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Abstract

An underestimation of pertussis burden has impeded understanding of transmission and

disallows effective policy and prevention to be prioritized and enacted. Capture-recapture

analyses can improve burden estimates; however, uncertainty remains around incorporat-

ing health administrative data due to accuracy limitations. The aim of this study is to explore

the impact of pertussis case definitions and data accuracy on capture-recapture estimates.

We used a dataset from March 7, 2010 to December 31, 2017 comprised of pertussis case

report, laboratory, and health administrative data. We compared Chao capture-recapture

abundance estimates using prevalence, incidence, and adjusted false positive case defini-

tions. The latter was developed by removing the proportion of false positive physician billing

code-only case episodes after validation. We calculated sensitivity by dividing the number of

observed cases by abundance. Abundance estimates demonstrated that a high proportion

of cases were missed by all sources. Under the primary analysis, the highest sensitivity of

78.5% (95% CI 76.2–80.9%) for those less than one year of age was obtained using all

sources after adjusting for false positives, which dropped to 43.1% (95% CI 42.4–43.8%) for

those one year of age or older. Most code-only episodes were false positives (91.0%), lead-

ing to considerably lower abundance estimates and improvements in laboratory testing and

case report sensitivity using this definition. Accuracy limitations can be accounted for in cap-

ture-recapture analyses using different case definitions and adjustment. The latter

enhanced the validity of estimates, furthering the utility of capture-recapture methods to epi-

demiological research. Findings demonstrated that all sources consistently fail to detect per-

tussis cases. This is differential by age, suggesting ascertainment and testing bias. Results
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demonstrate the value of incorporating real time health administrative data into public health

surveillance if accuracy limitations can be addressed.

Introduction

Pertussis remains one of the most common vaccine-preventable diseases in Canada [1]. In

2019, the last year before the Covid-19 pandemic, the reported incidence of pertussis in Can-

ada was 5.64 per 100,000 [1]. Despite being a reportable disease, an underestimation of cases

and deaths has impeded understanding of transmission. Canada relies on a passive surveil-

lance system for pertussis, with local public health units responsible for reporting cases to pro-

vincial health authorities that were in turn reported from laboratories, health practitioners,

hospital administrators, schools, and other institutions [2]. As a result, ascertainment bias is a

key concern. This occurs when atypical cases are underdiagnosed, including older individuals

experiencing mild disease [3, 4]. This issue is worsened by testing bias, with younger, severe

cases more likely to be tested, have a positive result, and be reported [5, 6]. It is suspected that

milder, undetected cases may be sustaining pertussis transmission in Canadian communities

[4].

Burden estimates vary regionally based on interactions between case definitions, the type of

surveillance and data available, practitioner knowledge, immunization programs, and the

extent of local transmission [5, 7]. Underestimation may be attributed to failing to consider

pertussis diagnostically, atypical presentations, infrequent diagnostic testing, suboptimal test

accuracy, lack of uniformity in case definitions, and reporting issues [3, 6]. In combination

with complicated epidemiological characteristics, pertussis surveillance is consequently chal-

lenging [5, 8]. However, monitoring burden is essential for informing and assessing the impact

of immunization programs and policy [5, 7–10].

To improve pertussis burden estimates, one strategy is to supplement surveillance data with

health administrative data [11]. When several sources are available, capture-recapture analyses

can be used to better estimate burden [12]. This analytic approach has been recently used to

assess completeness of contact-tracing for Ebola and detection of Covid-19 infections [13, 14].

For pertussis, capture-recapture has been used to estimate the number of deaths in England

and the number of cases in Ontario, Canada [11, 15]. The latter study estimated that 21–73%

of cases have been missed using combined surveillance, laboratory, and health administrative

data [11]. However, considerable uncertainty in estimation remained around the validity of

using health administrative data, and particularly Ontario Health Insurance Plan (OHIP) phy-

sician billing diagnostic codes. The aim of this study is to evaluate the impact of using different

pertussis case definitions on capture-recapture estimates including abundance and data source

sensitivity, with the goal of enhancing the utility of this method for improving burden esti-

mates to inform public health surveillance, prevention, and policy.

Methods

The University of Toronto’s Health Sciences Research Ethics Board (37885) and the Public

Health Ontario (PHO) Ethics Review Board (2019–006.02) approved this study. The need for

consent was waived by the ethics committees. Data were linked and analyzed at ICES (for-

merly the Institute of Clinical Evaluative Sciences) using unique encoded identifiers. The data-

set from this study is held securely in coded form at ICES. While legal data sharing agreements

between ICES and data providers (e.g., healthcare organizations and government) prohibit
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ICES from making the dataset publicly available, access may be granted to those who meet

pre-specified criteria for confidential access, available at https://www.ices.on.ca/DAS (email:

das@ices.on.ca).

Data sources

We obtained Public Health Information System (iPHIS) and PHO Laboratory Information

System (Labware) data from a PHO linked dataset previously used to improve estimates of per-

tussis burden in Ontario [11]. iPHIS data contained confirmed, probable, and “does not meet”

(DNM) pertussis case reports. We considered reports greater than 365 days apart a new case,

with data available from April 1, 2006 to March 31, 2015. When duplicates occurred in the

same year, we gave priority to the highest level of confirmation. Labware data included posi-

tive, indeterminate, and negative pertussis laboratory tests, with cases defined as at least one

positive result by PCR or culture. We counted positive results more than 90 days apart as a

new case, and data were available from December 7, 2009 to March 31, 2015. Time intervals

for data extraction were selected due to the availability of each data source, with the study

period limited by Labware data collection beginning in 2009. iPHIS entries prior to December

1, 2009 were excluded accordingly (n = 3464).

We updated the PHO dataset until March 31, 2018 and combined it with health administra-

tive data from December 1, 2009 from three databases held at ICES: the Canadian Institute for

Health Information (CIHI) Discharge Abstract Database (DAD); the CIHI National Ambula-

tory Care Reporting System (NACRS); and the Ontario Health Insurance Plan (OHIP) Claims

Database (Table 1). Labware and iPHIS entries that were unable to link to a unique ICES key

number (IKN) after using both deterministic and probabilistic linkage methods were excluded

(n = 1020). Collected health administrative data included ICD-10 codes A37.0 (whooping

cough, Bordetella pertussis) and A37.9 (whooping cough, unspecified species) from hospitali-

zations and emergency room visits and OHIP diagnostic billing code 033 (whooping cough,

Bordetella pertussis). We restricted OHIP claims to billings from homes, offices, and long-term

care facilities. The Registered Persons Database (RPDB) was used to obtain data on patient

sex, age, and date of death. We excluded health administrative data entries with same-day

immunizations (n = 8305) as they are unlikely to reflect a true pertussis case. To do so, we used

identified pertussis data entries with pertussis-containing immunization codes G840, G841,

and G847 and general immunization codes G538 and G539 documented on the same day. We

also excluded same-day duplicate entries for individuals (n = 260), as only one entry a day at

maximum would reflect a true pertussis case. We excluded all entries with no index date or a

date of death prior to the index date, as well as participants with an invalid unique identifier or

who were missing their sex or birth date (n = 471).

Case definitions and sensitivity analyses

We developed three case definitions to separately input into capture-recapture models–period

prevalence, incidence with exclusions, and false-positive adjusted (Table 2). Period prevalence

permitted an individual to have one entry per data source over the study period. We did not

apply a time limit to recapture in other sources, leading to the best recapture scenario. For inci-

dence with exclusions, we incorporated data entries into episodes using 90-day rules and ruled

out administrative data-only episodes with a negative pertussis laboratory test within 28 days

of the episode start (Table 2 and S1 Fig). This structure required recapture in other sources to

occur within the 90 days before or after the respective episode. Finally, for the last definition

we eliminated the proportion of false positive OHIP code-only episodes from the incidence

with exclusions case definition. To do so, we validated these episodes to obtain a positive
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predictive value (PPV) and took a random sample based on the estimated proportion of true

positives. We conducted validation using a previously developed methodology and cohort

from the Electronic Medical Record Primary Care (EMRPC) database (S1 Appendix) [16, 17].

The PPV was estimated as 8.99%, leading to the removal of 41,062 OHIP-code only entries for

the primary analysis.

To ensure that failure to recapture was not due to data missingness, we applied a study win-

dow based on data availability. We removed cases with a first date before March 7, 2010 and

last date after December 31, 2017 to give a buffer of 90 days at each end to ensure an accurate

episode start and end date, which we defined as the earliest and latest date for an episode in

any data source. For the primary analysis, we included iPHIS confirmed cases, Labware posi-

tive PCR or culture results, and administrative data. However, we applied three sensitivity

analyses to the three data structures described above to explore further uncertainty in case def-

initions. For the first sensitivity analysis, we incorporated iPHIS probable cases (n = 537).

iPHIS probable and DNM cases were included in the second sensitivity analysis in addition to

indeterminate laboratory tests (n = 1957). Episodes were also ruled out if the episode only

included administrative data or DNM entries and there was a negative pertussis laboratory test

within 28 days of the episode start, reflecting a possible false positive entry. For the final sensi-

tivity analysis, we excluded entries with A37.9 ICD-10 codes (n = 5749), meaning the pertussis

species was unspecified. For each sensitivity analysis, the new datasets with entries included or

excluded were input into the different case definition structures prior to capture-recapture

analysis.

Capture-recapture analyses

Capture-recapture estimates abundance using the cases identified in each source and their

overlap to calculate the number missed by all [18]. We assumed the population was closed and

that temporality was present [11, 19]. We combined all administrative data into a single source

at the outset, assuming and thereby accounting for dependency [12]. We assessed other

Table 1. Initial sample and final sample post-exclusion criteria by pertussis data source.

Data Source Collection Start Date Collection End Date Number of Entries (%)

Initial sample (N = 112,541)

iPHIS April 1, 2006 March 31, 2018 7827 (7.0)

Labware December 7, 2009 33,740 (30.0)

Health administrative data December 1, 2009 70,947 (63.0)

Final sample (n = 98,994)

iPHIS December 1, 2009 March 31, 2018 4026 (4.07)

Confirmed cases 2879 (2.91)

Probable cases 537 (0.54)

Does not meet case definitions 610 (0.62)

Labware December 7, 2009 32,608 (32.9)

Positive laboratory results 2804 (2.83)

Indeterminate laboratory results 810 (0.82)

Negative laboratory results 29,714 (30.0)

Health administrative data December 1, 20 63,360 (63.0)

DAD hospitalizations alone 352 (0.36)

NACRS emergency visits alone 5872 (5.93)

OHIP physician billings alone 55,889 (56.5)

Any combination of DAD or NACRS or OHIP 247 (0.25)

https://doi.org/10.1371/journal.pone.0273205.t001
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dependencies by calculating the probability of being captured in one source given being in

another [11]. Additionally, we evaluated random detection using Pearson’s chi-squared tests

of the observed versus expected number of cases in a pair of sources [11]. Both were assessed

under the prevalence structure to ensure the assumption of independence for these tests was

not violated. We used these results to select a dependency structure in combination with theo-

retical considerations [20]. We evaluated heterogeneity by assessing the linearity of heteroge-

neity graphs [19].

Table 2. Descriptions of case definitions and number of observed pertussis cases by analysis.

Case Definition Description Analysis† Observed cases

Period prevalence Individuals were only permitted to have one entry per data source over

the study period. Recapture could occur at any time over the study

period.

Primary analysis 48,931

< 1 year of age 2636

� 1 year of age 46,295

Sensitivity analysis 1 49,229

< 1 year of age 2648

� 1 year of age 46,581

Sensitivity analysis 2 49,986

< 1 year of age 2729

� 1 year of age 47,257

Sensitivity analysis 3 44,496

< 1 year of age 2050

� 1 year of age 42,446

Incidence with exclusions Entries were incorporated into episodes using 90-day rules, after which

administrative data-only episodes were ruled out in cases with a negative

pertussis laboratory test within 28 days of the episode start. Recapture

had to occur within 90 days before or after the respective episode.

Primary analysis 50,794

< 1 year of age 2118

� 1 year of age 48,676

Sensitivity analysis 1 51,148

< 1 year of age 2133

� 1 year of age 49,015

Sensitivity analysis 2 51,757

< 1 year of age 2206

� 1 year of age 49,551

Sensitivity analysis 3 48,274

< 1 year of age 1863

� 1 year of age 46,411

Adjusted false positives Incidence with exclusion episodes where 91.01% of OHIP code-only

episodes were removed after identifying the proportion of false positive

OHIP code-only episodes through validation.

Primary analysis 9732

< 1 year of age 904

� 1 year of age 8828

Sensitivity analysis 1 10,192

< 1 year of age 897

� 1 year of age 9295

Sensitivity analysis 2 10,924

< 1 year of age 1007

� 1 year of age 9917

Sensitivity analysis 3 7167

< 1 year of age 626

� 1 year of age 6541

†Primary analysis = includes confirmed iPHIS case reports, Labware positive laboratory tests, and health administrative data, Sensitivity analysis 1 = additionally

included probable iPHIS case reports, Sensitivity analysis 2 = additionally included iPHIS probable and “does not meet” case reports and Labware indeterminate

laboratory tests, Sensitivity analysis 3 = additionally excluded A37.9 codes (pertussis species unspecified)

https://doi.org/10.1371/journal.pone.0273205.t002
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We used models that accounted for a closed population, temporality, and heterogeneity if

determined to be present. The latter was expected as milder, older cases of pertussis are less

likely to be tested, have a positive result, and be reported to surveillance [5, 6]. We explicitly

built the selected dependency structure into models by including two-way interaction coeffi-

cients for sources hypothesized to be dependent [12]. We chose Chao’s lower bound estimator

for total sample size for the capture-recapture models, which additionally accounts for depen-

dency [12]. We compared model estimates to those from Darroch models, which further cor-

rect for heterogeneity [21]. We rounded estimates of abundance to the nearest whole number.

We considered results statistically significant at alpha� 0.05 and we used the Rcapture pack-

age in R [19, 22].

Estimated sensitivity

We calculated sensitivity by dividing the number of cases identified by each data source by the

estimated abundance [11]. For the incidence and adjusted false positive case definitions, there

was concern that correlation (clustering) would arise from having multiple cases for some

individuals, impacting the sensitivity point estimate and variance [23, 24]. To address this, sen-

sitivity was additionally calculated under both definitions by selecting a random episode per

person to remove the effect of clustering. We then compared these results to those including

multiple episodes, with little difference used as evidence that estimates were robust.

Results

Capture-recapture results

Under the prevalence case definition, all sources were dependent based on pair-wise probabili-

ties and Pearson’s chi-squared test was highly significant (p< 0.00001), suggesting non-ran-

dom detection. This provided support for the theorized dependency structure, and we used all

two-way interaction terms to account for dependency between each source pair. To ensure

comparability between case definitions, we used this structure for all capture-recapture mod-

els. A visual depiction of dependency is presented in Fig 1 using the degree of overlap between

data sources under prevalence. Heterogeneity graphs lacked linearity, indicating heterogeneity

was present and had to be accounted for in modelling (S2 Fig).

Estimated abundance was similar for those less than one year of age under the definitions

for period prevalence and incidence with exclusions, at 3810 (95% CI 2932–5707) and 3078

(95% CI 2362–4609) respectively (Table 3). Abundance was considerably lower with less vari-

ability, as measured by the width of the 95% CIs, for the adjusted false positive definition at

1151 (95% CI 964–1538). Overall, the one year or older age group had more variable estimates.

Abundance for this age group was again similar under prevalence and incidence, at 114,135

(95% CI 87,228–155,391) and 132,528 (95% CI 100,384–181,775). The false positive definition

had substantially lower estimates and variability at 20,490 (95% CI 15,998–27,319). Darroch

models produced identical abundance estimates in scenarios with more than one two-way

interaction term.

Sensitivity analyses

After the addition of probable iPHIS cases, there was little change to estimated abundance

(Table 3). Including iPHIS probable and DNM cases and indeterminate laboratory tests pro-

duced the largest increase in abundance and introduced a considerable amount of variability.

While this pattern occurred under all case definitions, the highest estimate of 252,872 (95% CI

209,058–308,891) was obtained under incidence for those one year of age or older. After
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removing A37.9 codes, abundance estimates increased and decreased without a reliable

pattern.

Estimated sensitivity

Sensitivity estimates are available in Table 4. Results were comparable and generally within a

few percentage points with and without multiple episodes per individual (S1 Table). As a

result, clustering was determined to have a minimal effect and we reported sensitivity estimates

that included multiple episodes per individual. Using all data sources consistently provided the

highest sensitivity (Table 4). Labware had the lowest sensitivity while administrative data had

the highest for a single source. Under the primary analysis and prevalence definition, the high-

est sensitivity for those less than one year of age was 69.2% (95% CI 67.7–70.7%), which

dropped to 40.6% (95% CI 40.3–40.8%) for the older age group. Incidence sensitivity estimates

were similar but slightly lower in comparison, excepting marginally higher estimates for iPHIS

and Labware for the younger age group. Overall, using the adjusted false positive definition

increased sensitivity, with all sources under the primary analysis producing a sensitivity of

78.5% (95% CI 76.2–80.9%) and 43.1% (95% CI 42.4–43.8%) for the younger and older age

Fig 1. Example of overlap between data sources†, all age groups combined under the period prevalence primary analysis.
†Administrative data = OHIP physician diagnostic billing codes, DAD hospitalizations, NACRS emergency room visits,

iPHIS = reportable cases, Labware = laboratory tests.

https://doi.org/10.1371/journal.pone.0273205.g001
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groups respectively. However, the largest increase to sensitivity occurred for iPHIS and Lab-

ware estimates, although sensitivity for these sources remained low for the older age group.

Any change to sensitivity estimates after the addition of probable iPHIS cases was small,

within 5%. After including iPHIS probable and DNM cases and indeterminate laboratory

Table 3. Capture-recapture model results with all two-way interactions between sources by analysis, age group, and case definition.

Total observed pertussis cases Chao model with all two-way interactions

Estimated abundance 95% CI AIC, BIC*
PRIMARY ANALYSIS †

< 1 year of age
Period prevalence 2636 3810 2932–5707 56.9, 98.1

Incidence with exclusions 2118 3078 2362–4609 56.8, 96.4

Adjusted false positives 904 1151 964–1538 55.4, 89.1

1+ years of age
Period prevalence 46,295 114,135 87,228–155,391 69.9, 131.1

Incidence with exclusions 48,676 132,528 100,384–181,775 70.1, 131.6

Adjusted false positives 8828 20,490 15,998–27,319 68.1, 117.7

SENSITIVITY ANALYSIS 1†

< 1 year of age
Period prevalence 2648 4030 3003–6240 57.3, 98.5

Incidence with exclusions 2133 3235 2418–4974 57.1, 96.8

Adjusted false positives 897 1163 963–1575 55.7, 89.3

1+ years of age
Period prevalence 46,581 102,954 80,534–136,981 70.8, 132.1

Incidence with exclusions 49,015 119,684 92,638–160,724 71.1, 132.7

Adjusted false positives 9295 19,120 15,339–24,804 69.1, 119.0

SENSITIVITY ANALYSIS 2†

< 1 year of age
Period prevalence 2729 9197 6180–14,619 60.7, 102.1

Incidence with exclusions 2206 7883 5205–12,740 60.1, 100.0

Adjusted false positives 1007 2454 1759–3691 58.8, 93.2

1+ years of age
Period prevalence 47,257 224,995 187,309–272,926 75.2, 136.5

Incidence with exclusions 49,551 252,872 209,058–308,891 74.9, 136.6

Adjusted false positives 9917 37,868 31,802–45,596 72.9, 123.3

SENSTIVITY ANALYSIS 3†

< 1 year of age
Period prevalence 2050 3615 2585–5857 57.4, 96.8

Incidence with exclusions 1863 3249 2341–5192 57.4, 96.1

Adjusted false positives 626 769 671–963 55.1, 86.2

1+ years of age
Period prevalence 42,446 171,908 119,993–257,414 69.2, 129.8

Incidence with exclusions 46,411 207,041 143,834–311,111 69.4, 130.6

Adjusted false positives 6541 21,678 15,685–31,450 67.0, 114.5

*AIC = Akaike information criterion and BIC = Bayesian information criterion, for both lower values indicate a comparably better model fit
†Primary analysis = includes confirmed iPHIS case reports, Labware positive laboratory tests, and health administrative data, Sensitivity analysis 1 = additionally

included probable iPHIS case reports, Sensitivity analysis 2 = additionally included iPHIS probable and “does not meet” case reports and Labware indeterminate

laboratory tests, Sensitivity analysis 3 = additionally excluded A37.9 codes (pertussis species unspecified)

https://doi.org/10.1371/journal.pone.0273205.t003
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Table 4. Estimated sensitivity by case definition, age group, analysis, and data source.

PERIOD PREVALENCE INCIDENCE WITH EXCLUSIONS ADJUSTED FALSE POSITIVES

Analysis Data source Sensitivity

(%)

(n/N)§ 95% CI (%) Sensitivity

(%)

(n/N)§ 95% CI (%) Sensitivity

(%)

(n/N)§ 95% CI (%)

< 1 YEAR OF AGE

Primary analysis † All data sources 69.2 (2636/

3810)

67.7–70.7 68.8 (2118/

3078)

67.2–70.4 78.5 (904/

1151)

76.2–80.9

Admin data 66.0 (2516/

3810)

64.5–67.5 64.8 (1994/

3078)

63.1–66.5 67.8 (780/

1151)

65.1–70.5

Labware 9.69 (369/

3810)

8.75–10.6 12.0–12.1 (368-372/

3078)*
10.8–13.2 32.0–32.3 (368-372/

1151)*
29.3–35.0

iPHIS 12.1 (461/

3810)

11.1–13.1 14.8–14.9 (456-460/

3078)*
13.7–16.2 39.6–40.0 (456-460/

1151)*
36.8–42.8

Sensitivity analysis 1† All data sources 65.7 (2648/

4030)

64.2–67.2 65.9 (2133/

3235)

64.3–67.6 77.1 (897/

1163)

74.7–79.5

Admin data 62.4 (2516/

4030)

60.9–63.9 61.6–61.7 (1993-

1997/

3235)

60.1–63.4 65.4 (761/

1163)

63.8–67.0

Labware 9.16 (369/

4030)

8.27–10.0 11.4–11.5 (368-372/

3235)*
10.3–12.6 31.6–32.0 (368-372/

1163)*
30.1–33.2

iPHIS 11.9 (481/

4030)

10.9–12.9 14.7–14.8 (476-480/

3235)*
13.5–16.1 40.9–41.3 (476-480/

1163)*
39.6–42.9

Sensitivity analysis 2† All data sources 29.7 (2729/

9197)

28.7–30.6 28.0 (2206/

7883)

27.0–29.0 41.0 (1007/

2454)

39.1–43.0

Admin data 27.3–27.4 (2515-

2519/

9197)*

26.4–28.3 25.3–25.4 (1995-

1999/

7883)*

24.3–26.3 32.6 (800/

2454)

30.7–34.5

Labware 5.09 (468/

9197)

4.64–5.54 5.95–6.00 (469-473/

7883)*
5.43–6.52 19.1 (469/

2454)

17.6–20.7

iPHIS 5.96 (548/

9197)

5.47–6.44 6.56 (517/

7883)

6.01–7.10 21.1 (517/

2454)

19.5–22.7

Sensitivity analysis 3† All data sources 56.7 (2050/

3615)

55.1–58.3 57.3 (1863/

3249)

55.6–59.0 81.4 (626/769) 78.7–84.2

Admin data 50.7 (1832/

3615)

49.0–52.3 50.5 (1642/

3249)

48.8–52.3 52.7 (405/769) 49.1–56.2

Labware 10.2–10.3 (368-372/

3615)*
9.19–11.3 11.3–11.4 (368-372/

3249)*
10.2–12.5 47.9–48.4 (368-372/

769)*
44.3–51.9

iPHIS 12.8 (461/

3615)

11.7–13.8 14.2 (461/

3249)

13.0–15.4 59.9 (461/769) 56.5–63.4

1 + YEARS OF AGE

Primary analysis † All data sources 40.6 (46,295/

114,135)

40.3–40.8 36.7 (48,676/

132,528)

36.5–37.0 43.1 (8823/

20,490)

42.4–43.8

Admin data 39.4 (44,933/

114,135)

39.1–39.7 35.7 (47,292/

132,528)

35.4–35.9 36.3 (7444/

20,490)

35.7–37.0

Labware 1.43 (1636/

114,135)

1.36–1.50 1.24 (1637-

1641/

132,528)*

1.18–1.30 7.99–8.01 (1637-

1641/

20,490)*

7.62–8.38

iPHIS 2.02 (2307/

114,135)

1.94–2.10 1.74 (2305-

2309/

132,528)*

1.67–1.81 11.2–11.3 (2305-

2309/

20,490)*

10.8–11.7

(Continued)
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tests, the sensitivity estimates for all sources combined were more similar between age groups.

Under prevalence, sensitivity was 29.7% (95% CI 28.7–30.6%) and 21.0% (95% CI 20.8–21.2%)

for the younger and older groups respectively. Excluding A37.9 codes under the adjusted false

positive definition led to the highest Labware and iPHIS sensitivity estimates for the younger

age group, at close to 50% and 60%.

Discussion

Abundance estimates demonstrated that a high proportion of pertussis cases were missed by

all sources. Results were similar when using prevalence and incidence, but after adjusting for

physician billing code-only false positives abundance dropped considerably. While this

occurred for both age groups, the effect was greater among those one year of age or older. The

low estimated PPV of physician billing code-only episodes provides evidence that false

Table 4. (Continued)

PERIOD PREVALENCE INCIDENCE WITH EXCLUSIONS ADJUSTED FALSE POSITIVES

Analysis Data source Sensitivity

(%)

(n/N)§ 95% CI (%) Sensitivity

(%)

(n/N)§ 95% CI (%) Sensitivity

(%)

(n/N)§ 95% CI (%)

Sensitivity analysis 1† All data sources 45.2 (46,581/

102,954)

44.9–45.5 41.0 (49,015/

119,684)

40.7–41.2 48.6 (9295/

19,120)

47.9–49.3

Admin data 43.6 (44,931–

44,935/

102,954)*

43.3–43.9 39.6 (47,339/

119,684)

37.9–41.2 39.8 (7619/

19,120)

38.2–41.5

Labware 1.59 (1636/

102,954)

1.51–1.67 1.37 (1637-

1641/

119,684)*

0.98–1.76 8.56–8.58 (1637-

1641/

19,120)*

7.62–9.53

iPHIS 2.72 (2800/

102,954)

2.62–2.82 2.34 (2798-

2802/

119,684)*

1.83–2.85 14.6–14.7 (2798-

2802/

19,120)*

13.5–15.8

Sensitivity analysis 2† All data sources 21.0 (47,257/

224,995)

20.8–21.2 19.6 (49,551/

252,872)

19.4–19.8 26.2 (9917/

37,868)

25.7–26.6

Admin data 20.0 (44,926/

224,995)

19.8–20.1 18.7 (47,346/

252,872)

18.6–18.9 20.4 (7712/

37,868)

20.0–20.8

Labware 1.03 (2318/

224,995)

0.99–1.07 0.92 (2318-

2322/

252,872)*

0.88–0.96 6.12–6.13 (2318-

2322/

37,868)*

5.88–6.37

iPHIS 1.48 (3332/

224,995)

1.43–1.53 1.22 (3079/

252,872)

1.17–1.26 8.13 (3079/

37,868)

7.86–8.41

Sensitivity analysis 3† All data sources 24.7 (42,446/

171,908)

24.5–24.9 22.4 (46,411/

207,041)

22.2–22.6 30.2 (6541/

21,678)

29.6–30.8

Admin data 23.7 (40,710/

171,908)

23.5–23.9 21.6 (44,657/

207,041)

21.4–21.7 22.1 (4787/

21,678)

20.7–23.5

Labware 0.95 (1633-

1637/

171,908)*

0.90–1.00 0.79 (1633-

1637/

207,041)*

0.75–0.83 7.53–7.55 (1633-

1637/

21,678)*

6.64–8.44

iPHIS 1.34–1.35 (2310-

2314/

171,908)*

1.29–1.40 1.12 (2311-

2315/

207,041)*

1.07–1.16 10.7 (2311-

2315/

21,678)*

9.62–11.7

*suppressed for reporting due to low cell size (direct or by inference)
§the observed in individual data sources will not sum to the observed in all data sources due to overlap between sources
†Primary analysis = includes confirmed iPHIS case reports, Labware positive laboratory tests, and health administrative data, Sensitivity analysis 1 = additionally

included probable iPHIS case reports, Sensitivity analysis 2 = additionally included iPHIS probable and “does not meet” case reports and Labware indeterminate

laboratory tests, Sensitivity analysis 3 = additionally excluded A37.9 codes (pertussis species unspecified)

https://doi.org/10.1371/journal.pone.0273205.t004
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positives have been inflating observed counts and abundance estimates from capture-recapture

analyses of pertussis in Ontario, which decreased sensitivity for laboratory and case report

data. As a result, the adjusted case definition is the most valid out of those tested, with the

described approach useful for improving the utility of capture-recapture methods to epidemio-

logical surveillance. This procedure details how to incorporate sources of health administrative

data to improve passive pertussis surveillance estimates, while accounting for validity issues

inherent in such secondary data. In the future, the estimated PPV may be used for adjustment

prior to conducting capture-recapture analyses. Alternatively, the validation strategy may be

used to calculate unique validity estimates prior to adjustment, with extensions to other dis-

eases and jurisdictions.

Regardless of the case definition, health administrative data had the highest sensitivity for a

single source, with all sources combined producing the best sensitivity. This establishes the

value of incorporating health administrative data into pertussis surveillance if accuracy and

timeliness limitations are addressed. Laboratory tests had the lowest sensitivity and particularly

for the older age group, indicating testing bias is present. Public health case reports had slightly

higher sensitivity but displayed a similar pattern. While sensitivity estimates improved for

both after adjusting for false positives, this was primarily in the younger age group. Overall,

sensitivity was substantially lower for the older group, suggesting ascertainment bias is

present.

A 2018 Ontario capture-recapture study used the same data sources but over fewer years.

As a result, abundance is not directly comparable as the higher estimates from this study are

expected due to the extra years of data. However, sensitivity for all sources with probable case

reports included was estimated at 54% and 39% for the younger and older age groups respec-

tively. This is comparable to sensitivity estimates for the older age group in this study after

including iPHIS probable cases, but sensitivity was higher for the younger group (~66%). This

could be due to improved recapture in this subgroup using the case definitions or differences

in how the 2018 study modelled dependencies [11]. The 2018 study reported considerable

uncertainty persisting around physician billing code accuracy and investigated by using differ-

ent proportions of true positives for all health administrative data, with the lowest at 25%. This

dropped abundance estimates by 66% and 73% for the younger and older age groups [11]. We

were able to address remaining uncertainty through validation of physician billing code-only

episodes. Interestingly, applying the estimated PPV of 8.99% to these episodes reduced abun-

dance estimates similarly to assuming a PPV of 25% for all health administrative data in the

2018 study, by 64% and 84%. The higher latter value indicates a greater proportion of code

only-episodes in the older age group, leading to enhanced improvement in recapture once

removed. Laboratory test and case report sensitivity considerably improved using this case

definition.

A modelling study based on pertussis incidence in southern Ontario from 1993–2004 esti-

mated that five to 33,032 cases remain undetected per reported case depending on age [4]. It

has been stated elsewhere that the true number of pertussis cases is at least three times higher

than what is reported [3]. To compare, estimates from this study should be calculated using

the false positive case definition to avoid inflating underdetection. For case report data, these

values are 2.5 and 8.9 for the younger and older age groups under the primary analysis and 4.7

and 12 after including probable and DNM case reports and indeterminate laboratory tests.

Using all data sources, 1.3 and 2.3 cases were missed per observed case for the younger and

older age groups, which increased to 2.4 and 3.8 with the additional case reports and labora-

tory tests. The substantially lower upper limit compared to the modelling study is likely due to

differences in age groups, pertussis incidence during the respective time periods, and diagnos-

tic testing accuracy, with PCR introduced after 2004. In addition, the estimation approaches
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differ, with the modelling study using methods with considerable uncertainty as reflected by

the wide range of values. While this study used the more conservative Chao’s lower bound esti-

mator, similar results were obtained from Darroch models. Furthermore, a simulation study

found that Chao’s methods estimated abundance within 75–82% of the total population size in

most complicated scenarios [12]. Regardless, this study’s findings are in line with past esti-

mates of underdetection, with reasonable explanations for remaining differences.

The estimated PPV for physician billing code-only episodes of 8.99% (95% CI 1.59–

16.39%) is comparable to the PPV of 13.6% (95% CI 9.28–17.9%) obtained for an OHIP physi-

cian billing code algorithm within the EMRPC using the same cohort [17]. The slightly higher

PPV in the EMRPC can be explained by using prevalent cases, increasing the likelihood of

concordance between codes and cases. Additionally, EMRPC billing codes were only collected

from physician offices, potentially decreasing the number of false positives. OHIP pertussis

cases billed at homes or long-term care facilities are unlikely to be documented in EMRPC’s

primary care patient records. Further contributing to this issue is that visits outside office set-

tings such as walk-in or specialist visits fail to be captured in the EMRPC, leading to about

15% of interactions being missed [25]. In addition, only two thirds of the laboratory tests in

OHIP are documented in the EMRPC [25]. Missing any of these data in the EMRPC could

artificially decrease the PPV of OHIP billing code-only episodes by increasing the number of

false positives, although billings from outside office settings were uncommon in the OHIP

database and unlikely to greatly affect validation. The EMRPC study only tested the accuracy

of data available in the EMRPC, meaning sensitivity estimates for emergency room visits, hos-

pitalizations, and case report data are not available. However, pertussis laboratory test sensitiv-

ity using prevalent cases was reported as 0.64% (95% CI 0.37–1.09%) across all ages [17]. After

adjusting for false positives, 8.0% sensitivity (95% CI 7.62–8.38%) was obtained for the older

age group (which only excludes infants) using prevalence. This difference can be explained by

variation in ages, pertussis classification, and validation methods. Additionally, Labware has

more comprehensive coverage, with the EMRPC noted to have decreased laboratory test sensi-

tivity through incomplete documentation [17].

One limitation of this study is that we did not validate physician billing code-only episodes

separately for the younger and older age groups. This was to preserve an adequate sample size,

with the assumption that the PPV averages out across age groups and this is an appropriate

strategy for taking a random sample based on a proportion. In addition, while demonstrating

that sensitivity estimates differ by age group, it is unlikely that PPV would vary to the same

extent. PPV evaluates the proportion of true positives out of test positives and is primarily

affected by prevalence, not testing bias [26]. Although it may appear that younger individuals

have a higher risk of pertussis infection, due to testing and ascertainment bias this may not

actually be the case [5]. Older cases are hypothesized to be an important source of pertussis,

which is evident through older relatives being key sources of transmission to infants [5, 27].

Additionally, in 2019, 62% of reported cases in Ontario occurred in those ten years of age or

older [28]. However, it may be of interest to allow the PPV to vary separately by age group in

future analyses.

An additional limitation is that we had to remove EMRPC cases without dates during vali-

dation. We considered it preferable to avoid introducing misclassification rather than preserv-

ing the sample size, and there is no reason to suspect excluded cases are systematically

different from the majority of those included. A further limitation of validation is that we were

unable to adjust the PPV and sensitivity estimates for clustering under the incidence and false

positive definitions due to the low sample size and study methodology respectively [23, 24]. To

address this, we compared point estimates and variances to those using a single episode per

individual to assess the effect of correlation, with little difference found between PPV
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estimates. While some sensitivity estimates were statistically significantly different, the abso-

lute difference was small, and this was for the older age group where large sample sizes pro-

duced substantial precision. As a result, we concluded that these differences were unlikely to

be clinically significant. While it is possible correlation still minorly affected the findings, it is a

study strength to be able to report sensitivity estimates under different case definitions. Little

validation research has incorporated repeated episodes, which is of interest for acute diseases.

Finally, missing data may impact abundance and sensitivity estimates, but this is an inher-

ent limitation of using secondary data and beyond the scope of this study. This includes failing

to collect data on certain cases, such as those that are milder in nature who do not seek health

care or may be misdiagnosed. While pertussis infectivity is related to severity, meaning that

milder undetected cases are likely less infectious, it is possible that many are still important to

transmission. While Labware data only covers pertussis laboratory testing for < 95% of

Ontario, we assumed that the remaining tests would not considerably impact abundance esti-

mates [11, 29]. To assess the effect of missing data, we conducted sensitivity analyses incorpo-

rating additional data to determine the robustness of capture-recapture abundance estimates.

This produced little change to results, except when including probable and DNM cases in

addition to indeterminate laboratory tests. Doing so decreased sensitivity and led to greater

similarity in capture patterns between the younger and older age groups. This could suggest

that older individuals are less likely to meet the confirmed case definition, or that milder infec-

tions are frequently missed in younger as well as older individuals. Alternatively, it could be

due to increased uncertainty in abundance among both groups under this analysis, stemming

from greater uncertainty in true pertussis status.

Conclusions

This study demonstrated how limited health data accuracy can be accounted for using cap-

ture-recapture analyses that employ different pertussis case definitions. The false-positive

adjusted case definition helped address past uncertainty in burden estimation and produced

results which align with the degree of underdetection reported in the literature. The described

methodology allows passive pertussis case report data to be supplemented with health adminis-

trative data to better estimate burden, while accounting for validity issues that accompany sec-

ondary data use. Improved capture-recapture estimates can better inform public health policy

and prevention. Findings consistently demonstrated that data sources are failing to detect per-

tussis cases, and particularly laboratory and case report data. The best sensitivity was obtained

by using all sources together, with health administrative data having the highest sensitivity for

a single source. This indicates the benefit of incorporating real time health administrative data

into surveillance if misclassification can be addressed. The results provide further support that

pertussis detection differs by age, indicating that ascertainment and testing bias is present in

data.
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