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Abstract

We present a short review of discrete-time quantum walks (DTQW) as a potentially useful

and rich formalism to model human decision-making. We present a pedagogical introduction

of the underlying formalism and main structural properties. We suggest that DTQW are par-

ticularly suitable for combining the two strands of literature on evidence accumulator models

and on the quantum formalism of cognition. Due to the additional spin degree of freedom,

models based on DTQW allow for a natural modeling of model choice and confidence rating

in separate bases. Levels of introspection and self-assessment during choice deliberations

can be modeled by the introduction of a probability for measurement of either position and/

or spin of the DTQW, where each measurement act leads to a partial decoherence (corre-

sponding to a step towards rationalization) of the deliberation process. We show how

quantum walks predict observed probabilistic misperception like S-shaped subjective

probability and conjunction fallacy. Our framework emphasizes the close relationship

between response times and type of preferences and of responses. In particular, decision

theories based on DTQW do not need to invoke two systems (“fast” and “slow”) as in dual

process theories. Within our DTQW framework, the two fast and slow systems are replaced

by a single system, but with two types of self-assessment or introspection. The “thinking

fast” regime is obtained with no or little self-assessment, while the “thinking slow” regime

corresponds to a strong rate of self-assessment. We predict a trade-off between speed and

accuracy, as empirically reported.

Introduction

Researchers in many fields have tried to understand how humans make decisions in various

tasks. In economics, scholars are interested in value-based decision-making, such as choosing

one investment strategy or an insurance package. Similarly, cognitive and neurological scien-

tists study how subjects make decisions in perceptual tasks, such as identifying the direction of

moving objects or comparing the sizes of two objects. Although these two types of decisions in

economics and in cognition appear different, it is often hypothesized that some parts of their
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decision processes should be the same. After all, to judge whether a predator runs left or right

while gathering food is a value-based decision with life-threatening risks in the wild.

The commonly implemented Expected Utility Theory [1] hypothesizes a decision-maker as

an “omniscient, computationally omnipotent Economic Man” [2]. From the theory, a deci-

sion-maker (DM) is predicted to choose the alternative with the highest expected utility,

formed by summing the values of events perceived by the DM (utility) weighted by the proba-

bilities for the events to occur. However, the assumption of rationality is often violated (e.g. [3,

4]), making the theory more of a normative guidance instead of a descriptive model. In light of

the descriptive inadequacy of Expected Utility Theory, two approaches, among others, have

been shown to accurately describe human decision-making. The first class of models, known

as accumulator models [5–7], represents the deliberation activity leading to a decision as a

noisy accumulation of evidence over time. According to the models, choice is triggered once

evidence accumulated in favor of one alternative reaches a given threshold. As for preferential

choice under uncertainty, the most famous accumulator model is Decision Field Theory

(DFT), where the decision process is represented by a (sophisticated) random walk [6]. Two of

the present authors recently developed a model in the same fashion, called Stochastic Repre-

sentation Decision Theory (SRDT [7]). Here, the choice set determines the topology of the

space in which the representative random walk wanders. These models recognize fundamen-

tally that decisions take time. As a result, they can account, among other patterns, for the role

of time pressure on choice [8, 9]. Additionally, from the connectionist point of view, multiple

evidence paths evolve in parallel and accumulate to construct a decision. These models can be

also simplified in the form of classical random walks [10].

Notwithstanding the degree of sophistication achieved by classical theories of choice, they

share the limitations imposed by the classical axioms of probability theory [11]. In particular,

these theories cannot account for other prominent biases, such as order effects [12] and the

conjunction fallacy [13].

Quantum formalisms of cognition on the other hand [14–17] propose that the mathemati-

cal properties of quantum probabilities are better suited to represent how human minds evalu-

ate competing alternatives by accounting for superposition and entanglement effects. This

provides a novel approach to account for both the probabilistic nature of decision-making

and the interactions between prospects. The quantum formalism does not imply a physical

quantum process in human brains; rather, it serves as a mathematical language to capture the

properties associated with human decision-making (see sub-section “Decision theories based

on static quantum models”). For example, quantum models provide a concise solution to the

order effect. Due to non-commutativity of measurement with certain eigenbases, a quantum

model naturally accounts for order effect, where one judgement can affect later judgements

[18]. Also, the assumption in economics that choices reveal preferences and beliefs is chal-

lenged by several studies, suggesting that the process of decision contributes to the construction
of preferences [19, 20]. In this respect, the active role of measurement in quantum models

offers a natural resemblance to choices that shapes the preferences.

While resolving the anomalies and fallacies, quantum models appear to be more explana-

tory theories than predictive theories. One notable exception is Quantum Decision Theory

(QDT) by Yukalov and Sornette [15]. QDT, besides rationalizing a large number of paradoxes

[21], provides a parameter-free prediction known as the quarter-law [22], which has been

shown to quantitatively account for observed choice patterns.

However, the underlying dynamics of a thinking process is ignored in static quantum mod-

els. Accumulator models, on the other hand, start by modeling plausible computational mech-

anisms represented by stochastic processes, which are taken as coarse-grained descriptions of

the collective dynamics of more microscopic degrees of freedom (e.g. neurons or clusters of
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neurons). The advantage of such models lies in their attempt to account even in some very

rough way for the neurophysiologic substrate of decision activity, allowing to answer deeper

questions, such as why people’s choices are or appear to be stochastic.

Therefore, given the powerful characteristics of the quantum formalism of cognition on the

one hand, and of noisy accumulator models on the other hand, we aim to explore the possible

insights obtained by merging the two approaches, in a first attempt to formulate a computa-

tional theory of quantum cognition. The paper is constructed in the following way. In Section

“Review of two branches of decision models”, we review two branches of decision theories: evi-

dence accumulation models and decision theories based on static quantum models. In sub-sec-

tion “Previous decision theories based on quantum walks”, we review the previous attempts to

merge the two approaches, together with their limitations. Section “Framework of decision

theory based on discrete-time quantum walks” introduces our general framework in terms of

discrete-time quantum walks [23]. Section “Examples of application of the proposed quantum

walk framework to decision-making” presents several novel models based on the framework

that describe some prominent human biases. This serves as an illustration for the descriptive

power of quantum walks. Section “Conclusion” concludes.

Review of two branches of decision models

Stochastic decision theories: Drift diffusion model, DFT, SRDT

Models of decision-making based on the idea of accumulation of noisy evidence over time

have been very successful in different areas of cognition [5, 24, 25]. The choice process is

described by a dynamic accumulation of evidence in favor of each possible action; the option

whose cumulative evidence exceeds a threshold is chosen. Neuroscience research extensively

supports such choice mechanism [26]. As our present focus is on preferential choice under

uncertainty, we will summarize how decision field theory (DFT, [6]) works. Also, given that

some of the results we present here rely on insights from stochastic representation decision

theory (SRDT, [7]), we will give a short account of it.

Recap of decision field theory. Consider the simplest possible setup, a binary choice

between two binary lotteries:

L1 ¼ foA; p; oB; 1 � pg; L2 ¼ foC; q; oD; 1 � qg ð1Þ

Lottery L1 gives outcome oA (resp. oB with probability p (resp. 1 − p) and L2 analogously. In its

simplest formulation (see [6] for the complete treatment), DFT assumes that the preference

state P of the DM at time t is given by:

Pð0Þ ¼ z

PðtÞ ¼ z þ
Pt

k¼1
ðV2ðkÞ � V1ðkÞÞ

(

ð2Þ

where z denotes an anchor point (e.g. previous experience), while the time dependent subjec-

tive evaluations of alternatives read:

V1ðkÞ ¼ okðpÞuðoAÞ þ okð1 � pÞuðoBÞ

V2ðkÞ ¼ okðqÞuðoCÞ þ okð1 � qÞuðoDÞ
ð3Þ

In Eq (3), we have denoted with u(�) the DM utility function (assumed to be time independent)

and with ωk(p) a random realization at time k of the attention weight devoted to the branch of

lottery L1 yielding outcome oA. The formula captures the possibility that, from sample to sam-

ple, the DM may focus on different aspects of the lotteries. The evidence accumulation process

continues until |P| exceeds an inhibitory threshold θ. Specifically, the probability of choosing
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lottery L1 is given by:

PrðL1Þ ¼ ProbabilityðPðtÞ > y before PðtÞ < � yÞ ð4Þ

A sample trajectory of the preference state P is shown in Fig 1. At the empirical level, the

theory is operationalized by four parameters. The valence difference d = E[V1 − V2], its vari-

ance σ2 = Var[V1 − V2], the initial anchor point z, and the threshold criterion θ.

Recap of stochastic representation decision theory. Similarly to DFT, SRDT describes

the decision activity via a random walk, but with one key difference: outcomes and probabili-

ties are combined in a non-symmetric and non-separable fashion as dual features of an event,

rather than being simply multiplied to generate an index of worth. The idea is thus to capture

the empirically observed “interaction” between subjective probability and subjective value

[27–32]. People, for instance, tend to overestimate the likelihood of an event if the related con-

sequence is negative.

For the decision task in Eq (1), the representative process takes the form of a random walk

starting at the center of a “starfish” graph (see Fig 2). As before, we use random walk and its

continuous version (Brownian motion) interchangeably. Each leg of the starfish has an absorb-

ing boundary, and represents a probability-outcome pair of a lottery. The branch length

encode information about the probability (higher probability corresponds to shorter branch),

Fig 1. Sample trajectory of preference state in DFT. If the process reaches the upper boundary (resp. lower boundary) first,

then lottery L1 (resp. L2) is chosen. Reproduced from [6].

https://doi.org/10.1371/journal.pone.0273551.g001
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while the potential energy along the leg encodes information about the outcome. Specifically,

the Fokker-plank equation for the walker along, say, the branch representing outcome-pair

(oA, p)—denoted as 1a—reads:

@pðx; tÞ
@t

¼ u oAð Þ
@pðx; tÞ
@x

þ
D
2

@
2pðx; tÞ
@x2

pða; tÞ ¼ 0 8t ðabsorbing boundaryÞ

pð0; tÞ ¼ f ðtÞ ðprobability from other branchesÞ

8
>>>>><

>>>>>:

ð5Þ

where p(x, t) is probability density of finding the particle at position x (along branch 1a) and

time t, u(oA) is the constant drift encoding the utility of outcome oA and D is the diffusion coef-

ficient embodying the noise level of the decision processing. The second line of Eq (5) enforces

the absorbing condition at the end of the branch, while the third line accounts for the probabil-

ity mass coming from other branches.

The probability PT(L1, L2) of choosing L1 over L2 at some time t� T is then defined as the

probability for the random walk to be absorbed along the branches pertaining to lottery L1,

conditioned on being absorbed somewhere before time T:

PTðL1; L2Þ ¼ Pð1ajTÞ þ Pð1bjTÞ

PTðL2; L1Þ ¼ Pð2cjTÞ þ Pð2djTÞ
ð6Þ

While there are conceptual similarities between DFT and SRDT, there are also clear differ-

ences. The first concerns the topology of the space where the random walker lives. In DFT, for

any binary choice, the structure of the space is always simply one-dimensional, while in SRDT

it depends on the number of outcome-probability pairs pertaining to each lottery. Second, the

role of time-pressure is exemplified by the boundary distance (threshold θ) in DFT, while

SRDT makes use of a conditional absorption probability.

In terms of relative performance, SRDT is able to account for the role of time pressure on

choice without an ad-hoc anchor point z. On the other hand, DFT can accommodate

Fig 2. Stochastic representation of the decision process between lotteries L1 = {oA, p; oB, 1 − p} and L2 = {oC, q; oD,

1 − q}. Branches 1a−b (resp. 2c−d) represent the outcomes of L1 (resp. L2) and their related probabilities. The difference

between the continuous and dashed lines represent the energy potential associated with the constant forces {u(oA), u
(oB), u(oC), u(oD)} exerted on the Brownian particle along each segment {1a, 1b, 2c, 2d} respectively. The thick bars at

the end of each branch depict the absorption boundary conditions. The segment lengths {a, b, c, d} are determined by

the objective probabilities {p, 1 − p, q, 1 − q}. The probability of choosing lottery L1 (resp. L2) is given by the probability

of being absorbed along branch 1a or 1b (resp. 2c or 2d).

https://doi.org/10.1371/journal.pone.0273551.g002
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violations of independence from irrelevant alternatives [33], while the “Luce” form [34] of the

choice probability in SRDT rules it out.

Notwithstanding the structural differences, both models (as every other accumulator mod-

els) are essentially Markov processes. As argued in [35], Markov processes pose strong beha-

vioural boundaries, regardless of its detail. For these models, choice acts simply as a way to

reveal preference [36], i.e. the (choice) measurement by the experimenter does not affect the

state of the decision-maker. However, extensive evidence (e.g. [19]) points to a constructive

role of choice, i.e. people seem to select an optimization criterion that depends on the faced

task. The constructionist view of choice bears a striking resemblance to the “scissors” analogy

of Simon’s paper [37]. According to Simon, human decision-making can be represented by a

scissor in which one blade represents the cognitive capabilities of the decision-maker, while

the other blade represents the situational context within which the decision-maker must

choose. He imagined rationality as being shaped simultaneously by the environment structure

and the human computational limits. The active role of measurement in quantum theory,

which we now turn to in the sequel, may therefore serve as a powerful framework for describ-

ing preference construction.

Decision theories based on static quantum models

Brief review of the basics of quantum mechanics for decision theories. Before reviewing

the decision theories, we provide a brief primer on the mathematics of quantum mechanics,

which will be used below.

Hilbert space. The operations of quantum mechanics take place in a d-dimensional Hilbert

space H, which is the span of d orthonormal elements H ¼ span jsii; i ¼ 1; 2; . . . ; df g. Each

element of a basis jsii is written with the Dirac notation. The inner product of two elements

satisfies hsi|sji = δij, where δij is the Kronecker delta such that δij = 1 if i = j and δij = 0 if i 6¼ j
and hsij is the conjugate transpose of jsii. Thereby, a Hilbert space is complete. Pure quantum

states are represented by vectors in the Hilbert space.

Quantum state. A quantum state can be pure or mixed. A pure state is a unit vector ψi in

the Hilbert space and can be expressed as a linear combination of the elements of a basis:

jci ¼
Xd

i¼1

aijsii ð7Þ

where ai are the (complex) amplitudes of vector jψi projected on jsii and satisfy the normaliza-

tion condition such that jcj
2
¼ h cjci ¼

Pd
i¼1
jaij

2
¼ 1. Normally, a state jψi characterizes a

decision-maker’s mind when s/he is confronted with a decision task.

A mixed state, which describes an ensemble of pure quantum states or a quantum system

entangled with other quantum systems via a partial trace, is written as a density matrix r̂, and

can be expressed as:

r̂ ¼
X

i

oijciih cij ð8Þ

where ωj is the probability of state jψji. If ωi = 1 and ωj6¼i = 0, the density matrix r̂ describes a

pure state. If r̂ ¼ I=d, where I is the identity matrix and d is the dimension of the Hilbert

space, the state is maximally mixed and it refers to the maximum statistical uncertainty or the

minimum knowledge about the quantum system.
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Evolution of state. A quantum state in a closed system evolves by applying a unitary opera-

tor U(τ), such that:

jcðt þ tÞi ¼ UðtÞjcðtÞi ð9Þ

where U(τ) = exp(−iHτ). H is a Hamiltonian operator, which is Hermitian (H is equal to its

conjugate transpose) and time-independent in the case of a unitary operator. The evolution of

a density matrix by the same unitary operator is:

r̂ðt þ tÞ ¼ UðtÞr̂UyðtÞ ð10Þ

where U† is a conjugate transpose of U. The unitary evolution of a quantum state can be analo-

gous to the change of mind during a decision process without perturbations. The non-unitary

evolution of a quantum state is associated with an open system (see Eq (15)).

Measurement and observable. A physical quantity of an entity that is in the form of a quan-

tum state can only be observed by taking appropriate measurement. An observable A corre-

sponds to a physical quantity of interest. The operation to get the observable is called

measurement. In this paper, we are interested in projective measurements [38]. Thereby, the

observable A is Hermitian and can be decomposed as follows:

A ¼
X

i

biP
A
i ð11Þ

wherePA
i are the projection operators onto a basis of measurement and bi are corresponding

eigenvalues. Upon measuring observable A, the probability of getting a result bi from a pure

state |ψi or a mixed state r̂ is:

pðbiÞ ¼ h cjP
A
i jci ðpure stateÞ or pðbiÞ ¼ TrðPA

i r̂Þ ðmixed stateÞ ; ð12Þ

where Tr(�) is the trace of a matrix. The expected value of A is:

hAi ¼ h cjAjci ðpure stateÞ or hAi ¼ TrðAr̂Þ ðmixed stateÞ ; ð13Þ

After the measurement, the pure state |ψi or the mixed state r̂ collapses (or is updated) to a

new state corresponding to the result bi:

jci !
PA

i jci

jPA
i jcij

2
ðpure stateÞ ð14Þ

or

r̂ !
PA

i r̂P
A
i

TrðPA
i r̂Þ

ðmixed stateÞ : ð15Þ

This is the collapse postulate in quantum mechanics [39], distinguishing quantum behavior

to classical counterparts. In a decision theory based on quantum models, measurement often

refers to a decision action. The values elicited from observables determine the decision results.

Let us stress that the collapse postulate is indeed an additional assumption of quantum

mechanics, which does not necessarily apply to human decision-making. We thus need to be

careful in “importing” concepts from physics to the realm of choice theory. For example,

Yukalov et al. [40] use the quantum formalism only in the generalization of the classical Kol-

mogorov probability theory to the more general Hilbert space mathematics, leaving out the

collapse postulate. In contrast, Kvam et al. [41] make explicit use of the measurement
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assumption in Eq (14) to model the effect of prior choice (i.e. a measurement) to a subsequent

confidence rating.

The essential ingredient: Quantum interference. Quantum Probability Theory (QPT)

may be seen as a trade-off between the strict axioms of Classical Probability Theory (CPT) and

the loose structure of heuristic decision-making [42]. The QPT axioms are general enough to

account for a wide host of behavioral biases, while preserving minimum rationality require-

ments, such as Dutch book consistency [43].

The main difference between the classical and quantum techniques is the way of calculating

the probability of events. As soon as one accepts the quantum way of defining the probability,

it generally becomes nonadditive and one immediately meets such quantum effects as interfer-

ence and entanglement. Let us briefly outline the main ingredients of quantum interference.

In CPT, given two events E1 and E2, the following condition always holds (law of total proba-

bility):

PðE1Þ ¼ PðE1 j E2ÞPðE2Þ þ PðE1 j
�E2ÞPð�E2Þ ¼ PðE1 \ E2Þ þ PðE1 \

�E2Þ ð16Þ

P(E) denotes the probability of event E and �E is the complement of event E. In QPT, a state

vector |ψi. (Eq (7)) lying in a complex vector space represents the system of interest (state of

mind of the decision-maker). The probability of event E (e.g. taking a particular decision) is

given by (see Eq (12))

PðEÞ ¼ jPEcij
2 ð17Þ

wherePE is the so-called projection operator and jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReðzÞ2 þ ImðzÞ2
q

is the norm of

complex number z. In words, to obtain the probability of an event, we first project the state

vector onto the relevant subspace, and then take its squared length. The latter non-linear oper-

ation makes quantum probabilities generally non-additive. To see this, let us write the equiva-

lent of Eq (16) in the quantum case:

PðE1Þ ¼ jPE1
jcij

2

¼ jPE1
PE2
jci þPE1

ðI � PE2
Þjcij

2

¼ jPE1
PE2
jci þPE1

P�E2
jcij

2

¼ jPE1
PE2
jcij

2
þ jPE1

P�E2
jcij

2
þ q

¼ PðE2 \ E1Þ þ Pð�E2 \ E1Þ þ q

ð18Þ

In Eq (18), I and q denote the identity operator (identity matrix) and the quantum interference

term. As anticipated, due to the non-linearity, there is an additional contribution to the proba-

bility of event E1, encapsulated by the interference term

q ¼ h cj Py�E2
PE1

PE2
þPyE2

PE1
P�E2

� �
jci, which violates the classical law of total probability.

Let us also stress that in quantum mechanics P(E1 \ E2) 6¼ P(E2 \ E1) in general, as the projec-

tion operators may not commute (matrix multiplication does not satisfy the commutative

property). Many theories of quantum cognition have exploited the interference phenomena to

explain several observed human “irrational” patterns, ranging from Probability and similarity

judgments [44–46] to decision-making and Memory recognition [47, 48]. To exemplify, in
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QDT, the probability of choosing a prospect (lottery) πn among N alternatives is derived to be

pðpnÞ ¼ f ðpnÞ þ qðpnÞ
X

n

pðpnÞ ¼ 1; 0 � pðpnÞ � 1 ð19Þ

where the term f(πn) plays the role of classical probability, and the term q(πn) is the interfer-

ence term. The detailed derivation of Eq (19) and the relevant explanation are provided in “S1

Appendix”. As their classical counterparts, static quantum theories of decision-making are

fundamentally unable to answer important questions, such as the effect of time pressure on

choice and the distribution of response times [8, 9].

Decision theory and quantum walks

Motivation. The most straightforward way to take advantage of both evidence accumula-

tion models and quantum models is to implement quantum walks instead of random walks as

the evidence accumulator [49]. The quantum walk can be implemented in quantum comput-

ing and outperforms classical computation in some tasks due to its quadratic or exponential

speed up [50, 51]. The quadratic speed up is demonstrated by comparing the spread of proba-

bility distribution of a classical random walk and a quantum walk at the same evolution time

(see Fig 3), where the variance of a classical walk scales as t and that of a quantum walk scales

Fig 3. The probability distribution of a discrete-time quantum walk (blue line) and a classical random walk (orange dash

line).

https://doi.org/10.1371/journal.pone.0273551.g003
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as t2 [23]. Another dimension of benefits of quantum walks is that, with appropriate topologi-

cal structures, computation based on quantum walks retrieves a universal quantum computer

[52].

Previous decision theories based on quantum walks. In sub-section “Stochastic decision

theories: drift diffusion model, DFT, SRDT”, we reviewed several evidence accumulation mod-

els that capture the dynamical process of decision-makings. In sub-section “Decision theories

based on static quantum models”, we reviewed the essential quantum mechanical tools and

discussed their usefulness in cognition science and economics. Static quantum models provide

a strong explanatory tool, but they ignore dynamical properties of choice. For example, a deci-

sion theory based on a static quantum model hardly encompasses response time of a decision.

We hence focus on a class of quantum dynamical models, namely quantum walks, which con-

ceptually takes advantages of both evidence accumulation and quantum tools.

To explain human choice, there are two possible formulations of quantum walks: continu-

ous- and discrete-time quantum walk, henceforth denoted as CTQW and DTQW. Both walks

are implemented on discrete space (We omit the walks on continuous space due to the follow-

ing reasons: i) there is yet to be a discrete-time quantum walk on a continuous space; ii) the

characteristic propagation (e.g. ballistic spread) of continuous-time quantum walk cannot

arise in continuous space [53]). Busemeyer et al. [54] developed the first decision theory based

on continuous-time quantum walks. Their quantum walk model outperforms the classical ran-

dom walk models in predicting the dynamics of a task consisting of decision and confidence

rating [55]. Fuss and Navarro [10] used a discrete-time quantum walk to reconstruct a cooper-

ative and competitive parallel (CCP) model that better accounts for excitatory and inhibitory

effect of neural process. Both walks are typically implemented in one-dimensional space to

depict a binary-choice task (DFT employs a similar structure, see Fig 1). As in a Markov ran-

dom walk or a drift-diffusion process, the average position of the quantum walker shifts

towards one end of the space, which corresponds to a drift effect. In general, a binary-choice

decision is revealed by measuring the position of the walker. Nevertheless, the meaning of the

distribution and the process of making a decision is very different from a Markov random

walk or a drift-diffusion process. The differences also project to a different understanding of

the decision-making process [35].

In spite of the advantages of a decision model based on quantum walks, several studies indi-

cate that a mixed walk, which is an open quantum walk interacting with an external environ-

ment, better captures the decision process [10, 35, 56]. In the physical world, a pure quantum

state is hardly isolated. Thus, decoherence of the state occurs due to energy dissipation or any

other interactions with the environment. Decoherence is responsible for the transition from

quantum to classical probabilities [39]. By analogy, Busemeyer et al. [57] used a function that

combines a quantum walk and a Markov random walk by distributing weight on each. Fuss

and Navarro [10] implemented a constant decoherence method. In sub-section “Decoherence”

we will discuss different decoherence procedures, each having a particular behavioral

implication.

Let us now focus on the limitations of previous theories. This will serve as a motivation for

our new framework presented in Section “Framework of decision theory based on discrete-

time quantum walks”. Busemeyer et al. [54] proposed a CTQW to simulate a drift-diffusion

process governed by the Schrödinger equation instead of the Fokker–Planck equation. The

model formulation is similar to DFT, where a decision is made if a particle in a 1-D bounded

space wanders beyond the threshold towards either of the boundaries. As for DFT, the wander-

ing of the particle represents evidence accumulation. The preference is represented by the drift

that biases the walk. However, when a drifting force is introduced, space discretization intro-

duces the effect of localization in CTQW, whereas a similar effect is absent in a drift-diffusion
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process. The reason is as follows. In discrete space, the potential differs from site to site by a

finite amount ΔV, leading the “scattering” of the quantum wave function and multiple inter-

ferences. This can lead to a phenomenon called Anderson localization [58, 59], corresponding

to the spatial trapping (localization) of the walk by the multiple interferences. The significance

of the localization effect depends on the value of ΔV. Regarding the decision theory based on

CTQW, such an effect does not capture any cognitive process as far as we know.

In contrast, DTQW simulates a drifting effect with a different machinery (see sub-section

“Interference effect of choice on confidence”) and the localization phenomenon is absent.

Moreover, an extra degree of freedom of DTQW, namely the spin state, provides more possi-

ble ways to bias the walk, which accounts for different endogenous and exogenous factors that

influence decision-making (see sub-section “Influence of parameters on the probability distri-

bution” for effects of parameters and Section “Examples of application of the proposed quan-

tum walk framework to decision-making” for examples that employ these effects in decision

theories). Moreover, the previous decision theory based on DTQW [10] implements only a

specific type of walk, called the Hadamard walk. As there are many other quantum walks,

restricting to the Hadamard walk limits the breadth of possible representations of decision

theories.

To sum up, with a generalized DTQW on the one hand, we: i) avoid the localization effect

of CTQW; ii) go beyond the Hadamard walk, showing that our framework has much richer

characteristics to develop better decision theories. To gain further insight on decision theories

based on both types of walks, we first review a model based on CTQW in this section. As

already mentioned, regarding DTQW, the theory developed by Fuss and Navarro [10] relies

on a special case, namely the Hadamard walk, of our general framework (see Section “Frame-

work of decision theory based on discrete-time quantum walks”).

The continuous-time quantum walk model by Busemeyer et al. A continuous-time quantum

walk is constructed similarly to a Markov random walk. For a simple Markov walk, the proba-

bility of a particle to be present at position x 2 Z at a given time t is written as p(x, t). The evo-

lution of the local probability depends on the preceding neighboring probabilities:

pðx; tÞ ¼ qpðx � 1; t � 1Þ þ ð1 � qÞpðxþ 1; t � 1Þ ð20Þ

The time-dependent distribution is a vector p(t) = (. . ., p(x − 1, t), p(x, t), p(x + 1, t), . . .)T. The

evolution of the local probability at (x, t) gives a global evolution p(t + 1) = Q.p(t) where Q is

the the so-called transition matrix whose entry Qij is the probability of transitioning from posi-

tion i to position j in one time step. From expression (20), we have then Qi−1,i = 1 − q, Qi+1,i = q
8i 2 Z.

For a quantum walk, the common interpretation is that a particle lives in a superposition of

states at each given time, assuming a definite position upon performing a measurement. In the

decision theory proposed by Busemeyer et al. [54] based on CTQW, if the length of a finite

1-D space is L, the positions space x 2 [0, L] is discretized as a set of individual positions

{|xii, i = 0, 1, . . ., N}. The separation between successive positions is Δ = L/N. The Hilbert

space is given by the span of {|xii}. If we take the continuum limit Δ! 0, the Hilbert space has

infinite dimension and the position space become continuous. However, the continuous-space

quantum walk has distinct characteristics and is out of the scope of this paper. The state |ψ(t)i
of the particle representing the decision process can be written as a linear combination of posi-

tions at time t:

jcðtÞi ¼
X

i

aiðtÞjxii ð21Þ
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where ai(t) is the amplitude of the state at position xi at time t. The probability distribution at

time t in the position space is given by p(xi, t) = |ai(t)|2. The time evolution of the particle state

reads |ψ(t)i = Uψ(t0)i with U = exp(−iH(t − t0)). H is a N × N matrix with the following

entries:

Hii ¼ �
mi
D
; Hi� 1; i ¼ Hiþ1; i ¼ �

s2

D
2

ð22Þ

where μi is the potential at position xi, accounting for drifting forces and σ is the diffusion

parameter that determines how fast the probability distribution spreads. All other entries of H
are zero. As in other types of quantum walks, the variance of the probability distribution

spreads as t2.

The probability distribution in the position space of a quantum walker represents a decision

mind analogously to an evidence accumulation model, where the position of the classical ran-

dom walk in a 1-D space represents a confidence level or a preference towards a prospect. Nev-

ertheless, there is a remarkable difference in the representation of choice or confidence level.

The probability distribution can be monitored at each time step if a Markov random walk is

implemented. In contrast, the distribution is not accessible unless a measurement is per-

formed, which corresponds to the operator M ¼
P

i jxiih xij being applied to the system state.

As mentioned in sub-section “Decision theories based on static quantum models”, this modi-

fies the state ψi, disturbing the evolution of the walk. From theories based on evidence accu-

mulation models, the distribution is supposed to be constantly monitored by a decision-maker

without being disturbed. The perturbative nature of observations or measurements during the

evolution of a quantum system creates large differences between these two types of theories.

Kvam et al. [55] used a continuous time quantum walk as an evidence accumulator to rep-

resent a two-step decision task, with the first step being a decision and the second step a confi-

dence rating on the chosen hypothesis. Because of the active role of measurements in quantum

mechanics, they successfully predict the disturbance of the confidence assessment by the pres-

ence of prior decision and the oscillatory confidence level with decision time. Both patterns

cannot be easily accounted for by a Markov random walk. We present a similar application of

a discrete-time quantum walk in sub-section “Interference effect of choice on confidence”.

Framework of decision theory based on discrete-time quantum

walks

Mathematical basics

According to the reasoning in previous sections about the advantages of evidence accumula-

tion models and quantum static models in describing human decision behavior, we construct

a general framework for decision theories based on DTQW. Through the Feynman formula-

tion of quantum mechanics [38], the model represents the decision as the result of an array of

parallel accumulator models that interact in both constructive and destructive ways. This mir-

rors schematically the existence of many units of information treatment with coexistence of

excitatory and inhibitory couplings in the brain.

As already mentioned, a first DTQW model of decision was developed by Fuss and Navarro

[10], using the Hadamard quantum walk. However, this model fit does not significantly out-

perform a classical model. Here, we study a more general walk, where more degrees of freedom

are introduced, including the initial spin distribution and the two parameters of the quantum

coin operator.

Hilbert space. Compared to CTQW, it is not possible to construct a non-trivial DTQW if

the state of the particle is characterized only by its position [23]; an extra degree of freedom,
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spin, is added. Thus, the walk takes place on the Hilbert space H ¼ Hs �Hp, where

Hs � Span j  i; j !if g is a two-dimensional spin space and Hp � Span jxi; x 2 Zf g is a

position space with infinite dimension. The basis | i, |! i of the two-dimensional spin are

annotated with left and right signs as they are associated with left- and right-moving evolution

of the state.

State of the particle. The state of the particle is generally time dependent and can be writ-

ten as:

jcðtÞi ¼
X

x2Z

aðx; tÞ
Lðx; tÞ

Rðx; tÞ

 !

� jxi ¼
X

x2Z

cLðx; tÞ

cRðx; tÞ

 !

� jxi ð23Þ

The state is a linear combination of Kronecker products of spins and positions. We can

describe it as the wave packet of a particle, analogous to that in the physical world. At each

position x, there is a spin state (L(x, t), R(x, t))T coupled to a position |xi. The spin state

describes the spin distribution at each position and is a unit vector so that |L(x, t)|2 + |R(x, t)|2

= 1. Here the letters L and R represent the two components of the spin state, namely left spin

and right spin. The spin degree of freedom is crucial in determining the left- or right-moving

evolution in the position space (see Eq (28) below). The amplitudes a(x, t) are complex num-

bers and indicate the probability distribution in the position space. They satisfy the normaliza-

tion condition
P

x2Zjaðx; tÞj
2
¼ 1 8t � 0. It is convenient to write the amplitude and spin

state collectively as the characteristic state (ψL(x, t), ψR(x, t))T at position x and time t. Usually,

in a decision theory, the state of the particle represents the status of the decision-maker’s

mind, which changes with time during the decision process.

Additionally, The formalism using density matrices is the most general to describe a quan-

tum system. As introduced in sub-section “Decision theories based on static quantum models”

with expression Eq (8), a density matrix can be written as r̂ðtÞ ¼
P

i oijciðtÞih ciðtÞj where ωi
is the probability of the i-th possible pure state ψi(t).

Evolution. The state evolves by applying an unitary operator U so that |ψ(t)i = Ut|ψ(0)i.

The state of the quantum particle is redistributed over the position space by a shift operator

followed by a quantum coin operator. We define the following coin operator

C ¼
eix ffiffiffi

r
p eiz

ffiffiffiffiffiffiffiffiffiffiffi
1 � r
p

e� iz
ffiffiffiffiffiffiffiffiffiffiffi
1 � r
p

� e� ix ffiffiffi
r
p

2

4

3

5 ; ð24Þ

shift operator

S ¼ j  ih  j �
X

x2Z

jx � 1ih xj þ j !ih! j �
X

x2Z

jx þ 1ih xj ; ð25Þ

and total unitary operator

U ¼ S � ðC � IÞ ð26Þ

In the simplest case, the quantum coin operator C is uniform across the position space. If the

coin operators depend on the position x, we can write the coin operators as Cx instead. Param-

eters ξ and z control the bias of the walk, while ρ is related to its variance [60] (not to be con-

fused with r̂, the density matrix operator). The shift operator moves the particle one step to

the left (resp. to the right) if its spin is left (resp. right). If ξ = z = 0, ρ = 0.5, the coin is a Hada-

mard matrix and the quantum walk becomes a Hadamard walk. By applying U to |ψ(t)i for τ
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time steps, we have:

jcðt þ tÞi ¼ UtjcðtÞi ð27Þ

The coin operator acts on the spin state at each position x, and the shift operator move the

wave packet at position x towards x − 1 or x + 1. As already reported for the CTQW, the vari-

ance of the position distribution σ2 scales as t2 (ballistic spread), in contrast with the classical

diffusive behavior σ2 * t [49]. Similarly to Eq (20), the dynamics of the quantum walk in posi-

tion space can be described by the following system of two coupled difference equations:

cLðx; tÞ

cRðx; tÞ

 !

¼
eix ffiffiffi

r
p

cLðxþ 1; t � 1Þ þ eiz
ffiffiffiffiffiffiffiffiffiffiffi
1 � r
p

cRðxþ 1; t � 1Þ

e� iz
ffiffiffiffiffiffiffiffiffiffiffi
1 � r
p

cLðx � 1; t � 1Þ � e� ix ffiffiffi
r
p

cRðx � 1; t � 1Þ

0

@

1

A ð28Þ

From Eq (25), the shift operator splits the state at position x into left- and right-moving com-

ponents. If ξ = z = 0 and ρ = 1, the left- and right-moving components at position x and time t
becomes ψL(x, t) and −ψR(x, t), respectively, which means that the distribution on position

space propagates without deformation and independently along the left and right directions. If

ξ = z = 0 and ρ = 0, the left- and right-moving components invert the dependence on ψL and

ψR. In sub-section “Influence of parameters on the probability distribution”, we further analyze

the effects of parameters quantitatively.

From Eq (27), the corresponding evolution for the density matrix of the state is:

r̂ðt þ tÞ ¼ Utr̂ðtÞðUyÞt ð29Þ

where U† is the conjugate transpose matrix of U.

Initial state. The initial state |ψ(0)i normally represents the state of mind prior to the

decision stimulus. It is usually assumed symmetric around some initial position x0. For

instance, we can prepare a state where the spin state is independent of position and write it as

jcð0Þi ¼
L0

R0

 !

�
X

x2Z

aðx; 0Þjxi ð30Þ

The spin state will in general entangle with position state after evolution, so that |ψ(t)i cannot

be written as a product state (i.e. tensor product between a vector living in Hs and a vector liv-

ing in Hp). The simplest initial state is |ψ(0)i = (L0, R0)T� |0i. An analytic study of time-

dependent solutions of the quantum state |ψ(t)i with this initial state in an unbounded space is

performed in sub-section S2.1 of “S2 Appendix”, in which we follow the same procedure of

[23], but use a general coin operator instead of the Hadamard operator. Given that a closed

form solution is not obtainable, we study it mainly through numerical simulations.

Measurements. Two types of basic measurement can be performed. If we take the mea-

surement Mx = Is� |xi hx| at position x, where Is is the identity matrix in the spin space, we

obtain the probability of finding the particle at x at time t as:

pðxÞ ¼ hMxic ¼ h cðtÞjMxjcðtÞi ¼ jaðx; tÞj
2

ð31Þ

We can also measure the global spin state with

Ms ¼ jsih sj � Ix ð32Þ

where |si 2 {| i, |!i}, to obtain the corresponding probabilities for the global spin to be | i
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or |!i respectively:

pðLÞ ¼ hMLic ¼ h cðtÞjMLjcðtÞi ¼
Xþ1

x¼� 1

jLðx; tÞj2 ð33Þ

pðRÞ ¼ hMRic ¼ h cðtÞjMRjcðtÞi ¼
Xþ1

x¼� 1

jRðx; tÞj2 ð34Þ

By performing measurements, the particle state transforms into a new state, as described in Eq

(14). A pure state therefore becomes an ensemble of several pure states, or a mixed state. The

map representing the collapse of quantum states can be described by an operation-sum repre-

sentation [61]:

�ðr̂ðtÞÞ ¼
X

i

Mir̂ðtÞM
y

i ð35Þ

where Mi belong to a complete set of measurements that satisfy
P

i M
y

i Mi ¼ I and I is the iden-

tity matrix. The expression in Eq (35) is based on a positive operator-valued measure (POVM)

[61]. In the case of projective measurements in this paper, Mi are orthogonal projectors.

Hence, the POVM reduces to a projection-valued measure (PVM).

Boundaries of the walk. The walk can be implemented on an unbounded space or

bounded space. There are two types of boundaries that can be inserted to either one or both

sides of the 1-D space, namely reflecting and absorbing boundaries. The simplest way to add

an absorbing boundary at position �x is to set the coin parameter ρ = 1 at x � �x; the reflecting

boundary requires only ρ = 0 at position �x.

The intuition is the following. If the wave packet enters an absorbing boundary at �x from

�x � 1 for the first time at time t, from Eq (28) we know that cL �x; tð Þ ¼ 0 and only cR �x; tð Þ

has a non-zero magnitude, since the wave packet cannot be in �x þ 1, implying

cL �x þ 1; tð Þ ¼ cR �x þ 1; tð Þ ¼ 0. The evolution at the next step transmits cR �x; tð Þ to the

right such that cR �x þ 1; t þ 1ð Þ ¼ � e� ixcR �x; tð Þ according to Eq (28). Since cL �x; tð Þ ¼ 0,

there is no left-moving component shifting to position �x � 1 at time t + 1. Now, for all posi-

tions x > �x, ρ = 1. Hence, the evolution will continue passing the ψR to the right. As ψL is

always zero for x > �x, there is no left-moving components for all the wave packet to the right

of the boundary. As a result, the wave packet entering �x at time t will keep traveling to the

right without returning, the same for the wave packets entering �x at subsequent time steps.

The probability that the particle gets absorbed by the boundary can be found by taking the

measurement from Eq (31) at the locations beyond the absorbing boundary. In contrast to a

classical random walk, the wave packet cannot be completely absorbed due to a striking prop-

erty of quantum walks. This phenomenon was extensively studied for example by Meyer [62].

Qualitatively, the part of the wavepacket that is transmitted at the boundary reduces the inter-

ference between the reflected wave packet and the incoming wave packet one step before the

boundary. This reduces overall destructive interference, and creates an effective reflection at

the boundary. The effect of incomplete absorption is very distinct from a classical counterpart.

From [23], for a quantum walker on a line where only one absorbing boundary is present,

there is a finite probability for the walker to escape to infinity and not be absorbed by the

absorbing boundary. In the classical case, any absorbing boundary at a finite distance from the

starting point will eventually absorb the particle. An even more bizarre phenomenon occurs if

we add a second absorbing boundary on the other side of the walk. In the classical case, the

presence of the second absorbing boundary reduces the absorbing probability of the first one.

In the quantum case, placing a second absorbing boundary increases the absorbing probability
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at the first boundary. This is because the second absorbing boundary reflects a small propor-

tion of wave packets, such that eventually more wave packets arrive at the first boundary.

An equivalent way to set an absorbing boundary is through taking the measurement Eq

(31) at the boundary at each time step. In this case, the evolution is better represented by a den-

sity matrix since the measurement causes decoherence and results in a mixed state. The evolu-

tion operation followed by a measurement at each time step maps a state as:

r̂ðt þ 1Þ ¼
X

i

MiUr̂ðtÞU
yMy

i ð36Þ

where Mi is a set of position measurements at boundaries at x = b1, b2 and positions other than

boundaries x 6¼ b1, b2, which can be written as:

M1;2 ¼
X

x¼b1 ; b2

Is � jxih xj; M3 ¼
X

x6¼b1; b2

Is � jxih xj ð37Þ

A reflecting boundary is represented by the coin operator with ρ = 0 at the boundary. If a

wave packet enters the boundary at x for the first time from the left at time t, we have ψL(x, t) =

0 and ψR(x, t) is non-zero, as before. The next evolution at position x sends ψR(x, t) to position

x − 1, so that ψL(x − 1, t + 1) = eizψR(x, t). Then it sends ψL(x, t) to position x+ 1, which is zero.

This means that the operator at x inverts the right-moving component to a left-moving com-

ponent, which embodies the reflection.

Observables. For an unbounded space or a bounded space with reflection, the useful

observables are simply the spin (left or right) or the position of the particle or the conjunction

of the two. For a space bounded by absorbing boundaries, the information carried by spin and

position will eventually get destroyed by the absorption. Therefore, knowing the outcome that

the particle is absorbed by either of the boundaries is more useful. The most straightforward

application of the framework is binary decision tasks. The bias of a distribution in the spin

space or in the position space, or the absorption probability by two boundaries, are taken as

proxies for choice preferences. The position of the particle can also represent the degree of

belief or confidence.

Influence of parameters on the probability distribution

There are many parameters controlling the evolution of a quantum walk. In this subsection,

we focus on the ones that influence the variance in the position space and the bias in the posi-

tion or the spin space. We formulate the variance varp and the biases biasp in the position

space and biass in Eq (38). By assigning a value 0 to the left spin and a value 1 to the right spin

(the value assigned does not affect the result), we can define the following:

varp ¼
X

x2Z

ðx � mpÞ
2pðxÞ

biasp ¼

P
x2Zðx � mpÞ

3pðxÞ

½
P

x2Zðx � mpÞ
2pðxÞ�3=2

biass ¼
ð0 � msÞ

3pðLÞ þ ð1 � msÞ
3pðRÞ

½ð0 � msÞ
2pðLÞ þ ð1 � msÞ

2pðRÞ�3=2

ð38Þ

where varp and biasp are the variance and bias (or skewness) of the distribution in the position
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space, biass is the bias of distribution in the spin space. μp and μs are the mean in position and

in the spin space, which can be expressed as:

mp ¼
X

x2Z

xpðxÞ

ms ¼ 0 � pðLÞ þ 1 � pðRÞ

ð39Þ

The variance of a quantum walk is a factor contributing to the decision time and decision out-

come at different times. The bias of the distribution in the position space or spin space,

depending on the representation we choose for decision-making, is a measure of the tendency

of choice at different times.

To remove redundant parameters, we first degenerate the parameters using an analysis sim-

ilar to that by Tregenna et al. [60]. Let the particle start at position x = 0. Consider the simple

initial state:

jcðt ¼ 0Þi ¼
L0

R0

" #

� j0i ¼
eia ffiffiffi

Z
p

eib
ffiffiffiffiffiffiffiffiffiffiffi
1 � Z
p

" #

� j0i ð40Þ

where α, β and η are such that |L0|2 + |R0|2 = 1. Consider also the most general Coin operator

in Eq (24), with its parameters ρ, ξ, z. In sub-section S2.2 of “S2 Appendix”, we show that, with-

out loss of generality, we can constrain several parameters and still obtain all the possible evo-

lutions of the walk. For simplicity, we use the initial state jcðt ¼ 0Þi ¼
ffiffiffi
Z
p

; i
ffiffiffiffiffiffiffiffiffiffiffi
1 � Z
p� �T

� jx0i

where we fix α = 0, β = π/2 and x0 is the initial position of the particle. As for the coin, we can

set z = 0 and only vary ξ and ρ. Therefore, we are left with three parameters: ρ, ξ in the coin

operator and η in the initial state. If we generalize the initial state to Eq (30), the parameters act

similarly on the properties of the walk, since the initial spin distribution is invariant across the

position space.

We exemplify the influence of parameters in Fig 4 and summarize the results in Table 1.

The following more detailed analysis is based on the plots in sub-section S2.3 of “S2 Appen-

dix”. According to the plots, a larger ρ increases the variance when the walk is symmetric or

biased by ξ. This is similar to the effect of evolution time on the distribution in the position

space. However, when the walk is biased by η, increasing ρ first widens the spread, then the

variance drops as ρ approaches 1. This is because ρ enhances the bias due to η, and in the

extreme case where ρ = 1, there is only a single peak on one side, resulting in a minimum vari-

ance. We also observe that a larger ρ does not change the direction of the bias in the position

space, but enhances the bias due to η and eliminates the bias due to ξ.
According to Plot iv in Fig 4, the variation of ξ mainly governs the bias of the probability

distribution in both spaces and has less effect on the variance. The value of ξ ranged from −π
to π. An oscillatory pattern with a period 2π is observed, where the bias in both spaces is zero

at ξ = 0, peaks at ξ = −π/2 and reaches the minimum at ξ = π/2. Hence, we drop out the repeti-

tive domain of ξ and narrow it down to −π/2< ξ< π/2 in the following.

The parameter η also affects the bias, with a minor influence on the variance. If 0< η< 0.5,

the walk is biased towards the left, whereas 0.5 < η< 1 leads to a right-biasing walk. η = 0.5

corresponds to a symmetric walk.

Observed from all the plots, the bias in the spin space positively correlates with the bias in

the position space. From the plots ii and iii, varying parameter ρ has an oscillatory effect on the

bias in the spin space. This effect is similar to the oscillatory behavior of spin states over time,

which will be presented in sub-section “Interference effect of choice on confidence”. The
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Fig 4. Influence of parameters ρ, ξ and η on the probability distribution of a walk in the position space at 50 time steps with no boundaries at

both sides.

https://doi.org/10.1371/journal.pone.0273551.g004

Table 1. Summary of the influence of parameters on a walk.

Influence of parameters on the walk

Characteristics of

the walk

ρ 2 [0, 1] x 2 � p

2
; p

2

� �
η 2 [0, 1]

varp varp increases with ρ when the walk is unbiased or biased by ξ; it

rises and drops with increasing ρ if the walk is biased by η
varp changes periodically with

increasing ξ
varp rises and drops with increasing

η

biasp biasp is not effected if the walk is not biased by other parameters; it

rises and drops with increasing ρ if the walk is biased by ξ; it is

amplified by ρ if the walk is biased by η

The walk is biased to the right with

x 2 � p

2
; 0

� �
; biased to the left with

x 2 0; p
2

� �

The walk is biased to the right with

η 2 [0, 0.5]; biased to the left with η
2 [0.5, 1]

biass Similar to the above, with fluctuations Same as the above Similar to the above, with

fluctuations

Others A changing ρ in the position space produces a continuous drifting effect

https://doi.org/10.1371/journal.pone.0273551.t001
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oscillatory effects caused by both ρ and time confirm the similarity of the impacts of the two

parameters. Plot ii shows that the bias in the two spaces are weakly correlated.

Parameters η and ξ determine the bias encoded in the initial state before the evolution

starts. Parameter η determines the spin distribution of the initial state. From the study in [63],

parameter ξ of the coin operator only affects the bias at the position at which the particle is ini-

tialized. In fact, parameter ξ only affects the bias at the first time step, as documented by exten-

sive numerical simulations. However, the preference can still change after exposition to new

evidences in some decision scenarios. We thus need a method that biases the walk during the

evolution. In sub-section “Interference effect of choice on confidence”, we introduce a model

that allows a continuous drifting effect by gradually changing the parameter ρ of the coin oper-

ator across the position space. If ρ is smaller on the left side and larger on the right side of the

position space, the particle drifts to the right, and vice versa.

Decoherence

A pure quantum state can lose its coherence and become a mixed state. In a decision process,

this might occur due to the interaction between a decision mind and some environment that

distracts or disturbs the decision process. A quantum walk with absorbing boundaries experi-

ences a constant decoherence, as the particle is continuously probed by performing measure-

ments that implement the effective absorption process. If a decision-maker “checks” the

position of the particle from time to time to evaluate her confidence in making a choice (a sort

of introspection), this also leads to decoherence. From [56, 57], the decoherence effect is mod-

eled as a linear combination of a quantum walk and a classical random walk with correspond-

ing weights. This mixture may be difficult to justify as a represention of the deliberation

process of a decision-maker. Fuss and Navarro [10] introduced decoherence through a wave

amplitude damping model, commonly employed in quantum computing. With this method,

the spin distribution is completely shaped by the environment under full decoherence. Here,

we introduce another method to generate decoherence for a pure quantum state.

Suppose that at each time step there is a chance pm that a position and/or spin measurement

is performed on the quantum walk. The probability pm that a measurement occurs is then a

measure of the level of decoherence. If pm = 0, no measurement is performed and the state

remains pure. If pm = 1, the state undergoes maximum decoherence. Sets of measurement

based on the position basis, the spin basis, and both bases are defined as {Mp}, {Ms}, {Mp,s}:

fMpg ¼ f
ffiffiffiffiffipm
p

� Is � jxih xj : x 2 Z;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � pm

p
� Is � Ipg

fMsg ¼ f
ffiffiffiffiffipm
p

� j  ih  �Ip;
ffiffiffiffiffipm
p

� j !ih ! j � Ip;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � pm

p
� Is � Ipg

fMp;sg ¼ f
ffiffiffiffiffipm
p

� j  ih  j � xih xj : x 2 Z; ffiffiffiffiffipm
p

� j !ih ! j � jxih xj : x 2 Z;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � pm

p
� Is � Ipg

ð41Þ

The evolution is determined by Eq (36). The probability distributions associated with measure-

ment on different bases and different levels of decoherence pm are plotted in Fig 5. The maxi-

mum decoherence level pm = 1 always retrieves the distribution of a classical random walk in

all plots, which coincides with the findings by Aharonov et al. [49]. This is expected theoreti-

cally since a measurement at each time steps amounts to full decoherence where all interfer-

ence effects are suppressed. The classical random is recovered as a result of the probabilistic

nature of the quantum measurement process, which is akin to tossing a random coin at each

measurement steps. While the evolution of the quantum walk is purely deterministic, it is the

measurement process that introduces stochasticity.
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Fig 5 shows that a small value of pm (0.05, 0.15) already gives a characteristic shape of a ran-

dom walk (the distributions become more concentrated at the centre), which is very different

from the quantum walk where pm = 0. As the quantum walk spreads with quadratic speed

compared to the classical random walk, the variance of the distribution in the position space

acts as a measure of the quantumness.

Fig 6 shows the variance at time t = 50 as a function of the level of decoherence pm. One can

observe that the variance drops fast as pm increases from 0 for all types of measurement. The

rates with which the variance decreases for increasing pm are slightly different for the three

types of measurement, with the measurement based on both bases leading to the fastest

decrease. This quantifies the degree of vulnerability of the quantum walk in keeping its quan-

tum characteristic in the presence of measurements.

The level of decoherence or quantumness can be interpreted in the context of decision the-

ories as follows. As described by Yukalov and Sornette [64], quantum interference captures

deviations from rational behavior. Decoherence is responsible for the disappearance of inter-

ference terms, retrieving classical behavior. Our formulation of decoherence in terms of proba-

bilistic measurements can be descriptively interpreted in the following way: if a decision-

maker constantly “checks” her/his state of mind, the behavior will shift towards a non-interfer-

ence mode. This resonates with the evidence that continuous probing and self-assessment

make the decision-maker more rational. A specific prediction of decoherence in terms of rela-

tionship between computational time and probabilistic distortions, anticipating a speed-accu-

racy tradoff, is presented in sub-section “Probability Judgment”.

Examples of application of the proposed quantum walk framework

to decision-making

Probability judgment

Perception of probability modeled by absorption probability. A question often arises in

cognition science and economics: how do we perceive the probability or the risk of the occur-

rence of an event? The perception of probability is often referred to as subjective probability.

There are different techniques to assess subjective probability (see the review [65]). Typically,

people exhibit an inverse S-shaped pattern of the probability weighting function (e.g. red line

in Fig 7a) [66, 67]. In essence, subjects tend to overestimate small probabilities and underesti-

mate large probabilities. The empirical result from another study [68] produced a consistent

pattern of the mapping from objective to subjective probabilities. At the same time, people

Fig 5. Position probability distribution with different levels of decoherence pm. (a) Measurement in position space. (b) Measurement in spin space.

(c) Measurement in both spaces. Parameters are ρ = 0.5, η = 0.5, ξ = 0, step sizes sL = sR = 1 at time t = 50 in an unbounded position space.

https://doi.org/10.1371/journal.pone.0273551.g005
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tend to “ignore” very small probability events and consider as certain very high probability

ones [69]. The two patterns together result in an inverse double-S-shaped curve (e.g. green line

in Fig 7a). As there is no clear inversion point of probability estimation between “small proba-

bility” and “probability”, the model we propose in this section is able to produce a flexible

inversion point.

The idea is to represent the process of probability understanding by a random walk, wan-

dering in some abstract space whose properties encode objective probabilistic information.

Suppose a particle moves on a segment stochastically with identical small steps; each step

brings the particle randomly to either left or right with equal chances. If the distance from the

starting point and one end (say, left end) is a, and the distance from the other end is b, given

infinite time, it is a standard result in classical diffusion theory that the probability that a

classical particle hits the left end first is b/(a + b). Inspired by DFT and SRDT reviewed in sub-

section “Stochastic decision theories: drift diffusion model, DFT, SRDT”, we contruct an evi-

dence accumulation model of probability perception. Since the hitting or absorbing probabil-

ity exactly reflects the ratio of distances for a classical random walk, it is interesting to see how

this mapping changes if a quantum walk is used instead. A model developed from the DTQW

framework with degenerate parameters and a simple initial state has been described in sub-sec-

tion “Influence of parameters on the probability distribution”, where the coin operator and the

Fig 6. Variance of the mixed walk vs pm for the three types of measurement discussed in the text with parameters ρ = 0.5, η =

0.5, ξ = 0, step sizes sL = sR = 1 at time t = 50 in an unbounded position space.

https://doi.org/10.1371/journal.pone.0273551.g006
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initial state are:

C ¼
eix ffiffiffi
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p ffiffiffiffiffiffiffiffiffiffiffi
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3

5; jcð0Þi ¼

ffiffiffi
Z
p

i
ffiffiffiffiffiffiffiffiffiffiffi
1 � Z
p

" #

� jx0i ð42Þ

The particle starts at position x0 (x0 > 0). There are two absorbing boundaries at x = 0 and x =

N. If the “understanding” of probability is modeled through a classical random walk, given

enough time, a subject’s valuation of the probability of an event is taken as being objective.

With a classical random walk, as we have mentioned, the probability of being absorbed

summed over all times at one end of the interval is equal to the ratio of the distance from the

initial position to the other end divided by the total distance between the two ends of the inter-

val. Therefore, we encode the objective probability p for the choice encoded in the left end as

the ratio of the distance between the starting point and the right end to the total distance:

p ¼
N � x0

N
ð43Þ

Our object of interest is the probability that the particle is absorbed by the left boundary at

time t, given that an absorption event occurs. We denote this conditional absorption probabil-

ity as π(t). Its expression reads

pðtÞ ¼
pLðtÞ

pLðtÞ þ pRðtÞ
ð44Þ

where pL(t) is the absorption probability at x = 0 and pR(t) is the absorption probability at x =

N, at time t. Eq (44) can be understood in the frequentist interpretation of probability: by

launching a large number (ideally infinite) number of particles, π(t) is computed as the ratio

between the number of left absorptions to the total absorption events.

Fig 7. Subjective probability π vs objective probability p. The objective probability p is encoded in the relative lengths of branches explored by the

quantum walk, as explained in the text. The walks have unbiased parameters ξ = 0, η = 0.5. The distance between the two boundaries is kept as 50. In (a),

π(p) is plotted for different values of ρ at fixed t = 60; in (b), π(p) is plotted for different values of t at fixed ρ = 0.5.

https://doi.org/10.1371/journal.pone.0273551.g007
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We take π(t) as a proxy for representing the subjective perception of probability by human

subjects. Given a topology (distance ratio between absorbing walls) encoding the objective

probability of an event p, its perception π(t) depends on the underlying stochastic process and

the available time for deliberation. In the case of a classical random walk and infinite delibera-

tion time, pðtÞ t!1�! p as already mentioned. Let us now study what happens if the underlying

stochastic process is a quantum walk.

With the representation of deliberation by a quantum walk, the evaluation of the objective

probability becomes a tradeoff between efficiency and accuracy. A fully coherent quantum

walk, with its ballistic spread, quickly reaches a probability estimate (corresponding to a

smaller mean absorption time), which however is quite far from the objective probability (Figs

7 and 8). Instead, when the walk experiences decoherence, via successive measurements, the

stochastic process becomes slower (more like a diffusive spread), but the probability estimate

is more accurate (Fig 8b). Behaviorally, we can interpret the successive measurements as a

“conscious check” of the decision-maker to constantly be aware and in control of its probabil-

ity evaluation process. This operation is costly, resulting in longer processing time. In this

sense, probabilistic distortions arise when a quick and dirty evaluation is needed, in agreement

with evolutionary justifications of cognitive biases [70].

In our first analysis, we choose the unbiased parameter configuration ξ = 0, η = 0.5. The

subjective probability π(t) is plotted as a function of different objective probabilities p in Fig 7,

for different values of ρ and t. The dashed black diagonal line indicates the equivalence map of

π(t) = p, representing a perfect understanding of objective probability.

From Fig 7, at finite time and 0< ρ< 1, we observe inverse (double)-S-shaped curves for

approximately t> 60 or ρ> 0.5. Some curves show an inverse double-S shape (e.g. at t = 60 or

ρ = 0.5), describing the subjective perception of extremely small or large probabilities. A simi-

lar result was obtained from SRDT (Fig 9 in [7]), where the inverse double-S-shaped subjective

probability arises through the interplay of value-distortion (probability of an event influenced

by its magnitude) and time pressure. The model here does not need value distortion, but

assumes that the underlying stochastic process is quantum in nature, thus with intrinsic inter-

ference between different positions along the deliberation paths.

The two analyzed parameters ρ and t play a similar role in regulating the subjective proba-

bility. They both widen the spread of the walk. Therefore, different values of ρ and t result in

similar curves. Behaviorally, ρ can be interpreted as regulating an “internal time constraint”,

for example to save computational resources, even when there is no explicit time pressure. The

Fig 8. Subjective probability π vs objective probability p for different values of the probability pm that a position and/or spin measurement is

performed on the quantum walk. The objective probability p is encoded in the relative lengths of branches explored by the quantum walk, as explained

in the text. The parameter of the walks are (a) t = 75, ρ = 0.5. (b) t!1, ρ = 0.5. (c) t = 75, ρ = 1.

https://doi.org/10.1371/journal.pone.0273551.g008
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parameter t may be thought of as exogenous (e.g. a time limit imposed by the experimenter or

the environment). In the special cases where t!1 or ρ = 1, we have p ¼ 1

2
regardless of the

value of the objective probability p (purple dashed lines in Fig 7). While this appears nonsensi-

cal, one should note that a fully coherent quantum process hardly describes a real decision-

maker, who is more adequately thought of as an open quantum system interacting with its sur-

rounding environment. Indeed, for the asymptotic case t!1, a much more reasonable prob-

ability estimate is obtained as soon as the system is subjected to small decoherence. This can be

seen by studying the walk with different levels of decoherence pm (see also sub-section “Deco-

herence)”. The choice of measurement bases for decoherence is not crucial as they have similar

effect on the variance of the distribution in position space, here we choose the measurement

on the position basis. Fig 8 shows the mixed walk with t = 75, ρ = 0.5, where one can observe

that the patterns with different pm are very similar to those found in Fig 7. This is not particu-

larly surprising because pm is also associated with how fast the distribution spreads. We plot

the graph where t!1, ρ = 0.5 and t = 75, ρ = 1 with different levels of decoherence in Fig 8b

and 8c, respectively. It demonstrates that, at infinite time, the subjective probability π(t) still

depends on p for pm> 0. However, with ρ = 1, π(t) does not depend on p regardless of the

value pm. The quantum coin parameter ρ thus controls the sensitivity of the probability judg-

ment, independent of t and pm.

This sensitivity may change under certain circumstances. For example, in order to save

computational time, a decision-maker may “choose” to increase ρ to speed up the spread of

the distribution, which causes loss of accuracy. On the other hand, decoherence slows down

the evaluation and makes it more accurate. The evaluation of the objective probability is essen-

tially a tradeoff between efficiency and accuracy. In addition, the full decoherence retrieves a

rational evaluation. Conceptually, this coincides with the result of QDT by Yukalov and Sorn-

ette [15], in which utility theory is recovered if no quantum interferences are present.

Apart from the inverse (double)-S-shaped curve, another prediction from this model is

that the evaluation of small probabilities shifts from underestimation to overestimation with

increasing available time. Correspondingly, the overestimation of large probability shifts to

underestimation over time. Although in this section we focused on probability judgment

rather than value-based choice, the shift of probability evaluation may refer to the inversion of

risk attitude with increasing decision times. Clearly, to make actual predictions in this context,

the subjective probability needs to be embedded in a choice theory (e.g. rank-dependent util-

ity, [71]).

There are other possibilities to encode the objective probabilistic information, for example

in the initial spin state. An alternative is reported in “S3 Appendix”, showing qualitatively simi-

lar results.

A conceptual explanation of the conjunction fallacy. The conjunction fallacy described

by Tversky and Kahneman [13] reveals a strikingly irrational behavior of humans in the con-

text of probabilistic judgment. An event with specific conditions is considered more likely to

happen than an event with a more general condition. In the famous Linda’s example, given a

short description of Linda, the majority of people judged less probable the event A “Linda is a

bank-teller” with respect to the event A
V
B “Linda is a bank-teller and is active in the feminist

movement”. It is clear that, from a rational perspective, this is absurd: indeed, in accordance to

the axioms of classical probability theory, for any two events A and B, we should have P(A ^ B)

� P(A). Nevertheless, most people followed the reverse inequality.

The representation of subjective probability in terms of the absorption probability of a

quantum walk suggested in the previous section allows for a qualitative account of the phe-

nomenon. As reported by Ambainis et al. [23], considering a quantum Hadamard walk with
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only one absorbing wall that is to the left of the starting position, the probability that the quan-

tum walk exits to the left is 2

p
. If another absorbing boundary is placed at location n to the right,

the probability that the walk exits to the left actually increases, approaching 1ffiffi
2
p > 2

p
in the limit

of large n, corresponding to a more than 10% increase. Such behavior is strikingly different

from the classical case, where adding another absorbing boundary clearly decreases the proba-

bility of being absorbed by the first one. The origin of such behavior is quantum interference:

the addition of a second absorbing boundary on the right removes a part of the quantum

“waves”, which would otherwise have interfered destructively with another part of the “waves”

reaching the left boundary.

Consider now the following mapping:

• P(A) is given by the probability for a quantum walk to exit to the left when only a left absorb-

ing boundary is present. The left boundary represent the statement “Linda is a bank-teller”.

• P(A ^ B) is given by the probability for a quantum walk to exit to the left when an additional

boundary to the right is present. The right boundary accounts for the statement “Linda is

active in the feminist movement”, apparently reducing the number of walks terminating at

the left boundary.

Upon decoherence (sub-section “Decoherence”), the quantum walk becomes classical and

retrieves P(A ^ B)< P(A) for any bias and boundary locations. In contrast, depending on the

specific bias (coin operator) and the location of the walls, the fully coherent quantum walk

may reverse the inequality.

While the Conjunction fallacy has already been examined and explained in terms of quan-

tum interference [45], the novelty here is that the representation of subjective probability,

identified via the absorption probability of a one-dimensional quantum walk, explains both

the conjunction fallacy and S-shaped probabilistic distortions, connecting two seemingly dis-

parate phenomena. Because probability perception is described as a trade-off between effi-

ciency and accuracy (see sub-section “Perception of probability modeled by absorption

probability”), the model comes with a qualitative prediction: people making the conjunction

fallacy respond faster than those who do not, which is in agreement with empirical findings

[72].

Interference effect of choice on confidence

As mentioned in sub-section “Motivation”, Kvam et al. [55] used a continuous-time quantum

walk as an evidence accumulator to represent a two-step decision task. The perceptual decision

task they consider presents a set of randomly moving dots, with a certain proportion moving

towards the left or right, on a screen. A prior decision task is for a subject to determine the net

drifting direction of the set of dots. A confidence rating task requires the subject to rate how

much s/he believes the dots to drift to the left or right, with a rating scale from 0 (surely left) to

100 (surely right). With respect to a setup where subjects are asked only the confidence rating,

the prior decision causes either bolstering or suppression effect, depending on the elapsed

time between the action of prior decision and confidence rating.

A fundamental assumption in [55] is that both tasks can be associated with measurements

in the same space, i.e. the position space. Specifically, the probability of giving a confidence

rate x is represented by the probability of finding the walker at position x, while the probability

of choosing left (resp. right) is the probability of finding the walker at some position x 2 [0, 50[

(resp. x 2 ]50, 100]). While this can be a reasonable first approximation, this procedure for dis-

crete choices is somewhat artificial. A priori, the distinct nature of the task (discrete choice vs

continuous confidence rating) points to a representation in two different spaces. By employing
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a discrete-time quantum walk rather than the continuous one, the spin degree of freedom, due

to its inherent discreteness, is a natural candidate to represent choice probability, while we

leave the position degree of freedom to represent confidence rating. The correlation between

the two, described in Section “Framework of decision theory based on discrete-time quantum

walks”, ensures that the mapping does not lead to inconsistencies.

To retrieve an analogy with the CTQW model, we prepare a DTQW model for a case of

left-drifting dots as follows. A finite position space is prepared with x 2 [0, N]. The coin opera-

tors, prepared according to

Cx ¼
0 1

1 0

 !

; x ¼ 0; N ð45Þ

Cx ¼

ffiffiffi
r
p ffiffiffiffiffiffiffiffiffiffiffi

1 � r
p

ffiffiffiffiffiffiffiffiffiffiffi
1 � r
p

�
ffiffiffi
r
p

0

@

1

A; r ¼
x

N � 1
for x 2 ½1; N � 1� ð46Þ

are different across space. The coin operators at boundaries x = 0, N cause reflecting effects.

Increasing parameter ρ of the coin operators from left to right results in a drifting-like effect

towards the left boundary (supposing the net motion of the dots is toward the left). For this

perceptual decision task, a symmetric initial distribution in position and spin spaces is

assumed, modeling an unbiased view before the evidence accumulation has started. The initial

state is set as follows

jcð0Þi ¼
1
ffiffiffi
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p

1

i

 !
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XN
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where x0 = 50 is the center of the position space, the value of σ is 1/6 of the distance between

the two boundaries, indicating a distribution of initial positions concentrated at the center of

the position space. The initial state is the Kronecker product of an unbiased spin state and a

position state distributed as a normal distribution across the position space.

Fig 9 shows that the wave packets are drifting towards the left boundary and keep bouncing

back and forth near the reflecting boundary, which is analogous to the results of the CTQW

model (Fig 5 in [54]). The confidence rating x is equated to the probability of detecting the par-

ticle at position x, see Eq 31. If the particle is detected closer to the left boundary, the subject is

more confident about the left-drifting choice, and vice versa. The probability of choosing left

(resp. right) is identified with the probability of measuring the spin in the left state (resp. in the

right state), see Eq (32).

With the above construction, a particle starts to evolve at t = 0. In the first case (choice and

confidence rating), a measurement is performed on both the position basis and the spin basis,

leading to decoherence. The evolution of the corresponding state can be described by Eq 36. In

the second case (only confidence rating), the walk evolves without disturbance. Fig 10 com-

pares the expected position of the walk, which represents the confidence rating, with and with-

out the prior decision. The prior decision time is t = 50. We observe an obvious disturbance

with the prior decision. In the parts of the graphs where the expected position of the disturbed

walk is above that of the undisturbed walk, this corresponds to the bolstering effect (confi-

dence rating is amplified); in the parts of the graphs where the expected position of the dis-

turbed walk is below that of the undisturbed walk, this corresponds to the suppression effect

(confidence rating is weakened). The observations comply with the studies of the CTQW

model.
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Conclusion

We have presented a short review of discrete-time quantum walks with the aim of fostering

further research on their potential applications to model human decision-making. We suggest

that discrete-time quantum walks (DTQW) may be more suitable than the continuous-time

version (CTQW), in the goal of combining the strands of literature on evidence accumulator

models and on the quantum formalism of cognition. Due to its additional spin degree of free-

dom, the DTQW allows for a natural modeling of model choice and confidence rating in sepa-

rate bases (see sub-section “Interference effect of choice on confidence”). In the context of

probabilistic judgment, we provided a toy evidence accumulation model of probability percep-

tion, which describes the understanding of probability as a trade-off between efficiency and

accuracy. This simple model comes with interesting quantitative (S-shaped probability weight-

ing) and qualitative (faster response when making the conjunction fallacy) predictions.

Our framework emphasizes the relationship between response times and type of prefer-

ences, which has been extensively studied across several domains (see [73] and references

therein). Despite the mixed evidence, it is generally believed that faster responses are associ-

ated with heuristic thinking, while slower ones come from deliberative reasoning. In his book

“Thinking, Fast and Slow”, Kahneman [74] suggested that our decision-making results from

the interaction of two conflicting “systems” of reasoning, System I (fast and instinctive) and

System II (slow and deliberative). In this spirit, dual process theories have been shown to quan-

titatively explain many puzzling phenomena [75]. However, an on-going debate is present

about their neurological support [76]. Here, at least conceptually, we have proposed an alterna-

tive interpretation of the relationship between response time and type of response. Referring

to the probability judgment (sub-section “Probability Judgment”), there is only one process

going on, which is perturbed and transformed over time by probabilistic measurements (self-

assessments). The evolution of the process is controlled by the level of decoherence pm. This

has the effect of slowing down the walk, making it also more accurate. Within our CTQW

framework, the two fast and slow systems of [74] are replaced by a single system, but with two

Fig 9. Probability distribution of the discrete-time quantum walk (DTQW) described in the text in the position space at different times.

https://doi.org/10.1371/journal.pone.0273551.g009
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types of self-assessment or introspection. The “thinking fast” regime is obtained with no or lit-

tle self-assessment, while the “thinking slow” regime corresponds to a strong rate of self-

assessment.

Of course, the structural properties which have been presented through simple examples

are not sufficient to falsify the models. At this stage, the parsimony of its formulation and the

wealth of obtained properties, which are in qualitative or semi-quantitative agreement with

empirically observations, makes our framework interesting to further explore.
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Fig 10. Expected confidence rating vs time. The orange curve shows the evolution of the expected position of the particle

without a prior decision, the blue curve indicates the counterpart with a prior decision. The prior decision time is at t = 50. In the

parts of the graphs where the expected position of the walk with prior decision is above that of the walk with no priori decision,

there is a bolstering effect (confidence rating is amplified) and vice-versa.

https://doi.org/10.1371/journal.pone.0273551.g010
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