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Abstract

Background

Haiti has been experiencing a resurgence of diphtheria since December 2014. Little is

known about the factors contributing to the spread and persistence of the disease in the

country. Geographic information systems (GIS) and spatial analysis were used to character-

ize the epidemiology of diphtheria in Haiti between December 2014 and June 2021.

Methods

Data for the study were collected from official and open-source databases. Choropleth

maps were developed to understand spatial trends of diphtheria incidence in Haiti at the

commune level, the third administrative division of the country. Spatial autocorrelation was

assessed using the global Moran’s I. Local indicators of spatial association (LISA) were

employed to detect areas with spatial dependence. Ordinary least squares (OLS) and geo-

graphically weighted regression (GWR) models were built to identify factors associated with

diphtheria incidence. The performance and fit of the models were compared using the

adjusted r-squared (R2) and the corrected Akaike information criterion (AICc).

Results

From December 2014 to June 2021, the average annual incidence of confirmed diphtheria

was 0.39 cases per 100,000 (range of annual incidence = 0.04–0.74 per 100,000). During

the study period, diphtheria incidence presented weak but significant spatial autocorrelation

(I = 0.18, p<0.001). Although diphtheria cases occurred throughout Haiti, nine communes

were classified as disease hotspots. In the regression analyses, diphtheria incidence was

positively associated with health facility density (number of facilities per 100,000 population)

and degree of urbanization (proportion of urban population). Incidence was negatively asso-

ciated with female literacy. The GWR model considerably improved model performance and
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fit compared to the OLS model, as indicated by the higher adjusted R2 value (0.28 v 0.15)

and lower AICc score (261.97 v 267.13).

Conclusion

This study demonstrates that GIS and spatial analysis can support the investigation of epi-

demiological patterns. Furthermore, it shows that diphtheria incidence exhibited spatial vari-

ability in Haiti. The disease hotspots and potential risk factors identified in this analysis could

provide a basis for future public health interventions aimed at preventing and controlling

diphtheria transmission.

Introduction

Diphtheria is a highly contagious, vaccine-preventable disease caused by Corynebacterium
diphtheriae [1–3]. Transmission occurs primarily by droplet or contact with nasopharyngeal

secretions of infected people. The hallmark of infection is the formation in the upper respira-

tory tract of the pseudomembrane–a thick, gray coating consisting of necrotic tissue and bacte-

ria [1–3]. Diphtheria complications include respiratory insufficiency, myocarditis, and

neuritis. The fatality rate among confirmed cases is 5–10%. However, higher rates have been

observed among certain groups (e.g., untreated, unvaccinated individuals) [1–3].

In recent years, despite the existence of a safe and effective vaccine, diphtheria has been

experiencing a dramatic resurgence worldwide, with major outbreaks reported in Bangladesh,

Venezuela, and Yemen [4–6]. In 2019 alone, 22,625 cases were reported globally–a 407%

increase from 2015, when 4,535 infections were recorded [6]. The situation is exacerbated by

the current shortage of the life-saving diphtheria antitoxin, resulting from a decline in produc-

tion due to decreasing demand [7,8].

Presently, Haiti is among the countries worst hit by the disease in the Americas. From

December 2014 to June 2021, 1,281 suspected cases were detected in the country [9]. Past

research has shown inadequate levels of diphtheria immunization among confirmed cases in

Haiti [10–12]. Nevertheless, little is known about other factors contributing to the spread and

persistence of the disease in the country. Moreover, areas at high risk for infection remain

unknown. Understanding the spatial patterns of diphtheria transmission and the associated

factors is critical for developing and implementing effective interventions.

Over the last two decades, geographic information systems (GIS) and spatial analysis have

emerged as key tools for detecting disease hotspots and identifying factors correlated with dis-

ease transmission [13,14]. Few studies have employed GIS and spatial analysis to examine

diphtheria. For instance, Podavalenko [15] detected a significant correlation between diphthe-

ria incidence and vaccination coverage, population density, and population growth rate in

Ukraine during 1985–2016. Nailul et al. [16] also identified a negative association between

diphtheria incidence and vaccination coverage in East Java, Indonesia in 2010. Furthermore,

Quesada [17] found that diphtheria incidence was associated with poverty rates during an out-

break in San Antonio, Texas in 1970.

The present study set out to characterize the spatial epidemiology of diphtheria in Haiti

from December 2014 to June 2021. Specifically, it aimed to determine the subnational distribu-

tion of confirmed cases in the country; locate hotspots of transmission; and identify potential

factors associated with the incidence of the disease.
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Methods

Study area

Haiti (19.00˚ N latitude, 72.25˚ W longitude) is situated on the western third of Hispaniola, an

island in the Caribbean Sea that it shares with the Dominican Republic [18,19]. It is divided

into 10 departments consisting of 42 arrondissements, 140 communes, and 570 communal

sections. The capital and largest city is Port-au-Prince, which is in the Ouest department. Hai-

ti’s population is estimated at about 11 million.

Study design

The study was a retrospective ecological analysis of confirmed diphtheria cases reported to Hai-

ti’s Directorate of Epidemiology, Laboratory and Research (Direction d’ épidémiologie, des

laboratoires et de la recherche; DELR)–a body of Haiti’s Ministry of Public Health and Popula-

tion (Ministère de la santé publique et de la population; MSPP) that records, reviews, and vali-

dates data of all diphtheria cases reported in the country. In this study, a confirmed case was

defined as an individual who tested positive for C. diphtheriae by polymerase chain reaction

(PCR) or who was confirmed by epidemiological link. The geographical unit of analysis was the

commune. The period under consideration was from 1st December 2014 to 30th June 2021.

Data dictionary

The number of diphtheria cases at the commune level were obtained from the DELR. Crude

annual rates by communes were calculated by dividing the number of diphtheria cases

reported annually by the corresponding population estimate from the Haitian Institute of Sta-

tistics and Informatics (Institut haïtien de statistique et d’informatique; IHSI) [18]. Average

rates were calculated by dividing the sum of the total cases reported during the study period by

the sum of the populations for the same period. All rates were multiplied by 100,000. Eleven

factors which could be linked to diphtheria incidence were selected following a systematic lit-

erature review [20]. These were grouped under three domains: health, socioeconomic status,

and environment. Table 1 summarizes the study variables.

Data for most of these variables were extracted from spatially interpolated maps produced

by the Demographic and Health Survey (DHS) Program [22]. The maps were freely available

as raster files on the DHS Program Spatial Data Repository. The maps were based on a 2016–

2017 survey of a nationally representative sample of 13,405 households in Haiti [23]. Using a

simple mean approach, datapoints in the maps were aggregated to match the boundaries of

each commune using R programming language [24]. Spatial data relative to administrative

boundaries and health facilities in Haiti were retrieved from Humanitarian Data Exchange

(HDX)–an open access platform managed by the United Nations Office for the Coordination

of Humanitarian Affairs [21]. Other data sources included the MSPP and the IHSI.

Ethical considerations

Since all datasets used in this study were anonymized and aggregated at the commune level, no

consent was required. The study was approved by Haiti’s National Bioethics Committee (refer-

ence number: 1921–45) and by the University of Nottingham’s School of Medicine Research

Ethics Committee (reference number: 267–1903).

Descriptive analysis

Collected data were examined for consistency by checking for missing, duplicate, and out-of-

range values. Frequency distributions were generated for categorical variables. Measures of
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location (i.e., mean, median) and variation (i.e., standard deviation, range, interquartile range)

were calculated for continuous variables. Choropleth maps were developed to illustrate the

geographic distribution of the study variables. QGIS [25] was used to process data while the

descriptive analysis was performed using the R programming language.

Two variables (DT vaccine stockout and DTP vaccine stockout) were excluded from the

analysis due to the large amount of missing data (>10%). Out-of-range values were found for

DTP3 vaccine coverage; however, since these values represented <10% of the total number of

observations, the variable was included in the analysis. No duplicate values were found in the

dataset.

Spatial autocorrelation and hotspot analysis

Spatial autocorrelation analyses were conducted to investigate the spatial pattern of diphtheria

incidence and identify hotspots. The global spatial test Moran’s I was used to quantify the spa-

tial autocorrelation of diphtheria incidence in Haiti. The Moran’s I is an index that measures

the extent of spatial autocorrelation in a given dataset using a scale from -1 to +1 [26,27]. A

positive Moran’s I suggested positive autocorrelation (i.e., the clustering of communes with

similar values). A negative Moran’s I denoted negative autocorrelation (i.e., the clustering of

communes with dissimilar values). A Moran’s I close to 0 indicated that values were randomly

distributed.

Since the global Moran’s I revealed the overall degree and direction of spatial autocorrela-

tion but not where the clustering of high and low values occurred, local indicators of spatial

association (LISA) were also calculated. LISA are a local version of the Moran’s I, in which the

Table 1. Variables selected for the analysis.

Theme and variable Description Source and study period

Diphtheria incidence Confirmed diphtheria cases per 100,000 population Directorate of Epidemiology, Laboratory

and Research, 2014–21

Health

Coverage for the third dose of the diphtheria

tetanus pertussis (DTP3) vaccine

Proportion of children aged <1 year who had received the third

dose of the DTP vaccine

Ministry of Public Health and Population,

2015–20

Diphtheria tetanus (DT) vaccine stockout Average annual number of days when the DT vaccine was out of

stock

Ministry of Public Health and Population,

2017–20

DTP stockout Average annual number of days when the DTP vaccine was out of

stock

Ministry of Public Health and Population,

2017–20

Health facility density Number of health facilities per 100,000 population Humanitarian Data Exchange, 2020 [21]

Socioeconomic status

Female literacy Proportion of women who are literate Demographic and Health Surveys

Program, 2016–17 [22]

Improved water source Proportion of the population that lives in households whose main

source of drinking water is an improved source

Demographic and Health Surveys

Program, 2016–17 [22]

Male literacy Proportion of men who are literate Demographic and Health Surveys

Program, 2016–17 [22]

No toilet facility Proportion of the population that lives in households with no toilet

facility

Demographic and Health Surveys

Program, 2016–17 [22]

School density Education facilities per 100,000 population Demographic and Health Surveys

Program, 2020 [22]

Environment

Population density Ratio between total population and total surface area Haitian Institute of Statistics and

Informatics, 2015

Urbanization Proportion of urban population in total population Haitian Institute of Statistics and

Informatics, 2015

https://doi.org/10.1371/journal.pone.0273398.t001
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level of spatial clustering is assessed around each individual geographical unit (e.g., commune)

rather than across the entire study area (e.g., Haiti) [28]. In this study, neighbour relationships

were defined using a first-order Queen’s contiguity method, in which only communes that

shared common boundaries were considered to be neighbours. If a commune was situated on

an island and, thus, did not share borders with the rest of the study area, these were assigned

manually to one of the nearest communes on mainland Haiti [29]. The main output of the

LISA analysis was a map showing four types of statistically significant spatial autocorrelation

[28]: high-high to indicate the clustering of communes with high diphtheria incidence (i.e., the

hotspots); low-low to show the clustering of communes with low incidence (i.e., the cold

spots); and, low-high and high-low to represent spatial outliers (i.e., low incidence communes

surrounded by high incidence communes, and vice versa).

All spatial analyses were conducted in GeoDa 1.12 [30]. The level of significance was set at

p<0.05. Significance of spatial tests was evaluated by comparing the observed test results with

the expected results under the complete spatial randomness assumption using Markov chain

Monte Carlo (MCMC) method based on 999 permutations [31].

Regression models

To identify the significant correlates of diphtheria incidence, two regression models were built:

ordinary least squares (OLS) and geographically weighted regression (GWR). OLS is a global

model which presumes that observations are mutually independent and that relations between

dependent and independent variables are constant across a study area. When these assump-

tions are violated, global models are no longer effective. OLS is defined as [32]:

Y ¼ b0 þ b1X1 þ b2X2 þ . . . bnXn þ ε; ð1Þ

where Y is the dependent variable, X is the independent variable, β is the coefficient explaining

the strength and type of relationship between X and Y, and ε is the residual (i.e., the difference

between observed and predicted values).

In contrast with OLS, GWR is a local model that accounts for spatial heterogeneity by gen-

erating a unique equation for every unit of a study area [33,34]. Each equation is calibrated

based on their neighbouring units, which are weighted using a decreasing function of distance;

in other words, nearby areas hold a greater weight than those farther away. The assumption is

that everything is related to everything else, but near things are more related than distant

things (i.e., Tobler’s first law of geography) [35]. GWR can be defined as:

Yi ¼ b0i þ b1iX1i þ b2iX2i þ . . . bniXni þ εi ð2Þ

in which i is the specific location where data on Y and X are measured.

Independent variables to be included in the two models were identified using a multi-stage

process to ensure the absence of multicollinearity, which occurs when independent variables

are highly correlated among each other [36]. Firstly, Spearman’s rank correlation was con-

ducted to identify strong correlations (r�0.7, p�0.05). If two or more independent variables

were highly correlated, the one with the lowest correlation with diphtheria incidence was

excluded. Then, the remaining variables were included in the OLS model. Finally, the variance

inflation factor (VIF) was calculated to determine the degree of multicollinearity among the

independent variables. A VIF�5 was considered acceptable. Variables that did not have a sta-

tistically significant (p>0.1) effect on diphtheria incidence were removed from the model.

The performance of the OLS and GWR models was compared using the adjusted r-squared

(R2) and the corrected Akaike information criterion (AICc). R2 is the coefficient of determina-

tion, which indicates the proportion of variance in the dependent variable that is collectively
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explained by the independent variables [37]. A drawback of R2 is that it increases with the

number of added variables. The adjusted R2 is similar to the ordinary R2, but it imposes a pen-

alty as superfluous variables are included in the model. AICc is a modified version of the

Akaike information criterion (AIC), a comparative measure of goodness-of-fit that takes into

account model complexity [38]. AIC is obtained by the sum of twice the negative log-likeli-

hood and twice the number of parameters in the model. Lower AIC scores are indicative of

higher efficiency (i.e., models that explain a greater amount of variation using fewer parame-

ters). AICc is equivalent to AIC but with a correction for small sample sizes.

Results output from the GWR model were used to create surface maps of the R2 values and

local coefficients of each independent variable to explore the spatial variation in the relation-

ship between diphtheria incidence and the selected parameters. All regression models and sur-

face maps were developed using the R programming language.

Results

Descriptive analysis

From December 2014 to August 2021, 392 confirmed diphtheria cases were recorded in Haiti

(Table 2). Most of the cases were female (n = 215; 54.8%) and aged�14 years old (n = 343;

87.5%). Only 59 cases (15.1%) were reported to be vaccinated against diphtheria, which was

defined as having received at least three doses of a diphtheria vaccine.

During the study period, the annual incidence of diphtheria varied greatly, going from 0.04

cases per 100,000 population in 2014 to 0.74 per 100,000 in 2018 (Fig 1). This peak was fol-

lowed by a three-year decline in reported infection rates.

Information on the commune of origin was not available for two of the 392 cases. As Fig 2

shows, the outbreak appeared to originate in the Ouest department and to have gradually

spread to the rest of the country. Between 2014 and 2015, detection of diphtheria cases

remained limited to 21 communes across five departments located in central and northern

Haiti. By 2021, cases had been reported in 79 communes, encompassing nine departments.

Grand’Anse was the only department to report no confirmed cases throughout the study

period. Four departments (i.e., Artibonite, Centre, Nord, and Ouest) accounted for 84% of all

confirmed cases. Ouest was the only department to report cases each year.

Table 2. Characteristics of confirmed diphtheria cases in Haiti, December 2014 –June 2021.

Characteristics n (%)

Total confirmed cases 392

Female 215 (54.8)

Male 177 (45.2)

Age (in years)

<5 84 (21.4)

5–14 259 (66.1)

>14 49 (12.5)

Vaccination status

n/a� 4 (1.0)

Unknown 209 (53.3)

Unvaccinated 120 (30.6)

Vaccinated 59 (15.1)

� Cases for which information on the vaccination status was not available.

https://doi.org/10.1371/journal.pone.0273398.t002
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Spatial autocorrelation and hotspot analysis. The global Moran’s I test found modest

but statistically significant spatial autocorrelation (I = 0.18, p< 0.001). This suggests that, dur-

ing the study period, diphtheria incidence was more similar in certain neighbouring com-

munes than would be expected by chance.

The LISA analysis revealed nine communes, home to an estimated 646,346 people (4.7% of

the population of Haiti), that can be classified as diphtheria hotspots (Fig 3). Furthermore, one

high-low commune (i.e., a high incidence commune surrounded by areas of low diphtheria

incidence) was found in the Sud department. An estimated 35,139 people (0.3% of the popula-

tion) live in this high-low commune. Additionally, the analysis identified 14 cold spots and six

low-high outliers (i.e., low incidence communes surrounded by areas of high diphtheria inci-

dence). S1 Appendix lists the identified areas with spatial dependence.

Regression models

The Spearman’s rank correlation analysis found that male literacy and female literacy were

highly correlated (r = 0.78, p<0.001). Consequently, male literacy was excluded from the pool

of independent variables as it did not have a significant correlation with diphtheria incidence

(p = 0.18). Low collinearity was observed among the remaining variables (VIF range = 1.18–

2.22).

Table 3 presents the results of the regression analyses. In the final OLS model, health facility

density and the degree of urbanization were positively associated with diphtheria incidence.

Specifically, for every one-unit increase in health facilities per 100,000 population, the rate of

diphtheria cases per 100,000 population was reported to increase by 0.020. Similarly, a one-

unit increase in the proportion of population who lives in urban areas led to a 0.009 increase

in the rate of diphtheria cases per 100,000. Conversely, a negative association was observed

with female literacy. A one-unit increase in female literacy rate was found to decrease the rate

Fig 1. Average annual incidence of confirmed diphtheria cases in Haiti, December 2014 –June 2021.

https://doi.org/10.1371/journal.pone.0273398.g001

PLOS ONE The epidemiology of diphtheria in Haiti, December 2014–June 2021: A spatial modeling analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0273398 August 22, 2022 7 / 16

https://doi.org/10.1371/journal.pone.0273398.g001
https://doi.org/10.1371/journal.pone.0273398


of diphtheria cases per 100,000 by 0.030. The adjusted R2 for the final OLS model was 0.15,

which indicates that the model explains 15% of the variance seen in diphtheria incidence. The

R2 value suggest a weak model fit and explanation of variance. The AICc score was 267.13.

The GWR model incorporated the same variables as the final OLS model. There was agree-

ment between the OLS and GWR model on the direction of the influence of the selected inde-

pendent variables on diphtheria incidence. Furthermore, the effect sizes for the independent

variables were the same in the two models. However, the GWR model considerably improved

model performance and fit compared to the final OLS model, as indicated by the higher

adjusted R2 value (0.28) and lower AICc score (261.97). These results suggest that, by accom-

modating spatial non-stationarity and allowing variables to vary in space, the GWR model is

Fig 2. Diphtheria incidence (per 100,000) in Haiti, December 2014 –June 2021.

https://doi.org/10.1371/journal.pone.0273398.g002
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better than the OLS model at explaining the relationship between diphtheria incidence and

other factors.

Fig 4 shows the variation in the local coefficient estimates of the GWR model and the R2

value for each commune. These maps reveal that the influence of the three independent vari-

ables in the model varies considerably across Haiti. The local coefficients of health facility den-

sity (range = -0.002–0.020) tended to be higher in the central and northern departments of the

country. The largest coefficients for female literacy (range = -0.032– -0.003) were found in

Artibonite, parts of Centre and Ouest, as well as in the northern departments. Coefficients for

urbanization (range = 0.001–0.010) appeared to be higher in the Nord and Nord’Ouest depart-

ments and in the northernmost communes of Artibonite. The map of the local R2 values

Fig 3. LISA map of average diphtheria incidence (per 100,000), Haiti, December 2014 –June 2021.

https://doi.org/10.1371/journal.pone.0273398.g003

Table 3. Summary of the OLS a and GWR b models.

Parameter Initial OLS Final OLS Final GWR

DTP3 coverage 0.177 (0.488)

Health facility density 0.015 (0.007) � 0.015 (0.005) �� 0.015

Improved water source 0.003 (0.003)

Female literacy -0.026 (0.007) ��� -0.024 (0.006) ��� -0.024

No toilet facility < -0.001 (0.004)

School density -0.001 (0.002)

Population density < -0.001 (< 0.001)

Urbanization 0.007 (0.003) �� 0.006 (0.002) �� 0.006

Adjusted R2 0.14 0.15 0.28

AICc 274.88 267.13 261.97

a For the OLS models, estimates correspond to the coefficients and the standard error in parentheses.
b For the GWR model, estimates correspond to the mean coefficients.

� P<0.05

�� P<0.01

��� P<0.001.

https://doi.org/10.1371/journal.pone.0273398.t003
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(range = 0.01–0.35) indicates that the level of explanatory power of the GWR model varies sig-

nificantly throughout the territory, with higher local R2 values found in as many as six different

departments.

Discussion

This study has shown that the reported incidence of the disease varied considerably between

December 2014 and June 2021, reaching a peak in 2018. The investigation has identified areas

with spatial dependence, which suggests that certain communes in Haiti may have

Fig 4. Local regression coefficients and R2 values.

https://doi.org/10.1371/journal.pone.0273398.g004
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predisposing factors increasing the risk of diphtheria transmission. This hypothesis is sup-

ported by findings from the GWR model, which have demonstrated that at the commune-level

28% of the variability in diphtheria incidence in Haiti could be explained by a combination of

three factors: health facility density, the degree of urbanization, and female literacy.

The sharp increase in incidence in the early stages of the outbreak indicates that a large pro-

portion of the population in Haiti was susceptible to diphtheria. This is consistent with the

results of Minta et al. [39], who found no evidence of long-term protection against the infec-

tion (IgG�1 IU/mL) among a nationally representative sample of 1,146 children aged 5–7

years in Haiti in 2017. There are a few probable explanations for the decrease in incidence

after 2018. That year, the MSPP conducted a mass vaccination campaign that saw more than

two million children aged 1–14 years receiving at least one dose of a diphtheria vaccine

[39,40]. It is reasonable to assume that the campaign contributed to reducing the size of sus-

ceptible individuals, ultimately driving down the incidence of the disease. Nevertheless, the

decline in incidence may have also been partly a surveillance artifact. Since 2019, there has

been a dramatic surge in politically motivated protests and civil unrest, which has been accom-

panied by high levels of gang-related violence throughout Haiti [41]. This period has also coin-

cided with the emergence of COVID-19 [42]. The two crises have paralyzed the country for

long periods of time, making it more difficult for people in need to access medical care and for

health authorities to conduct basic surveillance activities, such as case investigation and con-

tact tracing. As a result, several diphtheria cases may have gone undetected, which suggests

that available figures likely underestimate the disease’s true spread.

By characterizing the spatial distribution of detected diphtheria incidence, we have shown

that the disease has spread widely across Haiti. Nevertheless, substantial heterogeneities in

diphtheria incidence exist from one department to another and between communes within

the same department. The LISA analysis brought to light a spectrum of diphtheria dynamics

that includes several areas with spatial dependence. An estimated 646,346 people (4.7% of the

population of Haiti) are living in diphtheria hotspots. Interestingly, some of the identified hot-

spots are located near the border with the Dominican Republic, which has reported diphtheria

cases in recent years [9]. This indicates that close collaboration between the two countries,

especially on cross-border surveillance, would be crucial to control the transmission of diph-

theria on the Hispaniola island. The hotspots detected in this study could be prioritized for tar-

geted public health interventions, including raising people’s awareness about diphtheria and

preventive measures through community health workers, training clinical personnel periodi-

cally, and increasing the capacity for laboratory testing. All these interventions have shown

promise in the response to other public health issues in Haiti [43–45]. However, given that the

full implementation of these measures will require considerable investment and time, vaccina-

tion continues to be the most vital tool in the fight against diphtheria.

The associations of diphtheria incidence with health facility density, degree of urbanization,

and female literacy were somewhat expected. In areas with a high number of clinics and hospi-

tals, the probability of detecting a diphtheria case is higher than elsewhere because of the

increased access to healthcare services [46,47]. Urban areas are generally characterized by

overcrowding as well as high population mobility and inter-mixing, all of which increase the

opportunities for infectious diseases, like diphtheria, to spread [48,49]. Literate women might

comprehend health messages better than illiterate women, which makes them more likely to

take protective measures (e.g., vaccination and personal hygiene) for themselves and for their

children [50,51]. These findings add to existing evidence that health outcomes are shaped by

factors beyond healthcare [52,53].

The coefficient estimates of the GWR model highlighted spatial variations in the relation-

ships between diphtheria incidence and the three independent variables. This suggests that the
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level of influence of each independent variable on diphtheria incidence might have varied

from one commune to another. Gaining these local-level insights simply would have not been

possible using global OLS techniques. These findings should be complemented by qualitative

studies to understand why and how the interrelationships between diphtheria incidence and

the independent variables differ across Haiti. Such investigations might help to better explain

the observed differences in diphtheria incidence.

Of note in our results is the lack of association between diphtheria incidence and risk fac-

tors related to vaccination, especially given that just 15% of the confirmed cases in this study

were reported to be vaccinated against diphtheria. Past research has highlighted several issues

related to vaccination coverage measurements, including coverage estimates sometimes

exceeding 100%, improbable year-to-year variations, and epidemics in areas reporting high

coverage [54]. These issues can be linked to weaknesses in immunization information systems

(IIS) and inaccuracies in vaccination coverage denominators. Unfortunately, Haiti faces both

problems. A multi-country evaluation from 2009 found major flaws in the national IIS [55]. It

is probable that some of those inadequacies are still present today. Furthermore, Haiti’s vacci-

nation coverage estimates are unlikely to be accurate as they are based on population projec-

tions–the last official census dates back to 2003 [56]. It is, thus, plausible that inadequate

vaccination contributes to the propagation of diphtheria in the country, though this cannot be

demonstrated through this study.

A number of limitations may have affected our findings. Although diphtheria is a nationally

notifiable disease in Haiti, some underreporting by physicians may still occur for a variety of

reasons, including misdiagnosis. Additionally, asymptomatic cases and symptomatic individu-

als who did not seek medical care may have gone unreported. Consequently, notified cases

may not necessarily reflect the actual incidence of diphtheria. Moreover, data for the examined

variables were from different time periods, which reduces the reliability of the regression esti-

mates. Furthermore, data on certain risk factors known to correlate with diphtheria were

unavailable (e.g., level of wealth, knowledge of diphtheria) [20], impeding further analysis.

Additionally, as our models were based on aggregated data, there is a risk of ecological fallacy,

which consists in assuming that associations observed at the commune level will necessarily

hold at the individual level [57]. Finally, like other analytic methods, GWR has some draw-

backs: its spatial weighting function accounts for geographical distance but ignores the attri-

butes of the observations [58]; local multicollinearity may be present in a GWR model, even if

the independent variables are not collinear at the global level [59]. Given these limitations,

alternative approaches have been proposed, including conditional autoregressive (CAR) mod-

els, simultaneous autoregressive (SAR) models, and Bayesian hierarchical models [59,60].

To our knowledge, this is the first study that describes the epidemiology of diphtheria in

Haiti using GIS and spatial analysis. The study has shown that GWR is a useful technique for

exploratory and descriptive data analysis, which not only improves on the OLS performance

but enables the discovery of hidden spatial relationships between variables. This investigation

has also demonstrated that between 2014 and 2021 diphtheria exhibited spatial variability in

Haiti, with the clustering of high and low incidence areas. The hotspots detected in this analy-

sis could serve as a basis for prioritizing and targeting response activities. The baseline esti-

mates of diphtheria incidence presented in this paper could guide surveillance activities and

help track progress in the control of the disease. Further research and continued monitoring of

the factors found to be associated with diphtheria incidence could help us better understand

the spread of the disease.
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