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Abstract

COVID-19 pandemic has become a global major public health concern. Examining the

meteorological risk factors and accurately predicting the incidence of the COVID-19 pan-

demic is an extremely important challenge. Therefore, in this study, we analyzed the rela-

tionship between meteorological factors and COVID-19 transmission in SAARC countries.

We also compared the predictive accuracy of Autoregressive Integrated Moving Average

(ARIMAX) and eXtreme Gradient Boosting (XGBoost) methods for precise modelling of

COVID-19 incidence. We compiled a daily dataset including confirmed COVID-19 case

counts, minimum and maximum temperature (˚C), relative humidity (%), surface pressure

(kPa), precipitation (mm/day) and maximum wind speed (m/s) from the onset of the disease

to January 29, 2022, in each country. The data were divided into training and test sets. The

training data were used to fit ARIMAX model for examining significant meteorological risk

factors. All significant factors were then used as covariates in ARIMAX and XGBoost mod-

els to predict the COVID-19 confirmed cases. We found that maximum temperature had a

positive impact on the COVID-19 transmission in Afghanistan (β = 11.91, 95% CI: 4.77,

19.05) and India (β = 0.18, 95% CI: 0.01, 0.35). Surface pressure had a positive influence in

Pakistan (β = 25.77, 95% CI: 7.85, 43.69) and Sri Lanka (β = 411.63, 95% CI: 49.04,

774.23). We also found that the XGBoost model can help improve prediction of COVID-19

cases in SAARC countries over the ARIMAX model. The study findings will help the scien-

tific communities and policymakers to establish a more accurate early warning system to

control the spread of the pandemic.

Introduction

The novel coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syn-

drome 2 [1, 2], has become a serious public health threat globally. The disease has quickly

spread over the world because of its extremely human-to-human transmission characteristics

[3–5]. As of July 02, 2022, more than 553.87 million confirmed cases and over 6.36 million

deaths have been reported globally [6]. It has already been studied that meteorological factors

like temperature, relative humidity and wind speed have been linked to the development of the
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transmission of recognized coronavirus infections such as Severe Acute Respiratory Syndrome

(SARS) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) [7, 8]. According

to laboratory tests, SARS-CoV-2 is very stable in cold conditions but vulnerable to rising tem-

peratures [9]. Different previous studies also investigated that meteorological factors such as

temperature [10–12], humidity [13, 14], and wind speed [15] might affect COVID-19 trans-

mission [16–18]. The transmission of the COVID-19 pandemic is reduced as temperature

rises in China as well as other regions of the world [13, 16, 18]. It was also found that wind

speed had lagged correlations with COVID-19 incidence in various Turkish cities [19].

Humidity was also a major meteorological factor in reducing COVID-19 viral transmission in

China, Pakistan, Sri Lanka and other countries [11, 14, 20]. However, the humidity was also

negatively associated with the COVID-19 epidemic in Indonesia and New York [21, 22].

Different studies widely used different types of statistical approaches including correlation,

regression analysis, generalized additive model, and generalized linear model to analyze the

influence of environmental variables on COVID-19 transmission [5, 13, 19, 21–24]. Besides

these, several studies have used Autoregressive Integrated Moving Average with exogeneous

variables model to determine the association of climate variables with COVID-19 transmission

and forecasting [23, 25, 26]. Time-series modelling is a popular forecasting method for under-

standing the dynamic association of important variables. However, the transmission of

COVID-19 disease is often influenced by several factors which exhibit nonlinear influences

which cause problems [27]. This problem can be easily solved by machine learning techniques

[28, 29]. Given the uncertainty around decisions on the accurate time of the emergence and

disappearance of the disease, short-term forecasting is crucial to create better plans and more

appropriate responses. The eXtreme Gradient Boosting (XGBoost) is an uptrend machine

learning technique in time series modelling. The XGBoost model can generate a high precision

result for its self-learning characteristics. This study contributes to the advancement of the

time-series prediction of COVID-19. Consequently, an initial benchmarking is given to dem-

onstrate the potential of machine learning for future research. The study further suggests that

a genuine novelty in COVID-19 prediction can be realized by a data-driven XGBoost machine

learning model. Currently, no study used this technique for determining the association

between meteorological factors and COVID-19 transmission and prediction. Therefore, the

study aimed to: (a) identify the meteorological risk factors; (b) compare the predictive accuracy

of the ARIMAX and XGBoost for precise modelling of COVID-19 incidence in the South

Asian Association for Regional Cooperation (SAARC) countries.

In this study, our proposed methodology (Fig 1) and results are useful to select a suitable

model for COVID-19 prediction. The findings from this study will help the countries’ policy-

makers for taking effective strategies to establish a more accurate early warning system to con-

trol the spread of the pandemic.

Materials and methods

Data source

The daily COVID-19 confirmed cases data of the SAARC countries (Afghanistan, Bangladesh,

Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka) were collected from the Johns Hop-

kins Coronavirus Resource Center [30]. The meteorological data of each country were

obtained based on hourly meteorological observations from the NASA Langley Research Cen-

ter (LaRC) website [31], including minimum and maximum temperatures (˚C), relative

humidity (%), maximum wind speed (m/s), surface pressure (kPa) and precipitation (mm/

day). The study period was from the onset of COVID-19 to January 29, 2022, for each SAARC

country.
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Model building, prediction, and performance evaluation

Predictive modeling and statistical analyses were conducted using RStudio (Version 4.1.0)

[32]. The ’tseries’ and stats packages were used to process the time series. The ARIMAX mod-

els were built with the ’forecast’ package using auto.arima function for choosing the best

model based on the Corrected Akaikes Information Criteria (AICc) values [33]. The ‘fore-

castxgb’ package was used for building the XGBoost model. Details data and necessary codes

for predictive modeling and statistical analysis are provided in supplements (S1 Table and S1

Text).

In this study, predictive accuracy of ARIMAX and XGBoost models was compared to deter-

mine which was more suitable for predicting COVID-19 confirmed cases in SAARC countries

based on meteorological risk factors. The data were divided into training and test sets. All the

significant meteorological factors were used as covariates in ARIMAX and XGBoost models

for predicting the COVID-19 confirmed cases. The ensemble machine learning technique

XGBoost were built using the lagged meteorological variables as covariates by frequently

changing several parameters. The adjusted parameters for the model of each SAARC country

are nrounds, nrounds_method = ‘cv’, nfold, seas_method, trend_method = ‘none’.

Predictive accuracy refers to the capacity of the model to predict COVID-19 incidence.

There are several metrics for computing the model’s accuracy [34]. However, in this study, we

used four prominent performance metrics such as the mean absolute percentage error

(MAPE), mean percentage error (MPE), mean absolute error (MAE) and root mean square

error (RMSE). The mathematical form of the error measures are as follows:

MAPE ¼
1

n

Xn

i¼1

�
�
�
�
ŷi � yi
yi

�
�
�
�� 100% ð1Þ

MAE ¼
1

n

Xn

i¼1
jŷi � yij ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ŷi � yið Þ

2

r

ð3Þ

Fig 1. Schematic of the proposed methodology.

https://doi.org/10.1371/journal.pone.0273319.g001
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MPE ¼
1

n

Xn

i¼1

ŷi � yi
yi

� �

� 100% ð4Þ

Where n represents the number of observations, ŷi � yi represents the error between the pre-

dicted and actual value.

ARIMAX model

The Autoregressive Integrated Moving Average (ARIMA) model introduced by Box and Jen-

kins (2013) is widely used for predicting time series data because of its capacity to handle non-

stationary data [35]. ARIMA(p, d, q) combines the Autoregressive (AR) and Moving Average

(MA) models, with the ‘I’ indicating integration; where p stands for autoregressive order, d for

differencing order, and q stands for moving average order [36]. The AR(p) in ARIMA stands

for a linear combination of p prior observations with a random error factor that determines a

variable’s future value which can be mathematically expressed as

Yt ¼ C þ ;1Yt� 1 þ ;2 Yt� 2 þ ;3 Yt� 3 þ ;4 Yt� 4 . . . ::;pYt� p þ εt ð5Þ

Where, Yt and εt are the actual value and random error terms at time t, ;i (i = 1,2,3,4. . ..) rep-

resents model parameters, and c is a constant. The order of the model is a positive integer p.

The MA(q) model incorporates a dependent variable for previous errors which can be

expressed as

Yt ¼ mþ y1εt� 1 þ y2εt� 2 þ y3εt� 3 þ y4εt� 4 þ � � � þ yqεt� q þ εt ð6Þ

Where μ indicates the series mean, θj (j = 1, 2, 3 . . . q) indicates model parameters, and q is the

model’s order [37].

The ARIMA model may be stated in its basic form as

y0t ¼ cþ ;1y
0

t� 1
þ ;2y

0

t� 2
þ . . .þ ;py

0

t� p þ y1εt� 1 þ y2εt� 2 þ . . .þ yqεt� q þ εt ð7Þ

where y0t represents differenced series (it can be more than one); ;1, ;2, . . . ;p are the coeffi-

cients of AR terms and θ1, θ2 . . . θq are the coefficients of moving average term.

The ARIMAX model is the generalization of the ARIMA model. It enhances the ARIMA

model’s capabilities by including several meteorological information such as temperature,

humidity, precipitation and other meteorological conditions in time series modelling. An ARI-

MAX model is be formed as follows:

yt ¼ b0 þ b1x1;t þ � � � þ bkxk;t þ Zt ð8Þ

where, yt represents the response variable for the given time series; x1,t . . . xk,t are the features

or exogenous variables of the time series that potentially explain yt; ηt is the regression model

error that describes the ARIMA model (Eq 3) [38].

XGBoost model

The XGBoost model is a supervised machine learning technique and an emerging machine

learning method for time series forecasting in recent years [39, 40]. It uses an improved gener-

alized gradient boosting library that can rapidly assess the value of all input attributes [41–43].

Boosting is a technique that combines hundreds of low-accuracy prediction models into a sin-

gle high-accuracy model by frequently integrating the models under tolerable parameter values
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[44–46]. The objective function of the model is as follows:

ObjðtÞ ¼
Xn

i¼1
l yi; ŷ

t� 1ð Þ

i þ ftðxiÞ
� �

þ O ftð Þ þ constant ð9Þ

Where yi stands for the observed values, xi stands for the feature vector, n stands for the sample

size, m stands for the number of iterations, and fm stands for the error in m iterations. l stands

for the loss function, which computes the deviation between the label and the forecasting in

the previous phase as well as the output of the new tree, and R stands for the regularization

term, which reduces the new tree’s output variation [37, 39, 47].

Result

As of 29 January 2022, India had reported the highest total of 41.1 million COVID-19 con-

firmed cases, resulting in 0.5 million fatalities, whereas Bhutan had reported the lowest

COVID-19 confirmed cases and fatalities among SARRC countries (Table 1).

The maximum temperature among the SAARC countries varies from -3.38˚C (Nepal) to

47.01˚C (India) and the minimum temperature varies from -26.17˚C (Afghanistan) to 31.67˚C

(India). The highest average maximum temperature was observed in India (32.54˚C). The

highest level of humidity was observed in Maldives (100%), but the lowest level of humidity

was observed in Afghanistan (5.06%). Bangladesh had the highest maximum wind speed at

10M (15.68 m/s), but Bhutan had the lowest (1.62 m/s). The highest surface pressure was

observed in Bangladesh (101.88 kPa) and the lowest surface pressure was observed in Nepal

(66.08 kPa) as illustrated in Fig 2.

The time series figure depicts the trend of COVID-19 confirmed cases from the onset of the

disease to January 29, 2022, in each SAARC country. Daily confirmed cases in Bangladesh,

Nepal and Pakistan fluctuated at different periods including a highly upward trend. The pat-

tern in Afghanistan and Sri Lanka was remarkably similar, indicating a downward tendency.

Overall, Bhutan and Maldives had a comparatively lower rate of COVID-19 transmission than

other SAARC countries (Fig 3). The cross-correlation between COVID-19 confirmed cases

and meteorological variables was formed at 0 to 30 lags. Only positive lags were considered to

explore the influence of meteorological factors on the COVID-19 transmission in a certain

period [48]. In Afghanistan, the maximum and minimum temperature at lag 0 showed a sig-

nificant relationship with COVID-19 confirmed cases. The only maximum temperature at lag

4 showed a significant relationship in India. Maximum wind speed showed a significant rela-

tionship in Bangladesh at lag 9 and Maldives at lag 13 days. Relative humidity at a lag of 26

Table 1. Summary statistics of COVID-19 confirmed cases and deaths for SAARC countries till January 29, 2022.

Countries Daily confirmed cases Daily Deaths

Min Max Mean ± SD Total Min Max Mean ± SD Total

Afghanistan 0 3243 228.50 ± 397.09 161,306 0 159 10.49 ± 18.95 7405

Bangladesh 0 16,230 2559 ± 3163.93 1,773,149 0 264 40.88 ± 53.22 28,329

Bhutan 0 205 6.57 ± 19.39 4566 0 1 0.005 ± 0.08 4

India 0 533,035 56,214 ± 85,201.04 41,092,522 0 4529 665.80 ± 904.03 486,718

Maldives 0 2813 192.30 ± 390.21 133,288 0 10 0.40 ± 0.98 274

Nepal 0 10,052 1287.20 ± 1937.83 947,394 0 619 15.90 ± 39.42 11,703

Pakistan 0 12,073 2011 ± 1758.87 1,417,991 0 313 41.49 ± 38.87 29,248

Sri Lanka 0 11,366 829.80 ± 1237.04 609,047 0 334 20.98 ± 42.64 15,400

Min: Minimum; Max: Maximum; SD: Standard Deviation.

https://doi.org/10.1371/journal.pone.0273319.t001
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Fig 2. Boxplot of meteorological variables for SAARC countries. Max. tem: Maximum temperature; Min. temp:

Minimum temperature; Rel. humidity: Relative humidity; S. pressure: Surface pressure; Max. w. speed: Maximum

wind speed.

https://doi.org/10.1371/journal.pone.0273319.g002

Fig 3. Time series plot showing the trend of COVID-19 confirmed cases for SAARC countries.

https://doi.org/10.1371/journal.pone.0273319.g003
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days in Bhutan and lag of 10 days in Nepal showed a significant correlation with COVID-19

confirmed cases. Surface pressure showed a significant correlation with COVID-19 confirmed

cases in India at lag of 9 days, in Sri Lanka at lag of 13 days and in Pakistan at lag of 28 days

(Fig 4).

The aforementioned meteorological factors were used as covariates in ARIMAX model at

different lags to determine their influence on COVID-19 confirmed cases. For example, in

Afghanistan, the maximum and minimum temperature at lag 0 was used as covariates for

building the ARIMAX model. Similarly for Bangladesh, Bhutan, India, Maldives, Nepal, Paki-

stan and Sri Lanka, the lagged variables were used as covariates and the influence of those vari-

ables on the disease was shown in Table 2.

Table 2 depicts the minimum temperature with a lag of 0 (i.e., same day) in Afghanistan (β
= -8.93, 95% CI: -14.30, -3.56) negatively impact the transmission of COVID-19 cases. The

maximum temperature with a lag of 4 days in India (β = 0.18, 95% CI: 0.01, 0.35) and with a

lag of 0 (i.e., same day) in Afghanistan (β = 11.91, 95% CI: 4.77, 19.05) had a positive influence

on the transmission of COVID-19 confirmed cases. Maximum wind speed with a lag of 9 days

in Bangladesh (β = -53.89, 95% CI: -93.45, -14.32) and a lag of 13 days in Maldives (β = -4.24,

95% CI: -8.31, -0.18) negatively impacts the transmission of COVID-19 confirmed cases. Rela-

tive humidity with a lag of 10 days in Nepal (β = -4.84, 95% CI: -9.20, -0.48) and at a lag of 26

days in Bhutan (β = -0.12, 95% CI: -0.22, -0.02) negatively impacts COVID-19 confirmed

cases. Surface pressure positively impacts COVID-19 confirmed cases in Pakistan (β = 25.77,

Fig 4. Cross-correlation between COVID-19 confirmed cases and meteorological variables in SAARC countries.

Max. temperature: Maximum temperature; Max. W. speed: Maximum Wind speed; CCF: Cross-Correlation Function.

https://doi.org/10.1371/journal.pone.0273319.g004
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95% CI: 7.85, 43.69) with a lag of 28 days and Sri Lanka (β = 411.63, 95% CI: 49.04, 774.23)

with a lag of 13 days. Moreover, surface pressure with a lag of 9 days in India (β = -1.91, 95%

CI: -3.75, -0.06) negatively impacts the transmission of COVID-19 confirmed cases. The

detailed result about the influence of meteorological factors on COVID-19 transmission is pre-

sented in Table 2.

The average value of the error measures in the XGBoost model is lower than the ARIMAX

models for all the SAARC countries (Fig 5). Hence, in our study, it was found that XGBoost

performs better in predicting COVID-19 confirmed cases in most of the SAARC countries.

The detailed procedure of ARIMAX and XGBoost model fitting for COVID-19 confirmed

case prediction is presented in S1 File.

Discussion

This study predicted the effect of meteorological factors on the transmission of COVID-19

confirmed cases in SAARC countries. In South Asia, Bangladesh experiences subtropical mon-

soon weather, with annual average temperatures hovering from 26 to 36˚C [49]. Afghanistan

experiences hot, dry summer and chilly winter. In summer, the highest temperature in the

country reaches up to 50˚C, whereas in winter it is -25˚C [50]. India has two distinct climate

conditions: tropical monsoon weather and tropical wet and dry weather [51]. In Pakistan,

there has a wide range of typical temperatures, from 2˚C to 38˚C [52]. There are distinct rainy

and dry seasons in Sri Lanka’s tropical climate. The coastal regions of Sri Lanka get year-round

temperatures of 28˚C whereas the highland regions experience lower, more moderate

Table 2. Estimated parameters with 95% confidence intervals of significant meteorological factors of ARIMAX models.

Factors Afghanistan Bangladesh Bhutan India Maldives Nepal Pakistan Sri Lanka

ARIMAX

(3,1,0)

ARIMAX

(0,1,0)

ARIMAX

(5,1,0)

ARIMAX

(2,1,0)

ARIMAX

(1,1,0)

ARIMAX

(1,1,0)

ARIMAX

(4,1,0)

ARIMAX

(5,1,0)

Min. temperature

(0)

-8.93�

(-14.30, -3.56)

Max. temperature

(0)

11.91�

(4.77, 19.05)

Max. temperature

(4)

0.18�

(0.01, 0.35)

Max. W. speed (9) -53.89�

(-93.45, -14.32)

Max. W. speed (13) -4.24�

(-8.31, -0.18)

Rel. humidity (10) -4.84�

(-9.20, -0.48)

Rel. humidity (26) -0.12�

(-0.22, -0.02)

Surface pressure (9) -1.91�

(-3.75, -0.06)

Surface pressure

(13)

411.63�

(49.04, 774.23)

Surface pressure

(28)

25.77�

(7.85, 43.69)

Max. temperature: Maximum temperature; Min. temperature; Minimum temperature; Rel. humidity: Relative humidity; Max. W. speed: Maximum Wind speed;

� indicates significance at 5% level.

https://doi.org/10.1371/journal.pone.0273319.t002
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temperatures of 16˚C to 20˚C [53]. The vast elevational differences in Bhutan result in a diver-

sified climate [54]. The climate of Nepal varies according to altitude: subtropical with a rainy

season in the southern flat strip, moderate in the low mountains, and chilly in the Himalayan

peaks [55].

The study found that the meteorological factors have both positive and negative influences

on the transmission of COVID-19 confirmed cases. For instance, the maximum temperature

had a positive influence on the transmission of COVID-19 confirmed cases in Afghanistan

and India which is similar to some previous studies in the EU [56]. This study also found a

negative impact of minimum temperature on COVID-19 transmission which is in line with

some previous studies conducted in China and the USA [10, 16, 57]. But some previous studies

conducted in Spain and China claimed that temperature had no impact on COVID-19 trans-

mission [58, 59]. We also found that relative humidity had a negative influence on the trans-

mission of COVID-19 cases in Bhutan and Nepal which is in line with some previous studies

[10, 21, 22, 60]. We found that surface pressure had a positive influence in Pakistan and Sri

Lanka as well as negative impact on the COVID-19 confirmed cases in India which is also in

line with some previous studies [61, 62]. It was also stated by some studies that surface pressure

had no impact on COVID-19 transmission [25]. This study also found a statistically significant

association of maximum wind speed with COVID-19 confirmed cases in Bangladesh and Mal-

dives which is similar to a previous study [63]. This study didn’t find any statistically signifi-

cant association of precipitation with COVID-19 confirmed cases while previous studies

examined that this is associated with the transmission of COVID-19 confirmed cases [64].

This paper evaluated the applicability of two popular models ARIMAX and XGBoost for

predicting the COVID-19 incidence in SAARC countries. The models showed promising

results in terms of predicting the time series without the assumptions that traditional

Fig 5. Performance metrics of the ARIMAX and XGBoost models for predicting COVID-19 confirmed cases in

SAARC countries.

https://doi.org/10.1371/journal.pone.0273319.g005
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epidemiological models require. Machine learning models, as an alternative to epidemiological

models, showed potential for COVID-19 prediction. Considering the availability of only a

small amount of training data, it is expected that machine learning will be developed further as

the basis for, or a component of, future COVID-19 outbreak prediction models. The XGBoost

model is an uptrend machine learning technique in time series modelling. The novelty of our

study is that we predicted COVID-19 confirmed cases with ARIMAX model and a data-driven

eXtreme Gradient Boosting algorithm using the significant meteorological factors as covari-

ates. The XGBoost technique offers several benefits in terms of model forecasting, including

the non-requirement of data preprocessing, complete feature extraction and high prediction

accuracy. This study used this technique to predict COVID-19 confirmed cases using the sig-

nificant meteorological variables. Because it features a higher late trimming penalty than a

standard Gradient boosting decision tree, which reduces the likelihood of overfitting [65]. The

XGBoost model was developed by adjusting its different parameters. We selected the most tra-

ditional ARIMAX as a baseline for our study. The study found that the XGBoost model per-

forms better in predicting the COVID-19 confirmed cases in most of the SAARC countries. In

this study, we used these models as a case study to find the significant relationship between

meteorological factors and the COVID-19 transmission and compared the prediction accuracy

of those models to determine the best model. The findings of this study are also useful for all

other COVID-19-affected countries similar to SAARC countries.

Limitations

This study used ARIMAX and XGBoost predictive models to investigate the impact of meteo-

rological factors on COVID-19 transmission in SAARC countries. Therefore, a limitation of

the study is that, for example, socioeconomic, demographic, healthcare facilities, human

mobilities and population density covariates were not incorporated in this study. These covari-

ates might be correlated with the COVID-19 transmission and should be investigated further

based on the data availability.

Conclusion

This study shows the machine learning-based XGBoost model performs better than the ARI-

MAX model in predicting the COVID-19 incidence in SAARC countries. In the absence of

effective COVID-19 prevention strategies, our proposed predictive model is useful for govern-

ment authorities, researchers and planners to put forward strategic plans to control the spread

of COVID-19. It is, therefore, possible for other nations to adopt the suggested frameworks and

prevention measures. By exploring the influence of meteorological risk factors on COVID-19

transmission, we can help people to establish a more accurate early warning system and recom-

mend developing appropriate environmental policies to control the spread of the pandemic.
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