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Abstract

Muscle segmentation is a process relied upon to gather medical image-based muscle char-

acterisation, useful in directly assessing muscle volume and geometry, that can be used as

inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are

typically employed to segment the muscles and quantify their properties, but they require

significant manual labour and incur operator repeatability issues. In this study an automatic

process is presented, aiming to segment all lower limb muscles from Magnetic Resonance

(MR) imaging data simultaneously using three-dimensional (3D) deformable image registra-

tion (single inputs or multi-atlas). Twenty-three of the major lower limb skeletal muscles

were segmented from five subjects, with an average Dice similarity coefficient of 0.72, and

average absolute relative volume error (RVE) of 12.7% (average relative volume error of

-2.2%) considering the optimal subject combinations. The multi-atlas approach showed

slightly better accuracy (average DSC: 0.73; average RVE: 1.67%). Segmented MR imag-

ing datasets of the lower limb are not widely available in the literature, limiting the potential

of new, probabilistic methods such as deep learning to be used in the context of muscle seg-

mentation. In this work, Non-linear deformable image registration is used to generate 69

manually checked, segmented, 3D, artificial datasets, allowing access for future studies to

use these new methods, with a large amount of reliable reference data.

Introduction

Muscles enable all elected movements of the human body [1]. Relationships between structural

muscle characteristics such as muscle volume, geometry and length, or level of fatty infiltration

and the functional capacity of individual muscles have long been established [2–4]. Specifically,

muscle volume and geometry are indicative of the maximal force that a muscle is capable of

outputting [3, 5, 6] and fat infiltration within muscle tissue, known as myosteosis, reduces the

saturation of contractile tissue, hindering the force generating capacity of a muscle [3, 4]. Lon-

gitudinal changes in these structural characteristics are recognised as components of both
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aging [7–9] and the development of musculoskeletal (MSK) and neuromusculoskeletal disor-

ders [10–12]. Through medical imaging analysis, structural muscle characteristics are measur-

able in vivo in a process named muscle segmentation [13, 14].

Both Computed Tomography (CT) and Magnetic Resonance (MR) imaging, have been

used to non-invasively gather quantitative structural muscle characteristics such as volume

[15, 16] or geometric shape [4, 16, 17]. The structural characteristics of the skeletal muscles

within the lower limb are of particular interest, due to their capacity to enable locomotion [1,

15, 18]. As the lower limbs are such a large area of the body, many studies prefer MR imaging

over CT, to limit ionising radiation exposure of subjects enrolled in studies or of patients in

future potential clinical applications [15, 18]. The current approach used within the literature

to gather these structural muscle characteristics from MR images is manual segmentation, dur-

ing which the operator defines in each slice of the MR imaging sequence (or in a subgroup of

them) the contour of each muscle [15, 18, 19]. There are two main limitations of manual seg-

mentation: the required operator input time and operator dependency issues of the outputs [6,

15, 20]. The high processing time is incurred as there are around 35 muscles within an individ-

ual lower limb [15, 21] that must be manually segmented from in the order of hundreds of

images. Recent advancements in computer vision (interpolation between segmented slices)

and hardware (trackpads) have decreased operator interaction time down significantly, to

approximately 10 hours [15, 19, 20]. Not only is this interaction time still excessive, but opera-

tors must undergo training to achieve repeatable segmentation results from an intra-operator

standpoint (± 10% volume is typically acceptable) [15]. Regardless of training, as suggested,

there are significant inter-operator dependency issues noted within the literature, which have

been shown to misinterpret muscle volume by up to 50% (for example, the peroneus brevis

and longus [15]), depending on the muscle of interest and study cohort [15, 20, 22]. These lim-

itations of the gold standard approach prevent the utilisation of muscle segmentation as a tech-

nique to inform large-scale quantitative investigations into muscle characteristics.

Many different automatic segmentation methods have been investigated within the litera-

ture in recent years to replace the manual approach [13, 17, 20]. Image registration is one that

has been explored within the literature to perform muscle segmentation [23–25]. Simplistic

applications, such as two-dimensional (2D) deformable image registration between subse-

quent MR imaging slices within subjects has been used to propagate segmentations of individ-

ual slices into partial sections of 3D muscle geometry using only a few manually segmented

slices, with encouraging results (DSC� 0.91) [23]. 3D image registration has been used within

longitudinal studies to populate MR images with partial segmentations of a small number of

muscles to good effect, such as within the studies presented by Le Troter et al. [24] and Fon-

tana et al. [25]. Though this longitudinal approach provides insight into the change in muscle

characteristics over time, multiple MR image sequences are required from individual subjects

at two different timepoints and one dataset must be manually segmented. These studies all

operated different registration algorithms, such as antsRegistration [23], NiftiReg [24], or ITK-

snap [25]. Another elastic registration algorithm used for image segmentation or registration

of hard and soft tissues with a high degree of accuracy is the Sheffield Image Registration

Toolkit (ShIRT) [26–28]. Although ShIRT has features that enable the tracking of large defor-

mations and potential changes in grey-levels between the fixed and moved images, ideal for

evaluating changes in size and shapes of soft tissue, it has not yet been tested in the context of

muscle segmentation. https://doi.org/10.15131/shef.data.20440203.

Moreover, multi-atlas registration-based methods have been used in the context of muscle

segmentation [29, 30]. Multi-atlas registration-based methods typically follow a similar struc-

ture, wherein multiple medical imaging datasets are registered to a target image, and a proba-

bility map is built [31, 32]. The probability map defines the probability that each pixel (or
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voxel) in the target image belongs to a certain class, in our case the classes would be the differ-

ent muscles. If the probability map agrees to a certain threshold, a pixel is defined to belong to

a certain class. The disputed pixels, that fall below the threshold are labelled corresponding to

the registered image that is the most similar to the target image. Highly successful in this

regard, was the full body muscle segmentation performed by Karlsson et al. [29], where mus-

cles groups within the arms, torso, thighs, and calves were segmented. A multi-atlas operation

was used to automatically segment muscle groups with a moderately high degree of accuracy,

capturing the volume of these muscle groups automatically with error lower than 15%.

Single input and multi-atlas registration-based methods have been used to good effect in the

context of medical image segmentation [31, 32], and more specifically muscle segmentation [25,

30], but they have not yet been fully explored. Explicitly, inter-subject registration aiming to seg-

ment all individual muscles within a new subject, referencing a previously segmented subject has

not yet been explored to the best of the author’s knowledge. Additionally, combining the outputs

of distinct registrations in a multi-atlas fashion is yet to be explored for the segmentation of indi-

vidual muscles simultaneously. These methods would be of great interest as it would allow already

existing databases of segmented images to be propagated to newly acquired imaging datasets.

Probabilistic machine learning methods such as deep learning have been used to automati-

cally segment the 3D geometry of individual muscles from MR images taken from several dif-

ferent cohorts [19, 20, 22]. These methods employ Convolutional Neural Networks (CNNs)

which learn patterns that identify important features from training data in order to apply these

learned patterns to segment new, unseen data [19, 20, 22]. Notably, the methods recently pro-

posed by Ni et al. [22], where all lower limb muscles within a cohort (n = 64) of young healthy

athletes were segmented with DSC comparable to that of the inter-operator dependence (DSC

� 0.9), and those proposed by Zhu et al. [20] where all muscles within the shank were seg-

mented from a cohort (n = 20) of children with cerebral palsy (DSC� 0.88). Though the seg-

mentation accuracy found within these studies is remarkable, these methods are not widely

accessible due to the main limitation of current deep learning methods: the requirement of

large training databases (minimum ~20 segmented 3D images, the greater this number the

more robust the method) [33]. Unfortunately, generating these segmented imaging datasets

might not be well suited to MR imaging, given the associated high costs and manual processing

time. Additionally, when used in medical image segmentation, deep learning generally has the

major limitation of a significantly reduced performance when assessing imaging data taken

from widely varying cohorts [33]. Data augmentation is a technique widely used in association

with CNNs for the purpose of supplying greater amounts of training data and helping to gen-

eralise their application to image classification and segmentation tasks [34, 35]. Within this

context, image registration has been previously used to generate augmented images to facilitate

the analysis of brain tumours [36] and skeletal deformities [37]. This suggests that, while not

attempted before, similar approaches might be adopted for muscle segmentation.

The aim of this study is hence twofold. The first is to evaluate the accuracy of a novel method

for automatic segmentation based on single input or multi-atlas of complete 3D geometry of

most individual skeletal muscles in the lower limb from MR imaging data simultaneously using

3D deformable image registration. Secondly, the effectiveness of deformable image registration

in the generation of augmented datasets is explored and the benefits of this highlighted.

Methods

Subjects & imaging acquisition method

Retrospectively available lower limb T1-weighted MR images from 11 post-menopausal women

(mean (standard deviation): 69 (7) years old, 66.9 (7.7) kg, 159 (3) cm) were used for this study
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[15]. Images were collected using a Magnetom Avanto 1.5T scanner (Siemens, Erlangen Ger-

many), with an echo time of 2.59 ms, repetition time of 7.64 ms, flip angle of 10 degrees. The

study was approved by the East of England–Cambridgeshire and Hertfordshire Research Ethics

Committee and the Health Research Authority (16/EE/0049). The MR images were acquired in

four sequences, capturing the hip, thigh, knee, and shank. To reduce scanning time while still

providing detailed geometries of the joints for use within the original study, the joints were

acquired with a higher resolution (pixel size 1.05 mm2, slice spacing 3.00 mm) than the long

bone sections (pixel size 1.15 mm2, slice spacing 5.00 mm). The sequences were stacked in

MATLAB forming one continuous 3D image from hip to ankle, firstly by homogenising the res-

olution of each of the imaging sequences taken from the different sections to be 1.00x1.00x1.00

mm3 through tri-linear interpolation (interp3, MATLAB 2006a). The fields of view of the images

across the four sequences were equated by wrapping the images in blank data (greyscale value of

0), referencing the spatial metadata of the images to retain the relative subject position across the

imaging sequences for each subject. The homogenised sequences were concatenated in the longi-

tudinal direction, removing half of any overlapping volume from each section where the fields of

view overlapped. The removal of half of the overlapping volume from each of the sequences also

removed the images affected by MR imaging bias. A bias field correction algorithm was tested

but did not alter the images [38]. Lastly, the images were cut in half in the frontal axis, isolating

only the right limb and the field of view was reduced such that the images contained only the

anatomical data. A sub-cohort of 5 of the 11 subjects was selected for automatic segmentation.

The five subjects were chosen with the aim of creating a sub-cohort with a wide anatomical

diversity, choosing the shortest and tallest (154.0 cm, 164.2 cm), the subjects with the lowest and

highest Body Mass Index (BMI, kg/m2) (21.2, 32.1), and the youngest and oldest participants

(59, 83). Each subject was used as both a target and a reference for the image registration algo-

rithm, creating 20 subject pairings for the sub-cohort (inter-subject analysis). For comparison,

the 5 subjects were registered with a procedure similar to the inter-subject analysis, using the

opposing limb (left vs right) as the reference dataset for the registration (intra-subject analysis).

Reference segmentations

Each of the five subjects involved in this study were segmented manually, as presented by

Montefiori et al. [15]. Within this database, the muscles for which the coefficient of variation

of the manual segmentations when repeated by the same operator on three separate runs was

greater than 10% were removed from the study, reducing the number of muscles considered

in this study from 35 to 23. Table 1 presents the range of volumes of the 23 muscles considered

within this study within the cohort of 5 subjects. Their manual muscle segmentations were

used as the templates to populate imaging data of new subjects with automatically generated

muscle segmentations through image registration and to validate them. To aid the interpreta-

tion of results, the variability of each of the muscles was calculated as the ratio of the range and

mean volumes within the cohort.

The range of volumes of the muscles included within the study for the 5 subjects considered.

The muscles are separated into three sections of the body (hip, thigh, and shank). The muscles

considered are those that were segmented with an acceptable level of repeatability [15]. The var-

iability of muscle volumes within our cohort (calculated as a ratio of the range to the mean) is

highlighted. Full description of muscle volumes within each subject expanded upon in S1 File.

Image pre-processing

Initial registration experiments of imaging sequences from two different subjects showed that

the difference in the thickness of the fat surrounding the muscle tissue skewed the registration

PLOS ONE Registration based automatic muscle segmentation and lower limb MRI augmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0273446 March 10, 2023 4 / 19

https://doi.org/10.1371/journal.pone.0273446


and resulted in a poor registration quality (see S5 File). In order to homogenise this feature,

the MR images of each subject were pre-processed to homogenise the distribution of fat tissue

within the scans, focussing the registration on the muscle tissue. For each 2D slice of imaging

data (example slice shown in Fig 1A) within each subject, firstly, the air-skin boundary was

Table 1. Variability of muscle volumes.

Body segment Muscle Volumes Variability

Minimum Maximum Range/mean

(cm3) (cm3)

Hip Adductor brevis 54.2 67.1 21.3%

Adductor longus 59.7 91.7 44.6%

Adductor magnus 282 457 49.2%

Gluteus maximus 406 654 45.4%

Iliacus 81.8 127 41.3%

Tensor fasciae latae 17.4 57.9 95.8%

Thigh Biceps femoris caput brevis 31.5 80.7 78.1%

Biceps femoris caput longum 95.3 128 28.6%

Gracilis 37.6 51.2 30.5%

Rectus femoris 94 125 27.1%

Sartorius 62.7 105 53.3%

Semimembranosus 98.9 154 45.6%

Semitendinosus 88.5 101 13.2%

Vastus intermedius 214 313 38.4%

Vastus lateralis 303 351 14.7%

Vastus medialis 167 277 51.3%

Shank Gastrocnemius lateralis 78.2 87 10.6%

Gastrocnemius medialis 123 176 34.6%

Peroneus brevis 33.7 41.6 20.2%

Peroneus longus 25.7 59 88.5%

Soleus 304 406 30.6%

Tibialis anterior 74.4 94.2 23.6%

Tibialis posterior 56.3 90.6 45.8%

https://doi.org/10.1371/journal.pone.0273446.t001

Fig 1. Homogenisation of the fat tissue surrounding the muscles. The process of masking the fat tissue surrounding

the muscles from the raw MR images (left) and wrapping in a homogenous layer of fat for two images taken from

different subjects (right). The subject along the top row (right) had a fat layer less that 5 mm thick and was wrapped

with artificial fat, where the subject along the bottom row had a depth that was sufficient.

https://doi.org/10.1371/journal.pone.0273446.g001
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located using a Canny edge detector [39]. The area within the skin boundary was filtered (Fig

1C), in response to a threshold established from the greyscale frequency intensity plots of the

images, creating a mask that contained only the muscle tissue (Fig 1D). A layer of fat was

wrapped around the muscle tissue (Fig 1E and 1F) to emphasise the outer boundary of the

muscle tissue. The depth of this layer of fat was made equal to the optimal nodal spacing (NS, a

parameter of the registration [26], set to 5 mm, details in 2.4) as the registration operates opti-

mally in the circumstance that the object being registered is of similar size to the NS [26].

There were two possible scenarios for the fat wrapping process: 1) the layer of fat within the

image was greater than 5 mm, and 2) the layer of fat was less than 5 mm. In the first scenario,

the subject’s fat tissue was wrapped around the muscle tissue at a depth of 5 mm. In the second

scenario, artificial fat was wrapped around the body which was built in response to the grey-

scale frequency intensity peak that represents the fat. The pixels within 5 mm of the muscle tis-

sue that lay outside the body were randomly assigned values using a uniform distribution with

minimum and maximum equal to the mean ± standard deviation of the frequency intensity

peak representing the fat. Through this operation, the muscle tissue remained unchanged, but

the fat tissue surrounding the muscle was reduced, meaning that all muscle characteristics

(muscle volume, shape, and fat infiltration) are all conserved.

Registration & automatic segmentation

Following pre-processing, subject imaging datasets were registered using an in-house deform-

able image registration algorithm, ShIRT [26]. ShIRT performs deformable (non-linear) image

registration, allowing high degrees of anatomical variability between inputted images to be

addressed [26–28], and has the potential to automatically segment blocks of muscles or individ-

ual muscles given a fully segmented reference subject, but this is yet to be explored. In the regis-

tration process, displacement functions were computed that map each pixel in a reference

image to a corresponding pixel in the target image, with no initialisation. The registration is

performed by iteratively reducing a cost function, which represents the sum of squared differ-

ences between the intensity values within the images. ShIRT solves displacement equations at

nodes of an isotropic hexahedral grid overlapped to the fixed and moved images, with distance

between the nodes equal to NS. The optimal NS for this registration task was found through a

sensitivity analysis (see S2 File). Throughout the registration process the optimal nodal dis-

placements are smoothed in response to a smoothing coefficient, optimised in each registration

to solve the registration problem [26] (this was verified to be indeed optimal for this applica-

tion, see sensitivity analysis in S2 File). The 3D displacement field is calculated using tri-linear

interpolated displacements between the nodes of the grid. The registered image was generated

after applying the transformation to the reference image and using tri-linear interpolation.

Similarly, the automatic segmentation of the muscles within the target subject was calculated

applying the transformation to the manual segmentations of the reference subject (Fig 2).

To gauge the accuracy of the resulting segmentations, the registration and segmentation

pipeline was used to segment the right limbs of the 5 subjects using the contralateral limb as

the reference input. The muscles within opposing limbs have been proven to be anatomically

similar but distinct in both volume and geometry [15]. For these reasons, using the opposing

limb in the segmentation pipeline should provide the best possible reference for the segmenta-

tion of the muscles within each of the 5 subjects.

Multi-atlas segmentation

Following the registration between the images of the 5 subjects, the resulting segmentations

and registered images were used to define a multi-atlas segmentation for each muscle within
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each subject. A probability map was defined for each voxel in each of the target images, repre-

senting the probability that a given voxel belongs to a certain muscle. The probability map was

created by adding the segmentations from each of the four references together. The overlap-

ping portion of all four segmentations for a given muscle was assigned a probability value of 1

and were included in the multi-atlas segmentation output. The disputed voxels (those that did

not have a probability of 1), for any given muscle were assigned to a given class, based on the

localized mutual information between each of the registered images and the target image, in a

method similar to that of Gholipour et al. [40]. The localized mutual information was calcu-

lated voxel-wise between registered and target images as the sum of squared differences (the

similarity measure used within the registration algorithm) in a 253 voxel volume surrounding

each pixel [31]. The registered image presenting the maximal agreement with the target image

(that with the lowest sum of squared differences) at each of the disputed voxels was found, and

the segmentation of that voxel resulting from its registration was selected.

Segmentation validation

The registered reference and target images were overlapped to assess the quality of the registra-

tion. The two images were visualised simultaneously, with the registered and target images

shown in green and red, respectively. Well registered images appear yellow with very few

green or red flecks. Fig 3 presents three example registration results, where the quality of regis-

tration increases from left to right.

Fig 2. Registration, multi-atlas, and image augmentation pipelines. The image registration process, shown for one

2D slice of imaging data (location within imaging sequences highlighted with a black line). Segmentation pipeline: the

target and reference subject were pre-processed, homogenizing the fat layer, and registered in ShIRT. The map found

through registration was applied to the manual segmentation contours of the reference subject (shown in green),

resulting in an automatic segmentation of the target subject (shown in blue). Data augmentation pipeline: The

combined MR imaging sequences are registered in ShIRT. The map outputted from the registration was used to

deform the reference subject’s 3D imaging data and reference manual segmentations, resulting in a fully segmented,

augmented 3D image. The augmented images are shown with each muscle taking a different greyscale value (visualised

in blue image channel). The multi-atlas pipeline used is also shown on the right-hand side. The outputs of the

segmentation pipeline are combined forming a probability map for each muscle. The disputed and agreed voxels are

separated, and the disputed voxels are labelled according to the best performing registration, found through calculating

the mutual information of registered and fixed images. Collating these results provides a multi-atlas segmentation for

each muscle.

https://doi.org/10.1371/journal.pone.0273446.g002
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Three complementary quantitative metrics were used to test the accuracy of the automatic

segmentation protocol. The relative volume error (RVE) was calculated following Eq 1 for

each muscle in each subject. Additionally, the total volume error (TVE) between the reference

and automatically segmented muscles was calculated as the error between the sum of all mus-

cle volumes, shown in Eq 1.

RVEi;j ¼ 100�
VAi;j
� VMi;j

VMi;j

;TVEj ¼ 100�

PN
i¼1
jVAi;j

� VMi;j
j

PN
i¼1

VMi;j

ð1Þ

Where VAi,j and VMi,j are the volumes of the automatic muscle segmentation and ground truth

(manual) segmentations, respectively.

The Dice similarity coefficient (DSC) [41] was used to assess the accuracy of segmentation

considering both volume and geometry, through comparison with the ground truth segmenta-

tion. The DSC varies between 0 and 1, with a value of 1 signifying that the proposed segmenta-

tion and ground truth are identical. The DSC was calculated (Eq 2) for each muscle (i) in each

subject (j), where Ai,j and Mi,j represent the automatic muscle segmentation and the ground

truth segmentation, respectively.

DSCi;j ¼
2 Ai;j \Mi;j

� �

jAi;jj [ jMi;jj
ð2Þ

Finally, the Hausdorff distance (HD) [42] between the automatic and reference muscle seg-

mentations was calculated for each muscle in each subject, following Eq 3, where ai,j is an ele-

ment of Ai,j, mi,j, is an element of Mi,j, and d is the magnitude of the minimum distance

between ai,j or mi,j and the nearest neighbouring point within Mi,j or Ai,j, respectively. For each

subject the HD was calculated as the maximum among the minimum distances between the

automatic and ground truth segmentations.

HD Ai;j;Mi;j

� �
¼ max d Ai;j;mi;j

� �� �
; d ai;j;Mi;j

� �� �n o
ð3Þ

Generation of augmented data

The deformable image registration algorithm was used to generate segmented augmented MR

imaging data, available for download within S3 File. The stacked MR imaging data from the

right limb of the 11 participants were registered to each of the other subjects in the cohort, giv-

ing 110 combinations. No pre-processing was applied. The displacement vector field outputted

Fig 3. Sample registration outputs for qualitative interpretation. Registration results of images taken from the

shank. The registration quality is visualised within these plots with poor, moderate, and flawless registrations shown in

a, b, and c, respectively. Yellow colour represents well registered regions.

https://doi.org/10.1371/journal.pone.0273446.g003
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from ShIRT (Fig 2) was used to deform both the MR imaging sequence and the manual muscle

segmentations of the reference subject. The output of each of these processes was a fully seg-

mented 3D image that was dissimilar to both the reference subject and the target subject (Fig

2). A four-point criterion was used for checking both the images and the segmentations to

ensure anatomical credibility of the augmented dataset: a) the boundaries of the long bones

and the skin must be reasonably smooth and continuous; b) the positioning and orientation of

the joints must be anatomically viable, with the bones fitting together realistically; c) the mus-

cle segmentations should reflect the muscle structure; and d) the location of each of the mus-

cles relative to one another must be realistic (e.g. the vastus lateralis must be lateral with

respect to the vastus medialis). If any one of these criteria were not met, the augmented dataset

was discarded. Out of the retained datasets, 15 chosen at random were retested by a different

operator to confirm the specificity of the inclusion criteria. Finally, the available muscle vol-

umes were compared from within the augmented and original databases. The mean volume

within each database was computed for each of the 23 muscles considered. The difference

between the volume of each muscle within the database and the average was then calculated,

and this value was normalised against the mean volume. The resulting values were percentages

representing the distribution of available muscle volumes within each database, which after

normalisation, could be compared.

Results

Segmentation results

A visualisation of an example registration and of the results of one segmentation are

highlighted in Fig 4 for images taken from the hip, thigh, and shank, respectively. While the

deformable image registration has accurately identified the muscle tissue in the target subject

in most cases (yellow), some regions were not correctly registered (red or green). The segmen-

tation results reflect this, where the registration appears successful overall, and the automatic

segmentations are geometrically very similar to the reference segmentations. There are areas

within the automatic segmentations that do not reflect the reference segmentations, such as the

gluteus maximus in the hip section, and the tibialis muscles within the shank section. The auto-

matic segmentations within the thigh section mostly agree with the reference segmentations.

Fig 4. Qualitative interpretation of segmentation results. Registration and segmentation results from the

combination of subjects resulting in the median average DSC (subject 4 and 2 as the target and reference, respectively).

The registration inputs (top row) and outputs (bottom row) for these combinations of subjects are shown on the group

of images on the left. The segmentation results are shown in the right three image groups, where the reference and

automatic segmentations for the target subject are shown in blue and red respectively. The muscles that are not

highlighted within the images, were found not to be segmented with an appropriate level of repeatability.

https://doi.org/10.1371/journal.pone.0273446.g004
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Volume error. The TVE for the entire muscle body was 8.2 ± 5.1% (mean ± standard

deviation) across all subject combinations (Fig 5). The mean RVE for the individual muscles

was found to be below 12.8% for all combinations and all upper quartiles were below 40%

error. The best performing combination was subject 5 with 1 as the target and reference

respectively, with among the smallest mean (-2.2%) and with the lowest quartiles (lower and

upper quartiles of -10.5% and 6.4%, respectively). The relative volume error was consistent

across all muscles, with no correlation found between muscle volume and relative volume

error (R2 = 0.092, p-value = 0.159); the muscles with the highest variability within this cohort

(tensor fascia latae, rectus femoris, and peroneus longus) made up the outliers within the dis-

tributions of RVE, as the registration algorithm was unable to overcome the large differences

in volume. The mean RVE from the left to right analysis was 0.35% (Fig 5), similar to but out-

performing the best inter-subject results (3.2%). The multi-atlas analysis provided a lower

inter-quartile range in terms of RVE and resulted in the mean RVE across the 5 subjects falling

within the acceptable range of error (range of means = [-2.4, 9.0] %), which cannot be said for

the single atlas registration results (range of means = [-17.8, 14.2] %).

Dice similarity coefficient. When looking at the segmentations of the five subjects

obtained using the other four as reference subjects, very variable results were observed. The

greatest average DSCs were those resulting from the segmentation of subjects 1, 2, and 4, using

subject 2, 1 and 1 as the reference subject, respectively. The mean DSCs found for these combi-

nations of subjects were greater than 0.70, lower quartiles greater than 0.67, and with a wide

spread of results (0.35< DSC< 0.88). Subjects 3 and 5 were segmented with a consistently

lower DSC, with the average DSC considering all reference subjects found to be 0.61 and 0.60

respectively (0.69, 0.69 and 0.67 for subject 1, 2, and 4, respectively). Additionally, one of these

subjects was always the worst performing reference subject considering DSC when used to seg-

ment all target subjects, with the lowest average DSC. There was a weak correlation found

between muscle volume and the DSC of the automatic segmentations (R2 = 0.332, p-

value = 0.003), suggesting that the larger muscles were slightly better segmented in terms of

DSC. The average DSC found within the intra-subject analysis was 0.80 (Fig 5). Finally, the

multi-atlas segmentation results presented a more consistent DSC for each of the subjects

used, with a lesser range and a higher lower quartile value but with comparable average DSC.

Hausdorff distance. Overall, the average HD was typically between 15 mm and 30 mm,

with the upper quartile being below 40 mm, other than the segmentations of subject 3 and 5

using subject 2 and 3 as references, respectively (Fig 5). The spread of results was large, with

Interquartile ranges (IQR) being between 7 mm and 21 mm. There was no correlation found

between the HD and the size of the muscle for which the HD was calculated (R2 = 0.097, p-

value = 0.089), the error was consistent across muscles of all sizes. The average HD found

within the intra-subject analysis was 17.7 mm, much lower than in the other analyses. The HD

distances in the multi-atlas analysis were comparable to the inter-subject results. Subject 1 and

2 were segmented with a lower HD in the multi-atlas approach compared to the optimal inter-

subject combinations, and subject 3, 4, and 5, slightly worse than the respective optimal inter-

subject combinations.

Augmented data

After initial checking by the author, 69 of the 110 generated augmented datasets passed the

inclusion criteria. 15 datasets were rechecked by an expert in muscle segmentation and all 15

passed, giving 100% specificity. Fig 6 showcases some examples of the augmented images col-

lected. Visually, the augmented images are well segmented, and are dissimilar to the reference

subjects, particularly in the second row of images, where the relative fat depth of the moving
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Fig 5. Numerical results for the intra-subject, multi-atlas, and single atlas analyses. Relative volume error (%)

(top), Dice similarity coefficient (centre), and Hausdorff distances (mm) (bottom) found for each muscle in each

subject, for the left to right analysis (green), multi-atlas (orange), and inter-subject approaches (blue). In both the left

to right and multi-atlas analysis, the numbers above the boxplots denote the subject segmented. The numbers above

each of the boxplots in the inter-subject approaches denote the reference subject used within the registration. The

dashed line in RVE plot shows the acceptable level of RVE resulting from inter-operator dependence, prescribed by

Montefiori et al. 2020 [15]. The grey dashed lines in the DSC and HD plots represent the mean values from the intra-

subject analysis for comparison. The box and whisker plots show the mean, interquartile ranges, and ranges across the

23 muscles considered.

https://doi.org/10.1371/journal.pone.0273446.g005
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subject (green) is retained, but the cross-sectional area of the thigh is equated to the fixed sub-

ject (red). The misalignment of the muscle tissue within the registered images, visible as con-

centrations of either red or green colouration, establish a difference in the muscle geometry

within the registered and original data. The augmented subjects generated for 1 target subject

(subject 1) are presented within S3 File, for visual comparison.

The anatomical variability of the muscles within the augmented database is compared to

the original 11 subject database (Fig 7). The volumes of each of the muscles within the original

and augmented databases were normalised against the corresponding average muscle volume

for each muscle within the respective databases. The percentage greater or smaller than the

average volume was then calculated for each muscle, representing the variability of the muscle

volumes within each database. The distributions of these percentages are presented (Fig 7).

The muscle volumes available within the augmented database were found to have a greater

range of volumes, often 1.5 to 2 times greater than in the original database. The range of vol-

umes for each muscle considered within the original and augmented databases are presented

in S4 File.

Discussion

This paper aimed at proposing a fully automatic tool to segment 23 major lower limb muscles

simultaneously from MR imaging data using morphological image processing, deformable

image registration and a multi-atlas approach. Furthermore, the registration tool was used to

generate a unique dataset including 69 fully segmented, augmented 3D images. To the best of

the authors’ knowledge, this study represents the first attempt to segment complete 3D muscle

geometry of many individual muscles simultaneously using deformable image registration

while using different subjects as the reference. Moreover, a multi-atlas approach was used for

the segmentation of many individual muscles simultaneously, which is yet to be investigated in

this way. A well performing automatic segmentation tool would be desirable as muscle seg-

mentation of a new subject could be performed automatically, without the need for manual

processing.

Fig 6. Exemplar augmented images. Inputs, outputs and resulting augmented subjects. Each row of images presents

results within the hip (left), thigh (centre), and shank (right) for 3 subject combinations chosen at random (target x

reference: 4 x 5 (top), 1 x 3 (middle), 7 x 9 (bottom)). Within each cell there are the inputted images into the

registration (left), registered images with corresponding target image (centre) and resulting segmented, augmented

images (right). The muscle labels are visible within the augmented images as the blue areas. Each muscle is assigned a

distinct greyscale value and the labels are assigned alphabetically.

https://doi.org/10.1371/journal.pone.0273446.g006
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All 23 muscles were segmented from five subjects with moderate success, considering three

error metrics, the RVE, DSC and HD. The registration quality was high considering the com-

bination of subjects that resulted in the median average DSC (Fig 4) which suggests that in

most cases, the registration performed as intended. This was confirmed by the total volume

error metric, lower than 10% on average. However, all three-error metrics reflected a lower

accuracy for the segmentation of individual muscles. Within both the inter-subject and multi

Fig 7. Enhancement of muscle volume variability through image augmentation. The anatomical variability of

muscle volumes for each muscle, ordered from smallest to largest within the original and augmented databases shown

in red and blue respectively. The height of the distributions was not normalised, and the violin plot contains 95% of the

data, with 2.5% of data cut off from each side, removing outliers.

https://doi.org/10.1371/journal.pone.0273446.g007
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atlas analyses, the individual muscle RVE was typically larger than that of an acceptable level of

inter-operator dependence (±10%) [15], with one or both of the lower and upper quartiles

often exceeding ±10% in most subject combinations. The mean absolute RVE within the opti-

mal subject combinations was 12.7%, meaning that on average, there was an over or underesti-

mation of the muscle volume greater than that incurred by the effects of operator variability.

This indicates that the method would be best suited when only interested in the volume of the

overall muscle body. Capturing the total muscle volume has proven useful in studies such as

Handsfield et al. [18], where regression equations were presented, to estimate individual mus-

cle volume from total muscle volume and other anthropometric data such as height and BMI.

Additionally, this result could be useful for an estimation of the level of fatty infiltration into

the muscle body [8]. The DSC results, on the other end, indicate that if the purpose of the seg-

mentation was that of extracting internal muscle characteristics, such as the level of fat infiltra-

tion [10], then alternative approaches should be pursued regardless of the inclusion of a multi-

atlas postprocessing step. Possible improvements of the method could come from a more tar-

geted selection of the reference subject, which as shown by the reported results (Fig 5) can

increase the accuracy of the approach both in terms of individual muscle volume and DSC.

Though, it is extremely likely that a better reference than a subject’s contralateral limb would

be seldom found as an input of the registration algorithm. Therefore, the use of deformable

image registration of images acquired with these acquisition parameters for the purpose of

individual muscle segmentation could be segmented at best with an accuracy comparable to

that of the left to right analysis (~0.8 DSC).

The geometry of each of the 23 muscles was captured moderately well for the optimal com-

bination of subjects in the inter-subject analyses (those with greatest lower quartile), with

mean DSC of 0.74 and IQR range of 0.71< DSC< 0.77 and the multi-atlas approach pre-

sented very similar results. However, these quantitative measures of accuracy are significantly

lower than the inter-operator dependence of the manual process, which, within the literature

[2, 15, 20, 22] is consistently found to be DSCs of around 0.90 for the muscles considered in

this study. While the pair of subjects leading to the best results in terms of DSC were the most

similar in terms of height and BMI, these anthropometric characteristics were very different in

the pair having the second-best DSC (mean = 0.74, IQR of 0.69< DSC< 0.79). This suggests

that the newly proposed masking process achieved the goal of homogenising the subject imag-

ing data and could be adapted for the removal of unwanted artefacts from within medical or

indeed any other images. The worst performing combination of subjects (those with the lowest

upper quartile), with mean 0.45 DSC across the 23 muscle segmentations, were those with the

greatest difference in age (16 years) but similar height, weight, and BMI. One could suggest

that the muscle quality between these two subjects could be the greatest, in response to age-

related degradation of the muscle tissue [43]. The muscle quality greatly affects the appearance

of the muscles within medical images and would certainly affect the quality of the registration

[43].

Particularly successful approaches within the literature that used 3D deformable image reg-

istration to perform muscle segmentation were those based on longitudinal data, such as Le

Troter et al. [24] and Fontana et al. [25], who attained average DSCs of 0.90 and 0.85, respec-

tively. Similar to the latter were the DSC values here found when registering the left to right

limb in the same subject, which could be used to propagate segmentations of one limb to the

contralateral limb, halving the time to segment the lower limbs. Notably, the approaches found

within the literature still require the manual segmentation of each subject at the baseline.

Moreover, these studies segmented fewer muscles than the 23 presented in this study, present-

ing a reason for the reduced accuracy in this study. Last but not least, the images collected

within this study were not optimised for muscle segmentation, as they were the widely used

PLOS ONE Registration based automatic muscle segmentation and lower limb MRI augmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0273446 March 10, 2023 14 / 19

https://doi.org/10.1371/journal.pone.0273446


T1-weighted MR images with lower resolution images acquired along the long bone sections

(see section 2.1). Both characteristics of the images used may limit the registration, as the mus-

cle tissue was not as clear as it would be with other acquisition parameters.

Overall, the main limitation of the proposed method clearly lies in the non-satisfactory cap-

ture of individual muscle volume and there are several potential reasons for this to have been

found. Firstly, this could have been caused by the propagation of inaccuracies associated with

the manual segmentations of the reference images through the registration. However, this

aspect is likely to have had a negligible effect since the muscles with high inter-operator vari-

ability [15] were discarded at source. More likely, the issue lied in the fact that the muscle-mus-

cle boundaries present a weak grey-level gradient, in contrast to the muscle-fat boundaries,

which are shown to have a strong grey-level gradient within the MR images (Figs 1, 2 and 4).

Since ShIRT registers grey-level gradients within the inputted images [26], the muscle-fat and

muscle-bone boundaries were registered to a higher degree of accuracy than the muscle-mus-

cle boundaries. The use of other MR imaging acquisition settings, such as the Dixon method

for fat suppression, could further enhance muscle-muscle boundaries, however, these images

were not collected at the time of data acquisition. The use of T1-weighted images has a greater

potential as these are by far the most common MR imaging setting seen throughout the clinical

domain when assessing soft tissues. This imbalance in the accuracy of the registration of the

different tissues is highlighted by the greater RVE of the individual muscles, when compared

to the total volume error. Moreover, ShIRT was the only registration algorithm tested. Other

available registration algorithms [23–25] could improve the accuracy of the segmentation but

will have to be tested on the same dataset. For this reason, the datasets including the input

MRI images, the manual segmentations and the ShIRT inputs have been shared here (https://

doi.org/10.15131/shef.data.21739733) for future comparison with other registration tools.

Another source of error could lie within the optimisation process of the registration parame-

ters (NS and smoothing coefficient) [26]. While in this study these parameters were optimised

for the highest overall performance in segmentation accuracy across all considered lower limb

muscles, the values could be optimised for the different areas of the limb. This was not imple-

mented in this study as a rewriting of the registration toolkit would be required. The multi-

atlas approach was employed to overcome the potential limitations of the registration proce-

dure, incorporating a probabilistic evaluation of which regions of the images belong to each

muscle (code available with examples at https://doi.org/10.15131/shef.data.21763982). This

method has been used in the assessment of other tissues in the body with good results [30–32].

The method did not have the same impact in this case, most likely due to the sheer number of

different muscles assessed, which resulted in a great number of disputed voxels within each

target image; a problem which would not be associated with medical image segmentation

problems with fewer classes required to be segmented. Though the vast number of disputed

voxels was unforeseen, it is logical that there was a large amount of disagreement between

automatic segmentations. It has been noted within the literature that this voting system is best

suited for a thin layer of disputed voxels surrounding the tissue of interest [31], which was not

the case in the automatic segmentations outputted from the inter-subject analyses.

Despite the above limitations, the image registration protocol here proposed proved clearly

useful when adopted to generate an augmented imaging database of 69 subjects having a much

broader range of muscle volumes and geometries than the original 11 subject database. This

result came after removing 41 anatomically unrealistic datasets, which required some manual

checking the augmented datasets, suggesting that similar care should be taken if replicating the

use of the method. These datasets, made publicly available (augmented images: https://doi.org/

10.15131/shef.data.20440164, augmented images segmentations: https://doi.org/10.15131/shef.

data.20440203), can be used to train deep learning methods [34, 35]. Machine learning and
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deep learning methods are now dominant tools used within the field of medical image seg-

mentation [20, 22, 33]. Where the average DSC found amongst the 23 muscles considered

within the present study were found to be around 0.75, considering only the optimal reference

subject for each target subject, deep learning methods have been used to segment the lower

limb muscles with average DSC between 0.85 [20] and 0.90 [22]. These tools are typically only

suitable for studies with extremely large cohorts, but this problem has been alleviated within

some medical image analysis fields, such brain tumour assessment [36] and bone segmentation

[37], through data augmentation. However, this technique is yet to have been explored for

muscle segmentation and the database here presented will hopefully foster efforts in this direc-

tion. To the best of our knowledge, in fact, this is the first study providing a vast, multi-opera-

tor assessed set of fully segmented, labelled augmented MR imaging sequences of the lower

limb. In future work, these augmented datasets will be used to calibrate CNN models, with the

potential to increase segmentation accuracy [35, 36] and lead to a solution for the automatic

segmentation and characterisation of muscles in vivo.

Conclusion

This study presented a novel, fully automatic muscle segmentation method using image regis-

tration, aimed at segmenting all lower limb muscles simultaneously. The 3D deformable image

registration algorithm used in this work is limited in its capacity to perform individual auto-

matic muscle segmentation with a high accuracy. Nevertheless, this approach can be useful to

provide total muscle volume and can be used as a tool to increase the number of reference

datasets, enabling other methodologies (e.g. learning-based methods) to be explored and prop-

erly trained. Explicitly, the publicly available augmented database built in this work would

enhance any future study that would aim to use deep learning approaches for the segmentation

of muscles from T1-weighted MR images.

Supporting information

S1 File. Muscle volumes of the 5 subjects automatically segmented in the study. Reference

muscle volumes for the 23 muscles segmented in this study. Mean and standard deviation are

reported.

(PDF)

S2 File. Sensitivity analysis of the two registration parameters: Nodal spacing, and the

smoothing coefficient. Registration protocol and results for the left to right (intra-subject)

analysis, providing the optimal values for the nodal spacing and smoothing coefficient, two

registration parameters.

(PDF)

S3 File. Visualisation of augmented datasets for one target subject. Display of augmented

datasets for one target subject. The image on the left shows a cross- section of the target subject

(Subject1) with the manual segmentations for that image shown in green. The 10 images on

the right are cross-sections of the augmented datasets, generated when keeping subject 1 as the

target for the registration, whilst using the other 10 subjects as the reference dataset. Segmenta-

tions are reported in blue. One augmented dataset marked with a red square did not pass the

inclusion criteria, due to the discontinuity in the boundary of the body.

(PDF)

S4 File. Comparisons of muscle volumes within the original and the augmented databases.

Comparisons of muscle volumes within the original (11 subjects) and the augmented (69 vir-

tual subjects) databases. The mean volume ± standard deviation and volume ranges are
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reported.

(PDF)

S5 File. Statistical interpretation of the effect of the pre-processing step used to remove the

layer of fat tissue surrounding the muscle tissue. Statistical analysis and qualitative interpre-

tation of the effects of the pre-processing stage included in the segmentation algorithm.

(PDF)
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