSM-ACO.

In (S13 Fig), PSNR is depicted against different vehicle densities. PSNR increases as vehicle

density increases. The PSNR of video data begins to decrease when the number of vehicles is

greater than 150. PSNR continues to decrease, but it maintains an acceptable value that is

greater than the average value of PSNR, i.e., 20 dB for all the considered vehicle densities. The

video packet sending rate is six, which is kept constant. Better performance is achieved in

terms of PSNR despite the high density of vehicles being connected to the communication cost

adopted in this study. The strategy uses link stability between vehicles and considers the acces-

sibility of the bandwidth channel in case of congested communication in a vehicular network.

In addition, the store-carry-forward concept is used because the DTN approach is considered

with a modification in the aspect of the nature of the video frame to be transmitted. RMF-MVS

and QoSM-ACO have lower PSNR compared with the proposed MVDTN possibly because

the baseline schemes do not consider the store-carry-forward concept in relay node operation.

Therefore, the proposed MVDTN outperforms RMF-MVS and QoSM-ACO with perfor-

mance percentage differences of 8.1% and 4.5%, respectively. Table 9 demonstrates the average

values of PSNR with respect to different vehicle densities of the proposed MVDTN against the

two benchmarking schemes namely, RMF-MVS and QoSM-ACO.

5. Conclusions and future work

MVDTN is proposed and implemented to evaluate its performance against baseline schemes,

namely, RMF-MVS and QoSM-ACO. The overall objective of the current study is to design and

develop a DTN in vehicular settings by considering the multipath approach. A communication cost

strategy for selecting an optimal relay vehicle is developed for efficient video data delivery. In addi-

tion, distributive video forwarding across two paths considers the importance of video frames, with

priority being assigned during data forwarding. The store-carry- forward approach in DTNs is used

with modification in terms of the frames stored and forwarded for efficient video data packet deliv-

ery. The simulation results show that the proposed scheme outperforms the baseline approaches. To

further improve the proposed scheme in the future, video streaming on the Internet of vehicles that

considers artificial intelligence can be explored to enhance the field of autonomous vehicles further.
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