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Abstract

Identification of the external electromagnetic fields and internal hyperfine parameters which

optimize the quantum singlet-triplet yield of simplified radical pairs modeled by Schrödinger

system with spin Hamiltonians given by the sum of Zeeman interaction and hyperfine cou-

pling interaction terms are analyzed. A method that combines sensitivity analysis with Tikho-

nov regularization is implemented. Numerical results demonstrate that the quantum singlet-

triplet yield of the radical pair system can be significantly reduced if optimization is pursued

simultaneously for both external magnetic fields and internal hyperfine parameters. The

results may contribute towards understanding the structure-function relationship of a puta-

tive magnetoreceptor to manipulate and enhance quantum coherences at room tempera-

ture and leveraging biofidelic function to inspire novel quantum devices.

Introduction

The idea that quantum effects can be controlled to influence biochemical processes is at the

forefront of science [1, 2]. Quantum biology may be thought of as a signature of molecular-

level quantum phenomena observed in biological systems at functional, cellular, or organism

levels [3–5]. The defining feature of quantum biology is that quantum effects such as coher-

ence and superposition are found at room temperature, in wet environments that typically

have lots of motion. The field of quantum biology currently focuses on three main areas of

research: photosynthesis, olfaction, [6], and magnetoreception [7–9]. As a point of departure,

we concentrate on a less common area, that free-radical production in cellular metabolism

may be influenced to some extent by magnetic fields [10]. It is of paramount importance to

identify magnetic fields and hyperfine parameters to modulate quantum coherences in a

radical pair reaction [11, 12]. In this paper, we identify external electromagnetic field and

hyperfine parameters which optimize the quantum singlet-triplet yield of a radical pair system.

The rationale is that applications of such integration would enable the control of biological

processes that are electromagnetic dependent. We employ the qlopt algorithm [13–16] to iden-

tify optimal values of 3-dimensional external electromagnetic field vector and 3- or 6-dimen-

sional hyperfine parameter vector which optimize the quantum singlet-triplet yield for the
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spin dynamics of radical pairs in 8- or 16-dimensional Schrödinger system corresponding to

one- and two-proton cases respectively. The method combines ideas of Pontryagin optimiza-

tion, sensitivity analysis, and Tikhonov regularization. One of the major open problems in

optimization of large-scale biological models is the development of the effective global optimi-

zation method in a nonlinear and non-convex setting with the least computational cost, which

is robust with respect to nonlinearities and scales well with problem size [17]. Currently, such

an ideal method does not exist. Deterministic local optimization methods can be used as a

global optimization method by embedding a “Multi-start” (MS) strategy into it which facili-

tates many optimization runs from randomly selected initial parameter guesses [18, 19]. For

example, Latin hypercube sampling [20] for partition of the parameter space can be used to

guarantee that each parameter estimation iteration starts with an initial guess from a different

region in the parameter space. The comparison analysis performed in [17, 19] demonstrates

that robust deterministic local optimization methods embedded with MS strategy, and with

sharp sensitivity analysis platform are the best candidates for the creation of powerful global

optimization methods for large-scale biological and physical models. The comparison analysis

of [15, 16] demonstrates the competitiveness and advantage of the qlopt algorithm with other

most popular local search methods like lsqnonlin, fmincon, nl2sol. The main goal of this paper

is to develop and adapt qlopt method embedded with MS strategy for the quantum optimiza-

tion in spin dynamics of radical pairs.

The computational analysis demonstrates that the method is very well suited for quantum

biology applications. Numerical results demonstrate that the quantum singlet-triplet yield of

the radical pair system can be significantly affected if optimal values of external magnetic field

and hyperfine parameters are identified.

Mathematical model of spin dynamics for radical pairs

We consider a spin dynamics of correlated radical pair system, whose law of motion is given

by Schrödinger’s equation in the form,

ıℏ
dc
dt

¼ HðvÞc; 0 � t � T ð1Þ

cð0Þ ¼ cS 2 C
n

ð2Þ

where

cðt; vÞ ¼ ðc1ðt; vÞ; . . . ;cnðt; vÞÞ : ½0;T� � Rk ! Cn

is a state vector, v 2 Rk
is the parameter vector, T> 0, ℏ is the Planck constant, ψS is a singlet

state and

Hð�Þ : Rk
! Cn�n

is continuously differentiable matrix-function.

One-proton model

For a one-proton model (n = 8) spin Hamiltonian is given as

H ¼ mBgS1 � uþ mBgS2 � uþ mBgI1 � A1 � S1 �
ı
2

kSPS þ kTPTð Þ; ð3Þ

where u = (ux, uy, uz) is the external magnetic field vector, g is chosen to be 2 for both radicals,

A1 = (A1x, A1y, A1z) is the anisotropic hyperfine vector for nucleus 1, I1 = (I1x, I1y, I1z) is the
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spin operator of nucleus 1, μB is the Bohr magneton, Si = (Six, Siy, Siz), i = 1, 2 are the electron’s

spin operators defined as

S1 ¼
1

2
sx � E2 � E2;

1

2
sy � E2 � E2;

1

2
sz � E2 � E2

� �

; ð4Þ

S2 ¼ E2 �
1

2
sx � E2;E2 �

1

2
sy � E2;E2 �

1

2
sz � E2

� �

; ð5Þ

where (σx, σy, σz) are the Pauli’s spin matrices acting on the electron’s spins, and E2 is the 2 x 2

identity matrix. The last term of the spin Hamiltonian is the Haberkorn term “K” [21] in an

effective non-Hermitian Hamiltonian, where

PS ¼
1

4
E8 � S1 � S2; PT ¼

3

4
E8 þ S1 � S2

are projection operators onto the singlet and triplet subspaces respectively. This term reflects

the effects of singlet and triplet radical pairs reacting at different rates kS, kT, respectively. The

electron-electron exchange, dipolar interaction, and spin relaxation in the radical pair are

neglected [22]. Here and the subsequent model without loss of generality, we assume

completely static, perfectly aligned ensemble of radical pairs.

The Hamiltonian can be split into A-dependent, u-dependent and (u,A)-independent

parts, as follows:

H ¼ Hhfi þHz � ıK; ð6Þ

where

Hhfi ¼ mBgA1xI1xS1x þ mBgA1yI1yS1y þ mBgA1zI1zS1z;

Hz ¼ mBgðS1x þ S2xÞux þ mBgðS1y þ S2yÞuy þ mBgðS1z þ S2zÞuz;

K ¼
1

2
kSPS þ kTPTð Þ

Spin Hamiltonian H is represented by 8 × 8 matrix. We describe explicitly all matrices in S1

Appendix. The Schrödinger system is represented by the system of 8 ordinary differential

equations (see S1 Appendix).

Two-proton model

The following is the spin Hamiltonian in the case of a two-proton model (n = 16):

H ¼ mBgðS1x þ S2xÞux þ mBgðS1y þ S2yÞuy þ mBgðS1z þ S2zÞuz

þmBgðA1xI1x þ A2xI2xÞS1x þ mBgðA1yI1y þ A2yI2yÞS1y

þmBgðA1zI1z þ A2zI2zÞS1z �
ı
2

kSPS þ kTPTð Þ:

ð7Þ

The model adds the hyperfine interaction of the second proton to the one-proton model

(6). Here we assume identical principal axes for the two hyperfine interactions. Spin Hamilto-

nian H is represented by an 16 x 16 matrix.
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Description of the optimization problem and numerical method

Consider the function

J ðvÞ ¼
kS

2s

Xs

l¼1

Z T

0

hc
l
ðt; vÞjPSjc

l
ðt; vÞidt

ð8Þ

where ψl(�; v) is a solution of the Schrödinger system (1), (2) with initial position being at sin-

glet state c
l
S; l ¼ 1; . . . ; s, v 2 Rk is a control parameter vector consisting of external magnetic

field intensity vector u 2 R3
and/or internal hyperfine parameter vector A 2 R3

or R6
. For the

one-proton model (n = 8) there are two singlet states (s = 2)

c
1

S ¼
e3 � e5ffiffiffi

2
p ; c

2

S ¼
e4 � e6ffiffiffi

2
p ; ð9Þ

and for the two-proton model (n = 16) we have four singlet states (s = 4)

c
1

S ¼
e5 � e9ffiffiffi

2
p ; c

2

S ¼
e6 � e10ffiffiffi

2
p ; c

3

S ¼
e7 � e11ffiffiffi

2
p ; c

4

S ¼
e8 � e12ffiffiffi

2
p ; ð10Þ

where we adopt the notation {ej} for the standard orthonormal basis in Rn
. The projection

operator PS can be written as

PS ¼
Xs

l¼1

jc
l
Sihc

l
Sj: ð11Þ

Functional J ðvÞ represents quantum singlet yield for the spin dynamics of radical pair sys-

tem over the time interval [0, T]. Our goal is to develop an iterative algorithm for the identifi-

cation of the optimal value of the control parameter v which minimizes the singlet yield over

the time interval [0, T].

Given an initial guess of the control parameter v0 we consider iterative algorithm

vN ¼ vN� 1 þ dvN ;N ¼ 1; 2; . . . ð12Þ

To identify an increment δ vN at every iteration first we linearize the state vector

c
l
ð�; vNÞ ¼ c

l
ð�; vN� 1Þ þ Ul

Ndv
N þ oðjdvN jÞ;

where o(�) represents higher than linear order terms, and Ul
N is the sensitivity matrix

Ul
NðtÞ ¼

@c
l
ðt; vN� 1Þ

@v
¼

@c
l
iðt; v

N� 1Þ

@vj
; i ¼ 1; . . . ; n; j ¼ 1 . . . k

( )

ð13Þ

which satisfies the matrix differential equation

ıℏ
dUl

N

dt
¼ HðvN� 1ÞUl

N þ F; 0 � t � T; Ul
Nð0Þ ¼ 0

ð14Þ

where F is n × k matrix with entries

�l
pq ¼

@HpðvN� 1Þ

@vq
� c

l
ðt; vN� 1Þ; p ¼ 1; . . . ; n; q ¼ 1; . . . ; k;

and Hp is a pth row vector of H.
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We identify an increment δ vN as a global minimizer of the function

IðdvÞ ¼
kS

2s

Xs

l¼1

Z T

0

hUl
Ndv þ c

l
ðt; vN� 1ÞjPSjU

l
Ndv þ c

l
ðt; vN� 1Þidt; ð15Þ

inRk
. Function (15) represents a quantum singlet yield corresponding to linearized state vec-

tor over the time interval [0, T]. It is continuously differentiable on Rk
, and

DIðdvÞ ¼
kS

s

Xs

l¼1

Re
ZT

0

ðUl
NÞ

HPSjU
l
Ndv þ c

l
ðt; vN� 1Þidt; ð16Þ

D2IðdvÞ ¼
kS

s

Xs

l¼1

ZT

0

ðUl
NÞ

HPSU
l
Ndt; ð17Þ

where ðUl
NÞ

H
is a conjugate transpose of the sensitivity matrix Ul

N . The matrix ðUl
NÞ

HPSU
l
N is

Hermitian. Indeed, if ul
ij is its entry on ith row and jth column, and ei is a unit xi-vector in Rk,

then we have

ul
ij ¼

Z T

0

heijðU
l
NÞ

HPSU
l
N jeji dt ¼

Z T

0

hUl
NeijPSjU

l
Neji dt

¼

Z T

0

hðUl
NÞ

i
jPSjðU

l
NÞ

j
i dt ¼

Z T

0

hðUl
NÞ

j
jPSjðU

l
NÞ

i
i dt ¼ ul

ji :

ð18Þ

Since

Z T

0

hcjðUl
NÞ

HPSU
l
N jci dt ¼

Xs

m¼1

Z T

0

jhc
m
S jU

l
Ncij

2 dt � 0;

it follows that the Hermitian matrix
R T

0
ðUl

NÞ
HPSU

l
N dt is positive semi-definite. Thererfore, the

minimum point δ vN satisfies the following system of k linear algebraic equations

Adv ¼ P; ð19Þ

where

A ¼
Xs

l¼1

Re
Z T

0

ðUl
NÞ

HPSU
l
N dt; ð20Þ

and

P ¼ �
Xs

l¼1

Re
Z T

0

ðUl
NÞ

HPSjc
l
ðt; vN� 1Þi dt ð21Þ
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Optimality condition via Gramian matrix of @

@vi

c3 � c5

c4 � c6

 !

for the one-

proton model

Let L2
2
ð0;T;C2

Þ be an Hilbert space of Lebesgue measurable vector functions C : ð0;TÞ ! C2

with inner product

hC1jC2iL2
2
ð0;T;C2Þ ¼

Z T

0

C
H
1
C2 dt

Let C
l
N ; ðV

l
NÞ

i
2 L2

2
ð0;T;C2

Þ are defined as

C
l
N :¼

c
l
3
ð�; vN� 1Þ � c

l
5
ð�; vN� 1Þ

c
l
4
ð�; vN� 1Þ � c

l
6
ð�; vN� 1Þ

0

@

1

A; ðVl
NÞ

i
:¼

@C
l
N

@vi
; l ¼ 1; . . . ; s; i ¼ 1; . . . ; k;

and

Vl
N :¼

@C
l
N

@v

is a corresponding 2×k sensitivity matrix with columns ðVl
NÞ

i
. With this notations, we can eas-

ily deduce that

Z T

0

ðUl
NÞ

HPSU
l
N dt ¼

1

2

Z T

0

ðVl
NÞ

HVl
N dt ð22Þ

�

Z T

0

ðUl
NÞ

HPSjc
l
ðt; vN� 1Þi dt ¼ �

1

2

Z T

0

ðVl
NÞ

H
jC

l
Ni dt; ð23Þ

where k × k matrix
R T

0
ðVl

NÞ
HVl

N dt is the Gram matrix of vectors ðVl
NÞ

i
, i = 1,. . ., k in

L2
2
ð0;T;C2

Þ, i.e.

Z T

0

ðVl
NÞ

HVl
N dt ¼ ðal

ijÞ
k
i;j¼1

; al
ij ¼ hðV

l
NÞ

i
jðVl

NÞ
j
iL2

2
ð0;T;C2Þ

; ð24Þ

Z T

0

ðVl
NÞ

H
jC

l
Ni dt ¼ ðpl

iÞ
k
i¼1
; pl

i ¼ hðV
l
NÞ

i
jC

l
NiL2

2
ð0;T;C2Þ

: ð25Þ

Hence, our optimality system is (19), with

A ¼
Xs

l¼1

1

2
Re
ZT

0

ðVl
NÞ

HVl
N dt; P ¼ �

Xs

l¼1

1

2
Re
ZT

0

ðVl
NÞ

H
jC

l
Ni dt ð26Þ

To transform it further, introduce an Hilbert space L4
2
ð0;T;R4

Þ of Lebesgue measurable

vector functions F : ð0;TÞ ! R4
with inner product

hF1jF2iL4
2
ð0;T;R4Þ ¼

Z T

0

FT
1
F2 dt
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Let Fl
N ; ðW

l
NÞ

i
2 L4

2
ð0;T;R4

Þ are defined as

Fl
N :¼

Reðcl
3
ð�; vN� 1Þ � c

l
5
ð�; vN� 1ÞÞ

Imðcl
3
ð�; vN� 1Þ � c

l
5
ð�; vN� 1ÞÞ

Reðcl
4
ð�; vN� 1Þ � c

l
6
ð�; vN� 1ÞÞ

Imðcl
4
ð�; vN� 1Þ � c

l
6
ð�; vN� 1ÞÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ðWl
NÞ

i
:¼

@Fl
N

@vi
; i ¼ 1; . . . ; k

and

Wl
N :¼

@Fl
N

@v

is a corresponding 4 × k sensitivity matrix with columns ðWl
NÞ

i
. We now deduce that

Re
Z T

0

ðUl
NÞ

HPSU
l
N dt ¼

1

2
Re
Z T

0

ðVl
NÞ

HVl
N dt ¼

1

2

Z T

0

ðWl
NÞ

TWl
N dt

� Re
Z T

0

ðUl
NÞ

HPSjc
l
ðt; vN� 1Þ dt ¼ � Re

1

2

Z T

0

ðVl
NÞ

H
jC

l
Ni dt

¼ �
1

2

Z T

0

ðWl
NÞ

T
jFl

Ni dt;

ð27Þ

where k × k matrix
R T

0
ðWl

NÞ
TWl

N dt is the Gram matrix of vectors ðWl
NÞ

i
; i ¼ 1; . . . ; k in

L4
2
ð0;T;R4Þ, i.e.

Z T

0

ðWl
NÞ

TWl
N dt ¼ ðwl

ijÞ
k
i;j¼1

; wl
ij ¼ hðW

l
NÞ

i
jðWl

NÞ
j
iL4

2
ð0;T;R4Þ; ð28Þ

Pl :¼

Z T

0

ðWl
NÞ

T
jFl

Ni dt ¼ ðf l
i Þ

k
i¼1
; f l

i ¼ hðW
l
NÞ

i
jFl

NiL4
2
ð0;T;R4Þ

: ð29Þ

Hence, our optimality system can be written as (19), with

A ¼
Xs

l¼1

Al; P ¼
Xs

l¼1

Pl; ð30Þ

where

Al ¼

Z T

0

ðWl
NÞ

TWl
N dt; P ¼ �

Z T

0

ðWl
NÞ

T
jFl

Ni dt

We have

detAl ¼ GððWl
NÞ

1
; . . . ; ðWl

NÞ
k
Þ :¼ det

Z T

0

ðWl
NÞ

TWl
N dt; ð31Þ

where GððWl
NÞ

1
; . . . ; ðWl

NÞ
k
Þ is a Gram determinant of vectors

fðWl
NÞ

i
; i ¼ 1; . . . ; kg � L4

2
ð0;T;R4

Þ. It is well known [23] that

detAl ¼ GððWl
NÞ

1
; . . . ; ðWl

NÞ
k
Þ � 0; ð32Þ

and it is positive, that is to say, Al is a non-singular matrix, if and only if the vectors ðWl
NÞ

i
; i ¼
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1; . . . ; k are linearly independent in L4
2
ð0;T;R4Þ. Applying Minkowski’s Determinant Theo-

rem [24], from (30) we deduce the low bound for det A:

detA �
Xs

l¼1

ðdetAlÞ
1
k

" #k

ð33Þ

The estimation (33) implies that the matrix A is non-singular, if det Al > 0 for some l 2
{1,. . ., s}. Hence, we established the following

Theorem 1 Optimality system (19) has a unique solution, which is a unique global minimizer
of the function (15) in Rk if the functions ðWl

NÞ
i
; i ¼ 1; . . . ; k are linearly independent in

L4
2
ð0;T;R4

Þ for some singlet state cl
S; l 2 f1; . . . ; sg.

Optimality condition via Gramian matrix of @

@vi

c5 � c9

c6 � c10

c7 � c11

c8 � c12

0

B
B
B
B
@

1

C
C
C
C
A

for the two-

proton model

Let C
l
N ; ðV

l
NÞ

i
2 L4

2
ð0;T;C4

Þ are defined as

C
l
N :¼

c
l
5
ð�; vN� 1Þ � c

l
9
ð�; vN� 1Þ

c
l
6
ð�; vN� 1Þ � c

l
10
ð�; vN� 1Þ

c
l
7
ð�; vN� 1Þ � c

l
11
ð�; vN� 1Þ

c
l
8
ð�; vN� 1Þ � c

l
12
ð�; vN� 1Þ

0

B
B
B
B
@

1

C
C
C
C
A
; ðVl

NÞ
i
:¼

@C
l
N

@vi
; i ¼ 1; . . . ; k

and

Vl
N ≔

@C
l
N

@v

is a corresponding 4 × k sensitivity matrix with columns ðVl
NÞ

i
. With this notations, we can

easily deduce (22)-(26), where the corresponding Hilbert space is L4
2
ð0;T;C4

Þ.

To transform it further, let Fl
N ; ðW

l
NÞ

i
2 L8

2
ð0;T;R8Þ are defined as

Fl
N ≔

Reðcl
5
ð�; vN� 1Þ � c

l
9
ð�; vN� 1ÞÞ

Imðcl
5
ð�; vN� 1Þ � c

l
9
ð�; vN� 1ÞÞ

Reðcl
6
ð�; vN� 1Þ � c

l
10
ð�; vN� 1ÞÞ

Imðcl
6
ð�; vN� 1Þ � c

l
10
ð�; vN� 1ÞÞ

Reðcl
7
ð�; vN� 1Þ � c

l
11
ð�; vN� 1ÞÞ

Imðcl
7
ð�; vN� 1Þ � c

l
11
ð�; vN� 1ÞÞ

Reðcl
8
ð�; vN� 1Þ � c

l
12
ð�; vN� 1ÞÞ

Imðcl
8
ð�; vN� 1Þ � c

l
12
ð�; vN� 1ÞÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; ðWl
NÞ

i ≔
@Fl

N

@vi
; i ¼ 1; . . . ; k

and

Wl
N ≔

@Fl
N

@v
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is a corresponding 8 × k sensitivity matrix with columns ðWl
NÞ

i
. With this notation we deduce

(27)-(33) with corresponding Hilbert space L8
2
ð0;T;R8

Þ.

Hence, Theorem 1 applies to two-proton model with corresponding Hilbert space replaced

with L8
2
ð0;T;R8Þ.

Algorithm

The following iterative method is suggested for the identification of the optimal value of the

parameter v:

1. Initialize v0 and set N = 1.

2. Find ψl(t;vN−1) and the sensitivity matrices Ul
N for l = 1,. . ., s by solving systems of differen-

tial Eqs (1) and (2) with cS ¼ c
l
S, and (14) respectively.

3. Find state vector Fl
N , sensitivity vectors ðWl

NÞ
i
; i ¼ 1; . . . ; k, and identify the matrix A, and

the vector P from (30).

4. Find δ vN by solving the linear algebraic equations system (19) and update the new value vN

by (12).

5. If necessary accuracy is achieved, then terminate the process, otherwise replace N with N
+ 1 and go to Step 2. As termination criteria, the smallest of either of the expressions

jvN� 1 � vN j; IðdvÞ ð34Þ

can be used.

Regularization

In general, the matrix A may be ill-conditioned, and to solve the ill-conditioned problem (19)

we implement Tikhonov regularization. To derive the gradient update needed to apply Tikho-

nov regularization, we consider the cost functional

IðdvÞ ¼
kS

2s

Xs

l¼1

Z T

0

hUl
Ndv þ c

l
ðt; vN� 1ÞjPSjU

l
Ndv þ c

l
ðt; vN� 1Þidt þ

lT
2
jdvj2;

where λ> 0 is a regularization parameter scaled according to the final moment T. This yields

the following linear system instead of (19)

ðAþ lTEkÞdv ¼ P; ð35Þ

where A and P are defined as in (30), and Ek is the k × k identity matrix.

Results

One-proton model

Validation of radical pair model. We validate the model with the case of a radical pair

with a single spin-1/2 nucleus and a static magnetic field in the direction û ¼ u
kuk, where u =

(−0.2, −0.97, 0.11)μT and T = 14μs. In other words, the norm of the field changed while the

direction is kept constant. The final moment T is chosen such that the product yield J corre-

sponding to Hamiltonian for the classical resonance at 1.4 MHz, and rate constants k = 0.5 will

be in a 10−4-neighborhood of its asymptotic limit as T!1. Hyperfine constants are chosen
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as A1x = −0.234, A1y = −0.234, A1z = 0.117 all in mT; the constants were chosen in the spirit

of [25]. For this and the subsequent model, reaction rates kS, kT are set equal with value of

k� 1
S ¼ 2ms.

H ¼ mBgðS1z þ S2zÞuz þ mBgI1xA1xS1x þ mBgI1yA1yS1y þ mBgI1zA1zS1z

�
ı
2

kSPS þ kTPTð Þ;
ð36Þ

where I1, S1 and S2 are the spin angular momentum operators of the nucleus and two

electrons.

Fig 1 shows the static magnetic field effect on the singlet quantum yield of a one-proton

radical pair, calculated using (8). A striking feature of Fig 1 is the drop of the quantum yield J
produced at low level fields.

Identification of magnetic parameters to minimize quantum yield. We consider opti-

mization problem when k = 3, v ¼ u ¼ ðux; uy; uzÞ 2 R
3
, i.e. we search for the external mag-

netic field vector which minimizes the singlet quantum yield. Fig 2 demonstrate the results of

application of the algorithm. The iterative sequence converges with respect to cost function

(Fig 2A), as well as with respect to control parameter (Fig 2B). Fig 2B demonstrates that the

minimum of the quantum singlet yield has a radial symmetry with respect to (ux, uy) compo-

nent of the external magnetic field vector. Therefore, once iterative process achieves the mini-

mum values of uz and ðu2
x þ u2

yÞ
1
2, the component (ux, uy) stays on the circle of minimum

radius by producing periodic iteration of ux and uy shown in the inset of Fig 2B. Fig 2C

demonstrates the convergence range of the optimal solution uopt from Fig 2B. Convergence

range is defined as a neighbourhood of optimal solution uopt in R3
such that for any u0 chosen

from it, the sequence uN constructed according to algorithm converges to uopt. The low

branch of the graph in Fig 2C corresponds to the initial guess of magnetic field vector satisfy-

ing |u0 − uopt|< 42, whereas the upper branch corresponds to the case |u0 − uopt|� 42. Hence,

Fig 1. Dependence of the singlet yield on the strength of the applied magnetic field. Singlet yield is minimized for

low level magnetic fields. Hyperfine constants are chosen as A1x = −0.234, A1y = −0.234, A1z = 0.117 all in mT. These

values are chosen in the spirit of [25].

https://doi.org/10.1371/journal.pone.0273404.g001
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the quantum yield converges to the minimum value J ¼ 0:13 represented by the dose-

response model in Fig 1, if the initial value of the magnetic field vector satisfies the inequality |

u0 − uopt|< 42. If |u0−uopt|� 42 it still converges, but to a higher local minimum value of 0.25.

Identification of hyperfine parameters to minimize quantum yield. We consider opti-

mization problem when k = 3, v ¼ A1 ¼ ðA1x;A1y;A1zÞ 2 R
3, i.e. we search for the hyperfine

parameters which minimize the singlet quantum yield. We fix the magnetic field parameter at

u = (30, 10, 40)μT corresponding to the Earth’s magnetic field. Minimization of cost functional

and identified hyperfine parameters are shown in (Fig 3).

Identification of combined parameters to minimize quantum yield. We now consider

optimization when k = 6, v ¼ ðu;A1Þ 2 R
6
, i.e. we search for both external magnetic field and

hyperfine parameters which minimize the singlet quantum yield. Remarkably, joint optimiza-

tion reduces the minimum of the quantum yield to its minimum value 0.12 without regulariza-

tion (blue graph in Fig 4A), and to 0.106 with regularization (red graph in Fig 4A) which is

significantly smaller than its minimum value in the dose-response model.

Two-proton model

Validation. As before, we validate the model with the case of a radical pair with a two

spin-1/2 nucleus and a static magnetic field in the direction of û ¼ u
jjujj, where u = (0.137,

−0.986, −0.098)μT. Hyperfine constants are chosen as A1x = 0.03, A1y = −0.64, A1z = 0.17,

A2x = −0.10, A2y = 0.0, A2z = 0.05 all in mT. Fig 5 shows the static magnetic field effect on the

singlet quantum yield.

Fig 2. One proton model field optimization. Identification of magnetic parameters for a one-proton model with hyperfine constants A1x = −0.234, A1y
= −0.234, and A1z = 0.117. Epoch stands for iteration parameter n. A: Minimization of the cost function. B: Magnetic parameter evolution. C: Final

value of the cost function versus distance of initial iteration from the optimal parameter.

https://doi.org/10.1371/journal.pone.0273404.g002
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Identification of magnetic parameters to minimize quantum yield for a two-proton

model. We consider minimization of the singlet quantum yield for the two-proton problem

when k = 3, v ¼ u ¼ ðux; uy; u3Þ 2 R
3, i.e. we search for the external magnetic field vector

which minimizes the singlet quantum yield. Fig 6A and 6B demonstrate the quantum yield

Fig 3. One proton model hyperfine optimization. Identification of hyperfine paramters for a one-proton model. The cost function minimum J ¼
0:14 is reached for diagonal hyperfine constants A1x = −0.054, A1y = −0.198 and A1z = 0.131 and using a regularization parameter λ = 10−5. A: Cost

function minimization with or without regularization. B: Hyperfine parameter evolution.

https://doi.org/10.1371/journal.pone.0273404.g003

Fig 4. Identification of the magnetic field and hyperfine parameters for a one-proton model. Identification of the magnetic field and hyperfine

parameters for a one-proton model. The cost function minimum J ¼ 0:106 is reached for hyperfine constants A1x = −0.089, A1y = −0.053, A1z = 0.155

for a magnetic field (ux, uy, uz) = (-4.92, -19.33, -18.81) μT. A: Cost function minimization with or without regularization. B: Magnetic field parameter

evolution. C: Hyperfine parameter evolution.

https://doi.org/10.1371/journal.pone.0273404.g004
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convergence for different regularization parameters and the convergence to the minimizing

magnetic field. We observe that regularization is not required for convergence.

Identification of hyperfine parameters to minimize quantum yield for a two-proton

model. We consider optimization problem when k = 6 and

v ¼ ðA1;A2Þ ¼ ðA1x;A1y;A1z;A2x;A2y;A2zÞ 2 R
6
;

i.e. we search for the hyperfine parameters which minimize the singlet quantum yield. Fig 7

shows the minimization with respect to hyperfine parameters with external magnetic field

parameter fixed at u = (30, 10, 40)μT.

Identification of combined parameters to minimize quantum yield for a two-proton

model. We now consider optimization problem when k = 9, v ¼ ðu;A1;A2Þ 2 R
9, i.e. we

Fig 5. Quantum yield as a function of magnetic field for two-proton model. Hyperfine constants are chosen as A1x
= 0.03, A1y = −0.64, A1z = 0.17, A2x = −0.10, A2y = 0.0, A2z = 0.05 all in mT.

https://doi.org/10.1371/journal.pone.0273404.g005

Fig 6. Identification of magnetic parameters for a two-proton model. Iterative method decreases quantum yield to its minimum value J ¼ 0:13

represented by the dose-response model. This minimum corresponds to fields (ux, uy, uz) = (2.4, −17.3, −1.7) μT. Negative uz indicates opposite

direction as coordinate frame. Field azimuthal symmetry is lost for this model. A: Cost function minimization for different values of the regularization

parameter. B: Magnetic field parameter evolution.

https://doi.org/10.1371/journal.pone.0273404.g006
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search for both external magnetic field and hyperfine parameters which minimize the singlet

quantum yield. Fig 8A shows the dependence of the minimization of the quantum yield on the

regularization parameter. As in the one-proton case, regularization helps faster convergence

with respect to function (red graph vs.blue graph in Fig 8A). The algorithm for joint optimiza-

tion with respect to both magnetic and hyperfine parameters provides a minimizing sequence

convergent to a smaller value less than half of the starting quantum yield, which represents an

important optimization of the quantum process.

Discussion and conclusions

In this paper, we consider the problem of identification of the external electromagnetic field

and internal hyperfine parameters which optimize the quantum singlet-triplet yield of a sim-

plified radical pair system. We employ the qlopt algorithm [13–16] to identify optimal values

of 3-dimensional external electromagnetic field vector and 3- or 6-dimensional hyperfine

parameter vector which optimize the quantum singlet-triplet yield for the spin dynamics of

radical pairs in 8- or 16-dimensional Schrödinger system corresponding to one- and two-pro-

ton cases respectively. Numerical results demonstrate that the quantum singlet-triplet yield

of the radical pair system can be significantly reduced if optimization is pursued simulta-

neously for external magnetic field and internal hyperfine parameters. The results may help

us understand the structure-function relationship of a complex putative magnetoreceptor to

Fig 7. Identification of magnetic parameters for a two-proton model. Iterative method decreases the quantum yield to its minimum value

represented by the dose-response model. Optimal values of the hyperfine parameters are A1x = 0, A1y = 0, A1z = −0.004, A2x = −0.2, A2y = 0, A2z = 0.52.

A: Cost function minimization with regularization. B: First proton hyperfine parameter evolution. C: Second proton hyperfine parameter evolution.

https://doi.org/10.1371/journal.pone.0273404.g007
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manipulate and enhance quantum coherences at room temperature, and leveraging biofidelic

function to inspire novel quantum devices. In particular, the results may provide new routes

for weak biomagnetic sensors. The results may represent a crucial step to affirm the direct con-

nection between hyperfine optimization and quantum coherence for more complex radical

pair systems.

Supporting information

S1 Appendix.

(PDF)

Acknowledgments

The authors would like to thank unknown referees for very useful comments which improved

the presentation of the results.

Author Contributions

Conceptualization: Carlos F. Martino, Pablo Jimenez, Ugur G. Abdulla.

Formal analysis: Pablo Jimenez, Ugur G. Abdulla.

Fig 8. Identification of hyperfine and field parameters for a two-proton model. Quantum yield decreases significantly compared to static response

model and reaches the minimum J ¼ 0:11 for hyperfine parameters A1x = 0.081, A1y = −0.186, A1z = 0.104, A2x = −0.232, A2y = 0.119, A2z = 0.848 and

field (ux, uy, uz) = (−12.9, −3.7, −8.1) μT. A: Cost function minimization with and without regularization. B: Field parameter evolution. C: First proton

hyperfine parameter evolution.D: Second proton hyperfine parameter evolution.

https://doi.org/10.1371/journal.pone.0273404.g008

PLOS ONE Optimization in quantum biology

PLOS ONE | https://doi.org/10.1371/journal.pone.0273404 February 24, 2023 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0273404.s001
https://doi.org/10.1371/journal.pone.0273404.g008
https://doi.org/10.1371/journal.pone.0273404


Methodology: Pablo Jimenez, Max Goldfarb, Ugur G. Abdulla.

Validation: Ugur G. Abdulla.

Writing – original draft: Carlos F. Martino, Ugur G. Abdulla.

Writing – review & editing: Carlos F. Martino, Ugur G. Abdulla.

References
1. Turinici Gabriel and Rabitz Herschel. Quantum wavefunction controllability. Chemical Physics 267

(2001) 1–9. https://doi.org/10.1016/S0301-0104(01)00216-6

2. Brif Constantin, Chakrabarti Raj and Rabitz Herschel. Control of quantum phenomena: past, present

and future. New Journal of Physics, 2009. 12 075008 https://doi.org/10.1088/1367-2630/12/7/075008

3. Bucci M, Goodman C, and Sheppard TL (2010) A decade of chemical biology. Nature chemical biology

6(12):847–854. https://doi.org/10.1038/nchembio.489 PMID: 21079586

4. Ball P (2011) Physics of life: The dawn of quantum biology. Nature 474(7351):272–274. https://doi.org/

10.1038/474272a PMID: 21677723

5. Lambert N, et al. (2013) Quantum biology. Nat Phys 9(1):10–18. https://doi.org/10.1038/nphys2474

6. Turin L. A spectroscopic mechanism for primary olfactory reception. Chem Senses 21(6), 1996:773–

791. https://doi.org/10.1093/chemse/21.6.773 PMID: 8985605

7. Niessner C, et al. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in

birds. Journal of the Royal Society, Interface. 2013. 10(88):20130638. https://doi.org/10.1098/rsif.

2013.0638 PMID: 23966619

8. Ritz T, Thalau P, Phillips JB, Wiltschko R, and Wiltschko W. Resonance effects indicate a radical-pair

mechanism for avian magnetic compass. Nature 429, 2014. (6988):177–180. https://doi.org/10.1038/

nature02534

9. Ritz T, et al. Magnetic Compass of Birds Is Based on a Molecule with Optimal Directional Sensitivity.

Biophys J 96(8), 2009:3451–3457. https://doi.org/10.1016/j.bpj.2008.11.072 PMID: 19383488

10. Usselman R.J., et al. The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular

Bioenergetics. Scientific Reports, 2016. 6: p. 38543 https://doi.org/10.1038/srep38543 PMID: 27995996

11. Cai, Jianming, Caruso, Filippo and Plenio, Martin B. Quantum limits for the magnetic sensitivity of a

chemical compass. Phys. Rev. A, 2012. 4: 040304 https://doi.org/10.1103/PhysRevA.85.040304

12. Cai Jianming, Plenio Martin B. Chemical Compass Model for Avian Magnetoreception as a Quantum

Coherent Device. Phys. Rev. Lett., 2013. 23:230503 https://doi.org/10.1103/PhysRevLett.111.230503

PMID: 24476240

13. Abdullaev U. G. Quasilinearization and inverse problems of nonlinear dynamics. Journal of Optimization

Theory and Applications, 1995. 85(3), 509–526. https://doi.org/10.1007/BF02193053

14. Abdullaev U. G. Quasilinearization and inverse problems for nonlinear control systems, Journal of Opti-

mization Theory and Applications, 1995. 85(3), 527–543. https://doi.org/10.1007/BF02193053

15. Abdulla U. G. and Poteau R. Identification of parameters in systems biology, Mathematical Biosciences,

305, November 2018. 133–145. https://doi.org/10.1016/j.mbs.2018.09.004 PMID: 30217694

16. Abdulla U. G. and Poteau R. Identification of Parameters for Large-scale Models in Systems Biology,

Journal of Computational Physics, 429, March 2021. 110026. https://doi.org/10.1016/j.jcp.2020.

110026
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