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Abstract

Much effort has been devoted by the World Health Organization (WHO) to eliminate soil-

transmitted helminth (STH) infections by 2030 using mass drug administration targeted at

particular risk groups alongside the availability to access water, sanitation and hygiene ser-

vices. The targets set by the WHO for the control of helminth infections are typically defined

in terms of the prevalence of infection, whereas the standard formulation of STH transmis-

sion models typically describe dynamic changes in the mean-worm burden. We develop a

prevalence-based deterministic model to investigate the transmission dynamics of soil-

transmitted helminthiasis in humans, subject to continuous exposure to infection over time.

We analytically determine local stability criteria for all equilibria and find bifurcation points.

Our model predicts that STH infection will either be eliminated (if the initial prevalence value,

y(0), is sufficiently small) or remain endemic (if y(0) is sufficiently large), with the two stable

points of endemic infection and parasite eradication separated by a transmission break-

point. Two special cases of the model are analysed: (1) the distribution of the STH parasites

in the host population is highly aggregated following a negative binomial distribution, and (2)

no density-dependent effects act on the parasite population. We find that disease extinction

is always possible for Case (1), but it is not so for Case (2) if y(0) is sufficiently large. How-

ever, by introducing stochastic perturbation into the deterministic model, we discover that

chance effects can lead to outcomes not predicted by the deterministic model alone, with

outcomes highly dependent on the degree of worm clumping, k. Specifically, we show that if

the reproduction number and clumping are sufficiently bounded, then stochasticity will

cause the parasite to die out. It follows that control of soil-transmitted helminths will be more

difficult if the worm distribution tends towards clumping.
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Introduction

Soil-transmitted helminths (STHs) are intestinal worm parasites, which are transmitted to

humans through contaminated soil via eggs or larvae present in faecal material deriving from

infected individuals who harbour reproductively mature female worms [1]. Transmission is

prevalent in areas with poor hygiene and sanitation [2]. The primary species of STH that infect

humans are roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura) and hook-

worm (Necator americanus and Ancylostoma duodenale) [3]. Humans become infected after

they come into contact with contaminated soil, objects or surfaces, or by ingesting contami-

nated food or drink with parasite eggs or larvae [4].

The World Health Organization (WHO) [5] has reported that there are more than 1.5 bil-

lion people worldwide who suffer from STH infection [5]. Most of the infected cases are found

in sub-Saharan Africa, East Asia, the Americas and China [6]. Although STH infections are

not a major cause of mortality, they impair child growth, particularly cognitive and physical

development [7]. They may also cause malnutrition and intestinal clinical manifestations and

can generate social stigma [8]. STH infections not only cost billions of dollars in interventions

annually but they also lead to poor health and a rise in the disability-adjusted life years

(DALYs) [9]. They are a significant health burden, especially in people who are living in pov-

erty, even though they are treatable and preventable [8].

Eradicating morbidity due to STH infection in children by 2030 is one of the global targets

set by the WHO in the 2021–30 NTDs (neglected tropical diseases) Road Map [10]. The WHO

aims to ensure accessibility to basic sanitation and hygiene to prevent infections and reinfec-

tions in STH endemic regions by 2030 [11]. Through behavioural interventions such as shoe

wearing, hand-washing and waste/excreta management and the WASH (water, sanitation and

hygiene) program, global access to clean and safe water, adequate sanitation and hygiene can

be achieved, which will promote healthy living, improve socio-economic development and

reduce poverty [12]. Soil-transmitted helminthiasis can be treated by either 400mg of albenda-

zole or 500mg of mebendazole. These medicines are typically donated by GlaxoSmithKline

and Johnson & Johnson to the WHO for use in endemic regions, can be dispensed by non-

medical personnel, are effective and generate very few side effects [13–17]. The WHO proposes

periodic treatment for all at-risk populations who are living in endemic regions [18]. Treat-

ment should be applied once or twice a year if the prevalence of STH infection in the commu-

nity is more than either 20% or 50%, respectively, in order to reduce the burden of morbidity

induced by STH infection.

In December 2018, treatment for schistosomiasis and soil-transmitted helminthiases

showed encouraging trends towards the goal of attaining a minimum target of treating at least

75% of school-age children in areas endemic for these parasitic infections to achieve the global

targets set for 2020 [19].

A number of mathematical models have been employed to examine the transmission

dynamics and control by mass drug administration (MDA) of soil-transmitted helminthiasis.

The first of these was a deterministic structure defined by Anderson in 1980 [20], which has

subsequentially been expanded to examine a variety of factors including control by mass drug

administration [21–26]. These models have been used to define treatment coverage criteria for

transmission elimination. They also delineate parameters that define the rate of parasite trans-

mission and facilitate the prediction of the impact and efficiency of various control measures.

Davis et al. [27] investigated a model for the infection of Ascaris lumbricoides in a human pop-

ulation, which incorporated the variability of egg output into the environment and the impact

of both rainfall and temperature. They found that seasonal variation affects the maturation,

death and transmission rates of Ascaris lumbricoides. Moreover, they suggested that by making
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full use of seasonal variation in egg survival and maturation of Ascaris lumbricoides, the impact

of MDA can be maximized.

Coffeng et al. [28] employed two mathematical models—an age-structured model and an

individual-based stochastic model—to compare the transmission dynamics of Ascaris lumbri-
coides and hookworm infections and the impact of MDA with the data collected from various

countries. Farrell et al. [29] included an age-structured deterministic model defined by a set of

partial differential equations and a stochastic individual-based model built on this determin-

istic framework. These two models performed well in predicting the short-term impact of

MDA control on Ascaris lumbricoides and hookworm infections. Moreover, the predictions of

the models exhibited qualitatively good agreement on the impact of semi-annual versus annual

MDA programmes on the entire population versus only treating school-age children.

Cooper and Hollingsworth [30] used a simple prevalence-based model to explore the

impact of seasonality on the transmission dynamics and the effectiveness of an MDA pro-

gramme in controlling STH Ascaris lumbricoides infection. They suggested that an annual

MDA programme induces a greater impact in suppressing the transmission of Ascaris lumbri-
coides if it is carried out during the months with the highest temperature. They also predicted

that local elimination in the community is possible if multiple annual treatments were exe-

cuted at or around the estimated optimal treatment time each year. Chong et al. [31] used

impulsive differential equations to investigate the impact of annual and biannual MDA on the

mean number of worms in both treated and untreated human subpopulations. These models

were employed to study community-based MDA in Kenya, showing that the interruption of

transmission is likely if the efficacy of drug is sufficiently high but that interruption could hap-

pen with weaker drug efficacy and an additional round of MDA.

Here we develop a prevalence-based deterministic model to provide some general analytical

insights into the transmission dynamics of STH infection in a human population. We analyti-

cally determine local stability criteria for all equilibria of the model and find bifurcation points.

We add stochastic perturbation in order to examine the potential for disease extinction even

when initial values are large, for sufficient bounds of the reproduction number and clumping

parameter.

A prevalence-based model has some key advantages, given that most epidemiological stud-

ies and monitoring and evaluation programmes only measure this epidemiological statistic as

a by-product. The more complex models that record changes in the mean-worm burden have

the disadvantage that this measure is very difficult to monitor in endemic regions even when

faecal output is collected in order to assess egg output by the adult worms in the human host.

Egg counts have high variability and are known to be a poor measure of the true worm burden

in an individual. A further reason for pursuing the properties of a prevalence-only model is to

attempt to derive a deeper analytical understanding of the transmission dynamics of STH

human parasites, the possible equilibrium states and dynamical behaviour around these states.

Such an understanding adds to our ability to predict the impact of control programmes that

repeatedly treat individuals in communities with endemic infection. Repeated treatment is

required, since infection with these macroparasites do not induce protective immunity to rein-

fection [32].

Our prevalence-based model employs a modified form of the original deterministic equa-

tions of Anderson and May [20, 23]. We focus on investigating the prevalence of infection

when no interventions are in place, in order to study the existence and stability of the possible

equilibrium states employing both analytical approximations (motivated by the success in ear-

lier work [33] using this approach) and numerical methods. We also investigate various special

cases of the model in order to explore the impact of mating functions and density dependence

in situations where worm burdens per host are highly aggregated and where no density-
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dependent processes operate. Moreover, by adding stochastic noise into the prevalence-based

model, we investigate how chance effects influence the dynamics and identify sufficient condi-

tions for the eradication of transmission and the subsequent extinction of the parasite

population.

Mathematical model

Anderson and May (1991) [23] proposed a deterministic model based on two nonlinear differ-

ential equations to describe changes over time in the mean number of worms (M(t)) in a

human population of density N and the mean number of infectious larvae or eggs in the habi-

tat of the human host (L(t)) at time t. In the absence of age structure, the equations are as fol-

lows:

dM
dt

¼ bL � mM

dL
dt
¼
l

2
�ðM; k; zÞf ðM; k; zÞM � m0L �

l

2
FðM; k; zÞM � m0L ;

ð1Þ

where the parameters are as defined in Table 1.

Given a negative binomial probability distribution of worm numbers per host (as observed

in all epidemiological studies that have employed worm-expulsion methods), the effect of den-

sity dependence in adult worm fecundity [34] (with reductions in per capita egg output as

worm density in a host rises [35]) can be described by the function

f ðM; k; zÞ ¼ 1þ
ð1 � zÞM

k

� �� ðkþ1Þ

:

The mating probability [36] of the adult worm is defined as

�ðM; k; zÞ ¼ 1 �
1þ
ð1 � zÞM

k

1þ
ð2 � zÞM

2k

2

6
6
4

3

7
7
5

kþ1

;

where FðM; k; zÞ � �ðM; k; zÞf ðM; k; zÞ, γ is the strength of density-dependent effects on

fecundity and z = e−γ. The prevalence of infection y (assuming a negative binomial distribution

of worms per host) is given by

y ¼ 1 �

�

1þ
M
k

�� k

; ð2Þ

Table 1. Description of the associated parameters in model (1).

Parameter Description

β The contact rate between humans and the reservoir

μ0 The per capita parasite mortality rate

μ The per capita worm death rate

λ The rate of egg production per capita by female worms within a host

k The clumping parameter of the negative binomial distribution

γ The strength of density-dependent effects on fecundity

z e−γ

https://doi.org/10.1371/journal.pone.0272600.t001
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where k is the clumping parameter of the negative binomial distribution, which varies

inversely with the degree of worm clumping.

To simplify the analysis, Anderson & May [23] considered the mean number of worms in a

human population of density N over time at the equilibrium of infectious larvae or eggs in the

human habitat. The justification of this assumption is that the lifespan of the adult worm in

the human host (1–2 years) is much longer than the life expectancy of larvae or eggs in the

human host habitat (about one month or less) and, as a result, the dynamics of L(t) are rela-

tively fast compared toM(t). Hence the dynamics ofM(t) can be redefined as

dM
dt
¼ m½R0FðM; k; zÞ � 1�M ; ð3Þ

where R0 = βλ/(2μ0μ) is the basic reproduction number for the parasite in the absence of den-

sity-dependence in adult worm fecundity [23].

By considering a situation at equilibrium where infection occurs continuously in the

human host population with a constant force of infection as in (2) and where no intervention/

control strategy has been implemented, the transmission dynamics as previously measured by

the mean-worm burden of STH within the human population can be converted into a preva-

lence of infection (given a negative binomial burden of worms per host with fixed k) as

described in the following set of equations:

dx
dt
¼ � bx

kþ 1

k Lþ m
Pð1;M; kÞ

1 � Pð0;M; kÞ

� �

y ¼ � bLþ mkW1ð Þx
kþ 1

k

dy
dt
¼ bx

kþ 1

k L � m
Pð1;M; kÞ

1 � Pð0;M; kÞ

� �

y ¼ bL � mkW1ð Þx
kþ 1

k

dL
dt
¼

1

2
lkW1Fðy; k; zÞ � m0L ;

ð4Þ

subject to the restriction x + y = 1 and having redefined Fðy; k; zÞ ¼ �ðy; k; zÞf ðy; k; zÞ and y

(t) = Y(t)/N(t), whereW1 ¼ ð1 � yÞ
� 1
k � 1, N(t) = X(t) + Y(t) is the total population of suscep-

tible X(t) and infected Y(t) humans at time t and x(t) = X(t)/N(t). The description for each

parameter of model (4) is as defined in Table 1. Note that the first two equations may also be

derived by substituting Eq (2) into Eq (1) for a change of variables.

An infected individual who has a worm burden of one parasite has a high probability to

recover (even without treatment) due to the death of worm and the host moving to the suscep-

tible uninfected class. Thus the probability that an infected individual has only one worm is

given by Pð1;M; kÞ=½1 � Pð0;M; kÞ�. This is the conditional probability of being in the w = 1

class given the probability of having at least w = 1 worm. That is,

P w ¼ 1jw � 1ð Þ ¼
Pðw ¼ 1 ^ w � 1Þ

Pðw � 1Þ
¼

Pðw ¼ 1Þ

1 � Pðw ¼ 0Þ
;

where the probability of an infected individual getting w worms is

Pðw;M; kÞ ¼
Gðkþ wÞ
GðkÞw!

kþM
k

� �� k M þ k
M

� �� w

:
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Both f(M; k, z) and ϕ(M; k, z) can be rewritten in terms of prevalence y, clumping k and

fecundity z as follows:

f ðy; k; zÞ ¼ f1þ ð1 � zÞ½ð1 � yÞ� 1=k
� 1�g

� ðkþ1Þ

�ðy; k; zÞ ¼ 1 �

(
1þ ð1 � zÞ½ð1 � yÞ� 1=k

� 1�

1þ
1

2
ð2 � zÞ½ð1 � yÞ� 1=k

� 1�

)kþ1

:

We can therefore rewrite model (4) given the equilibrium state of L using the substitution

x = 1 − y as follows:

dy
dt
¼ mkW1ð1 � yÞ

kþ 1

k ½R0Fðy; k; zÞ � 1� :
ð5Þ

Throughout this work, we choose z = 0.96 and μ = 0.5 per year, unless otherwise stated,

given published values of these parameters [23]. Before we further analyse the prevalence

model (5), we would like to show the comparison of prevalence values generated by models (3)

and (5) in Fig 1. We observe that both models have good agreements for arbitrary k and initial

values, so we focus our attention on the simpler prevalence model (5) for the study of STH

infection in human populations.

It is clear that y = 0 and y = 1 are equilibrium points of model (5). The other endemic equi-

librium, y�, of model (5) exists whenever we solve R0Fðy�; k; zÞ ¼ 1. By solving

R0Fðy�; k; zÞ ¼ 1 numerically (using the bisection method), we are able to depict the solutions

of y� with different k values in Fig 2. From this figure, we can see that there are two distinct

equilibrium solutions. One tends to zero (elimination of transmission) and another one tends

to a value of endemic infection. These two states are separated by an unstable equilibrium

commonly termed the ‘transmission breakpoint’. We denote a stable equilibrium solution by

the solid curve, whereas the unstable equilibrium solution is represented by the dashed curve.

By increasing the R0 values, the stable equilibrium solutions get larger, but the unstable equilib-

rium solutions get smaller. In addition, there is a bifurcation point (denoted by ybp) in model

Fig 1. Comparisons of prevalence values generated by the models (3) (red dashed line) and (5) (black solid curve). Both models (prevalence-based

or mean-worm-burden-based) produce well-matched results for arbitrary k and initial values. Both predict that the infection will either die off or reach

an endemic state.

https://doi.org/10.1371/journal.pone.0272600.g001
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(5), given by

ybp ¼ 1 �

2 � z
2ð1 � zÞ

� ��
kþ 1

kþ 2

� �

� 1

z
2 � z

1 � 2
2 � z

2ð1 � zÞ

� �
1

kþ 2

8
><

>:

9
>=

>;

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

k

:

See the S1 Appendix for further details.

Theorem 1 Let W�
1
¼ ð1 � y�Þ�

1
k � 1, F 0ðy; k; zÞ ¼ dFðy; k; zÞ=dy and

F 0ðy�; k; zÞ ¼
ðkþ 1Þð2 � zÞð1 � y�Þ

�

kþ 1

k

� �

2k
1þ
ð2 � zÞW�

1

2

� �� ðkþ2Þ

�
1

k
ðkþ 1Þð1 � zÞð1 � y�Þ

�

kþ 1

k

� �

½1þ ð1 � zÞW�

1
�
� ðkþ2Þ

:

Model (5) always achieves local asymptotic stability in the absence of infection (i.e., y = 0),
whereas it is unstable if y = 1. In addition, if y� > (<)ybp, the endemic equilibrium (y�) of model
(5) is locally asymptotically stable (unstable). A local fold bifurcation occurs at ybp.

Fig 2. Numerical solutions of equilibrium y� as a function of R0 with different k values, but fixed z = 0.96.

https://doi.org/10.1371/journal.pone.0272600.g002
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Proof. Let l̂ represent the eigenvalue of model (5). The eigenvalue of model (5) is defined as
follows:

l̂ ¼ m

"

ðkþ 1Þð1 � yÞ
1

k � k

#"

R0Fðy; k; zÞ � 1

#

þ mkR0W1ð1 � yÞ
kþ 1

k F 0ðy; k; zÞ :

ð6Þ

In the absence of infection, l̂ ¼ � m < 0 since μ> 0. This proves that y = 0 is locally asymptot-

ically stable. For y = 1, l̂ ¼ mk > 0 since μ, k> 0. Hence y = 1 is an unstable equilibrium

point. Moreover, for y = y�,

l̂jy¼y� ¼ mkR0W�
1
ð1 � y�Þ

kþ 1

k F 0 y�; k; zð Þ :

l̂jy¼y� < ð>Þ0 is equivalent to F 0ðy�; k; zÞ < ð>Þ0) y� > ð<Þybp . As a result, l̂jy¼y� < ð>Þ0

whenever y� > (<)ybp. Hence y� is locally asymptotically stable (unstable) if y� > (<)ybp.

When y = ybp, we obtain F 0ðybp; k; zÞ ¼ 0; hence l̂jy¼ybp ¼ 0. Therefore a local bifurcation

occurs at ybp.

Denote the unstable and stable endemic equilibria of model (5) as y� and y�, respectively. By

varying the R0 values (as in Fig 2), we describe the relationship between the eigenvalue (6) and

the endemic equilibrium of model (5) in Fig 3 with different k values. By increasing the y val-

ues, the eigenvalue, l̂, changes from positive to negative values for fixed k values. This implies

that the stability of model (5) changes from unstable (dashed curve) to stable (solid curve). A

local fold bifurcation occurs when l̂ ¼ 0. In other words, the local fold bifurcation occurs at

the point where the signs of eigenvalue and the stability of an equilibrium point are changing.

The dynamics of model (5) are depicted in Fig 4. We represent the stable and unstable equi-

libria by filled and unfilled circles, respectively. For arbitrary k and R0, all solutions of model

(5) tend to zero as t!1 if the initial prevalence value satisfies y0 < y�. However, the solutions

of model (5) will approach a stable endemic equilibrium (y�) whenever y0 > y�. Since there is

an unstable equilibrium point (y�) existing in the model, a separatrix between the ω-limit sets

of these two stable equilibria (y = 0 and y�) is formed. Based on the numerical results in this

figure, we can summarize that, for any initial prevalence value lower than y�, model (5) pre-

dicts disease extinction. Otherwise, this model forecasts that parasite infection will remain in

the endemic state. Note that y� increases whenever k and R0 values are increasing. In order to

better describe the dynamics of model (5), we depict the vector field of y in Fig 5.

In Fig 6, we illustrate the heatmaps of the vector field of y (i.e., Eq (5)) and the second deriv-

ative of y with respect to time:

d2y
dt2

¼ m

"

ðkþ 1Þð1 � yÞ
1

k � k

#"

R0Fðy; k; zÞ � 1

#

þ mkR0W1ð1 � yÞ
kþ 1

k F 0ðy; k; zÞ :

ð7Þ

The vector field depicts the velocity of y, whereas the second derivative with respect to time

describes the acceleration of y. The positive (negative) value of Eq (5) in this figure
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corresponds to the force acting in an upward (downward) direction. Thus, if the trajectory/

solution of model (5) is moving upward (downward) quickly, then (5) will have a large positive

(negative) value. Eq (7) measures how “fast” (5) changes with respect to time t, which is illus-

trated in Fig 6(b). The movement of the solution y slows down (speeds up) if the velocity and

acceleration of y—i.e., Eqs (5) and (7), respectively—have opposite (identical) signs.

In Fig 6(a), the rate of change of y at the equilibrium points is equal to zero; i.e., y = 0, the

stable equilibrium point y� (denoted by the solid black curve), the unstable equilibrium point

y� (represented by the dashed black curve) and the point y = 1. The velocity of y is moving

towards y = 0 and y�. However, it is moving away from y� and y = 1. In addition, for y� < y<
y�, the trajectory of model (5) around the transmission breakpoint (y�) moves quickly from y�
and converges to the stable equilibrium point (y�) at a slower pace. For y> y�, the trajectory of

the model (5) is speeding up and moving faster towards y�. For y< y�, the trajectory of model

(5) moves slowly towards the state of parasite extinction once it has crossed the transmission

breakpoint. However, its movement speeds up when it is close enough to y = 0. This reveals

that both y = 0 and y� are stable equilibria, whereas y� and y = 1 are unstable equilibria, validat-

ing Theorem 1.

Fig 3. The relationship between the eigenvalue (6) and the endemic equilibrium of the model (5) is demonstrated by varying k values

(corresponding to 0� R0� 5). Linearization is one of the key methods employed in assessing stability, and it can be applied to determine the local

stability of a model governed by ordinary differential equations. By definition [37], an equilibrium point is locally asymptotically stable if all eigenvalues

have negative real parts, whereas it is unstable if at least one eigenvalue has positive real part. A local bifurcation occurs whenever the real part of an

eigenvalue passes through zero.

https://doi.org/10.1371/journal.pone.0272600.g003
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Analytical approximations around the equilibrium points

In this section, we examine the behaviour of model (5) around the equilibrium points. This

has practical relevance in terms of interpreting trends in the field as control measures intensify

and moving the system toward the unstable equilibrium point and away from the stable

endemic state. We shall expand model (5) up to Oðy2Þ around the equilibrium points and then

Fig 4. The dynamics of model (5) when varying k, R0 and initial value y0. By varying k and R0 values, all solutions of this model converge to zero if y0

< y�, whereas the solutions of this model approach the endemic equilibrium y� whenever y0 > y� as t!1.

https://doi.org/10.1371/journal.pone.0272600.g004

Fig 5. The vector field (5) derived using numerical solutions of the model (5), where z = 0.96, k = 0.5 and R0 = 4.

https://doi.org/10.1371/journal.pone.0272600.g005
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look for the corresponding analytical solution. In addition, the analytical and numerical solu-

tions of the model (5) will be compared. Recall that the Taylor series expansion of a function

about a point b takes the following general form:

gðyÞ ¼ gðbÞ þ g 0ðbÞðy � bÞ þ
g 00ðbÞðy � bÞ2

2!
þ
g 000ðbÞðy � bÞ3

3!
þOðy4Þ :

Analytical approximation around y = 0

As y! 0, we have ð1 � yÞ�
1
k � 1þ y=k , ð1 � yÞ

kþ1
k � 1 � y½ðkþ 1Þ=k� and

Fðy; k; zÞ �
zðkþ 1Þ

2k
y 1þ

ðkþ 2Þð3z � 4Þ

4k
y

� �

þ
zðkþ 1Þðkþ 2Þðkþ 3Þð7z2 � 18z þ 12Þ

48k3
y3 :

Hence, up to Oðy2Þ, the expansion of model (5) around y = 0 is given by

dy
dt
¼ m

ðkþ 1ÞðR0z þ 2Þ

2k
y � 1

� �

y ; ð8Þ

and the analytical solution of (8) is

yðtÞ ¼
2ky0

ðkþ 1ÞðR0z þ 2Þð1 � emtÞy0 þ 2kemt
; ð9Þ

where y0 is the initial value of y. The expansion (8) has a good agreement with the full solution

if

y < min
�

6k
kþ 3

3z � 4

7z2 � 18z þ 12

�
�
�
�

�
�
�
�;

3k
k � 1

�
�
�
�

�
�
�
�;

3k
2kþ 1

�

� yagr ; ð10Þ

where k 6¼ 1 and 7z2 − 18z + 12 6¼ 0.

Fig 7 demonstrates both numerical and analytical (with approximations) solutions of

model (5) when y! 0. We can see that by increasing the R0 value, y� is decreasing. However, if

Fig 6. Heatmaps of the vector field (5) and the rate of change of the model (5)—i.e., Eq (7)—are as shown in subfigures (a) and (b), respectively.

k = 0.5 and z = 0.96 are chosen to generate these two plots.

https://doi.org/10.1371/journal.pone.0272600.g006
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k is increasing, both region (10) (in grey) and y� are increasing. Both analytical (9) and numeri-

cal (5) solutions have closer agreement when the initial value y0 is approaching zero. Neverthe-

less, both of these solutions with arbitrary y0 < y� converge to zero as t!1.

Analytical approximation around equilibrium point

Let yeq denote the nontrivial equilibrium point of model (5). Up to Oðy2Þ, the expansion of

model (5) around yeq is

dy
dt
¼ mkR0 Â0y

2 þ B̂0yþ Ĉ0

� �
; ð11Þ

Fig 7. The comparisons of the analytical (9) and numerical (with approximations) (5) solutions with arbitrary initial points around y = 0 and

y0 < y�.

https://doi.org/10.1371/journal.pone.0272600.g007
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where

Â0 ¼
ðkþ 1Þð1 � yeqÞ

1

k
k

� 1

2

6
6
6
4

3

7
7
7
5
F 0ðyeq; k; zÞ

þ
Weq

1

2
ð1 � yeqÞ

kþ 1

k F 00ðyeq; k; zÞ ;

B̂0 ¼Weq
1 ð1 � yeqÞ

kþ 1

k ½F 0ðyeq; k; zÞ � yeqF
00ðyeq; k; zÞ�

þ 2yeq 1 �
ðkþ 1Þð1 � yeqÞ

1

k
k

2

6
6
6
4

3

7
7
7
5
F 0ðyeq; k; zÞ ;

Ĉ0 ¼
ðkþ 1Þð1 � yeqÞ

1

k
k

� 1

2

6
6
6
4

3

7
7
7
5
F 0ðyeq; k; zÞy2

eq

þWeq
1 ð1 � yeqÞ

kþ 1

k
yeqF

00
ðyeq; k; zÞ
2

� F 0ðyeq; k; zÞ
� �

yeq

Weq
1 ¼ ð1 � yeqÞ

1

k � 1 :

The analytical solution of (11) is given by

yðtÞ ¼ yeq �
Âf1 � tanh �

mkR0Ât
2
þ tanh� 1

1þ ðy0 � yeqÞB̂
� �� �

g

2
ðkþ 1Þð1 � yeqÞ

1

k � k
k

2

6
6
6
4

3

7
7
7
5
F 0ðyeq; k; zÞ þW

eq
1 ð1 � yeqÞ

kþ 1

k F 00ðyeq; k; zÞ

;

ð12Þ

where

Â ¼Weq
1 ð1 � yeqÞ

kþ 1

k F 0ðyeq; k; zÞ ;

B̂ ¼

2
ðkþ 1Þð1 � yeqÞ

1

k � k
k

2

6
6
6
4

3

7
7
7
5
F 0ðyeq; k; zÞ þW

eq
1 ð1 � yeqÞ

kþ 1

k F 00ðyeq; k; zÞ

Â
:
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This analytical solution is only defined if

F 00ðyeq; k; zÞ 6¼

2 1 �
ðkþ 1Þð1 � yeqÞ

1

k
k

2

6
6
6
4

3

7
7
7
5
F 0ðyeq; k; zÞ

Weq
1 ð1 � yeqÞ

kþ 1

k

and F 0ðyeq; k; zÞ > 0. Furthermore, due to the Taylor expansion, (11) is accurate if

jy � yeqj < min 1; 3
W2

W3

�
�
�
�

�
�
�
�

� �

� yagr1 ; ð13Þ

where

W2 ¼Weq
1 ð1 � yeqÞ

kþ 1

k F 00ðyeq; k; zÞ

þ 2
ðkþ 1Þð1 � yeqÞ

1

k
k

� 1

2

6
6
6
4

3

7
7
7
5
F 0ðyeq; k; zÞ ;

W3 ¼Weq
1 ð1 � yeqÞ

kþ 1

k F 000ðyeq; k; zÞ

þ

3 ðkþ 1Þð1 � yeqÞ
1

k � k

2

4

3

5F 00ðyeq; k; zÞ

k

� 3
kþ 1

k2

� �

ð1 � yeqÞ
�

k � 1

k

� �

F 0ðyeq; k; zÞ :

In Fig 8, we observe that the solutions of (5) and (12) converge to the endemic equilibrium,

y�, and give good agreement within the region between analytical work based on an approxi-

mation and numerical evaluations (13) (grey region), especially for initial values y0 that are suf-

ficiently close to y�. Moreover, y� is increasing whenever k and R0 values are increasing.

We illustrate both analytical and numerical solutions (Eqs (12) and (5), respectively)

around the unstable endemic equilibrium point, y�, in Fig 9. All analytical and numerical solu-

tions are moving away from y� for arbitrary k and R0 values as t!1. Nevertheless, both solu-

tions lead to a good agreement within region (13) if y0 is close enough to y�. Furthermore, we

find that y� is increasing if k is increasing. However, by increasing R0, y� gets smaller. We will

discuss the approximation accuracy of (5) as k! 0 in the next section.

Special cases

Case 1: k! 0

As the clumping parameter k! 0, the probability distribution of STH parasites within the

human host population becomes highly aggregated. It is possible to have very few individuals

in the population who carry a large burden of parasites while the remainder of the population
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has very few parasites. In the limit, all parasites are harbored by one individual host. As aggre-

gation increases, if we manage to identify and provide appropriate treatment to those carrying

worms, the prevalence of STH in the population will be reduced significantly. This improves

the likelihood of transmission eradication; hence we are interested in approximating the solu-

tion of model (5) as k! 0. As k! 0, we obtain

Fðy; zÞ �
zð1 � yÞ

1

k
ð1 � zÞð2 � zÞ

� 0 almost everywhere:
ð14Þ

The approximation of (14) is supported by Fig 10, where Fðy; zÞ is zero almost everywhere

as k! 0. In addition, from this figure, we can see that the infection is concentrated in very few

people. Thus the model (5) can be simplified to

dy
dt
� � mkW1ð1 � yÞ

kþ 1

k ;
ð15Þ

Fig 8. The comparisons of analytical (12) and numerical (5) solutions with arbitrary initial points around the stable endemic equilibrium, y�.

https://doi.org/10.1371/journal.pone.0272600.g008
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and the analytical solution of (15) is defined as

yðtÞ ¼ 1 �
ð1 � y0Þ

1

kemt

1 � ð1 � y0Þ

1

k 1 � emtð Þ

2

6
6
4

3

7
7
5

k

; ð16Þ

where y0 is the initial value of y(t). It is clear that y = 0 and y = 1 are the equilibria values for

model (15), and the eigenvalue for model (15) is l̂k ¼ m k � ðkþ 1Þð1 � yÞ
1
k

h i
. Since the rate

of change of y in model (15) is governed by a decreasing function of y, the solution will eventu-

ally approach y = 0 as t!1. Moreover, at y = 0, the eigenvalue l̂k ¼ � m < 0, which shows

that y = 0 is a locally asymptotically stable equilibrium point. It follows that parasite eradication

is possible in this case. However, y = 1 is an unstable equilibrium point since l̂kjy¼1 ¼ mk > 0.

The analytical solution (16) and numerical solution of model (5) around the stable equilib-

rium y = 0 as k! 0 are illustrated in Fig 11. From this figure, we see that both analytical and

numerical solutions are in good agreement and converging to zero whenever y0 < y� for arbi-

trary R0 and small k values. Both models ((5) and (15)) predict disease extinction whenever y0

< y�.

Fig 9. The comparisons of analytical (12) and numerical (5) solutions with arbitrary initial points around the unstable endemic equlibrium, y�.

https://doi.org/10.1371/journal.pone.0272600.g009
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Case 2: z = 1

The second special case is where there are no density-dependent effects acting on the parasite’s

fecundity (i.e., by assuming γ = 0). When z = 1,

Fðy; kÞ ¼ 1 � ð1þ
W1

2
Þ
� ðkþ1Þ

: ð17Þ

The relationship between Fðy; kÞ and y is shown in Fig 12, and we can see that Fðy; kÞ is a

non-decreasing function of y.
By substituting (17) into (5), we obtain

dy
dt
¼ mkW1ð1 � yÞ

kþ 1

k ½R0Fðy; kÞ � 1�

¼ mkW1ð1 � yÞ
kþ 1

k R0 1 � 1þ
W1

2

� �� ðkþ1Þ
" #

� 1

( )

:

ð18Þ

Since y = 0 and y = 1 are equilibrium points for model (18), by solving R0Fðy�z ; kÞ � 1 ¼ 0 for

y�z , we obtain

y�z ¼ 1 � 2
R0

R0 � 1

� �
1

kþ 1
� 1

2

6
4

3

7
5

� k

;

which exists when R0 6¼ 1; y�z is another equilibrium point for model (18).

Fig 10. The relationship between Fðy; k; zÞ and y by varying parameter k. Fðy; k; zÞ is zero almost everywhere as k! 0.

https://doi.org/10.1371/journal.pone.0272600.g010
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Theorem 2 Let W�z
1
¼ ð1 � y�zÞ

� 1
k � 1. The disease-free equilibrium y = 0 of model (18) is

always locally asymptotically stable (LAS). Moreover, if R0 < (>)1, y�z is LAS (unstable), whereas
y = 1 is unstable (LAS). A local bifurcation occurs at y = 1 whenever R0 = 1.

Proof. Let l̂z represent the eigenvalue of model (18). Then

l̂z ¼ m ðkþ 1Þð1 � yÞ
1

k � k

2

4

3

5½R0Fðy; kÞ � 1�

þ mkR0W1ð1 � yÞ
kþ 1

k F 0ðy; kÞ :

ð19Þ

At y = 0, l̂z ¼ � m < 0 since μ> 0, so y = 0 is LAS. For y = 1,

l̂z ¼ mkð1 � R0Þ

< 0 if R0 > 1) y ¼ 1 is LAS

> 0 if R0 < 1) y ¼ 1 is unstable

¼ 0 if R0 ¼ 1) y ¼ 1 is a bifurcation point:

8
>>><

>>>:

Fig 11. The comparison of the analytical solution (16) and the numerical solution of (5) around y = 0 as k! 0. All solutions, both analytical and

numerical, are eventually converging to zero whenever y0 < y�. Hence disease elimination is possible in this case.

https://doi.org/10.1371/journal.pone.0272600.g011
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For y ¼ y�z ,

l̂z

�
�
�
�
�
y¼y�z

¼ mðkþ 1ÞðR0 � 1Þ

"

1 � ð
R0 � 1

R0

Þ

1

kþ 1

#

:

Since μ, R0, k and

1 �

 
R0 � 1

R0

!
1

kþ 1
> 0 ;

then the sign of l̂zjy¼y�z
is determined by R0 − 1. Thus

l̂z

�
�
�
�
�
y¼y�z

> 0 if R0 > 1) y�z is unstable

< 0 if R0 < 1) y�z is LAS:

(

To validate Theorem 2, the dynamics of the model (18) are depicted in Fig 13 with arbitrary

k, R0 and initial values. In Fig 13(a) and 13(c), all trajectories of model (18) are converging to

either zero or y�z as t!1 for arbitrary R0 < 1. That is, both y = 0 and y ¼ y�z achieve local

asymptotic stability whenever R0 < 1. However, for R0 > 1, all solutions of model (18) are

approaching either y = 0 or y = 1 as t!1 and a separatrix in between the ω-limit sets of y = 0

and y = 1 exists since y�z is an unstable equilibrium point in this case. Moreover, these results

show that when there is no density-dependence effect acting on the parasite population—that

Fig 12. The relationship between Fðy; kÞ and prevalence, y.

https://doi.org/10.1371/journal.pone.0272600.g012
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is, even with the existence of one worm, there is a possibility for the worm to generate plenty

of eggs—and if R0 and the prevalence of infection at the initial stage are sufficiently high, then

STH infection persists and the entire population will theoretically get infected. If the initial

prevalence of infection is sufficiently low, there is a possibility that transmission will die out. In

general, this illustrates the importance of density-dependent effects in the regulation of both

parasitised and free-living infective worms.

Next, we approximate the solution of (18) around y = 0. By considering the limit y! 0, we

have ð1 � yÞ�
1
k � 1þ y=k, ð1 � yÞ

kþ1
k � 1 � y½ðkþ 1Þ=k� and

Fðy; kÞ �
kþ 1

2k
1 �

kþ 2

4k

� �

y
� �

y :

Up to Oðy2Þ terms, the expansion of model (18) around y = 0 is

dy
dt
¼ my

ðkþ 1ÞðR0 þ 2Þ

2k
y � 1

� �

: ð20Þ

Fig 13. The dynamics of the model (18) with arbitrary k, R0 and initial values. Parasite extinction is possible if the initial value of y is sufficiently low.

Otherwise, the disease will remain endemic.

https://doi.org/10.1371/journal.pone.0272600.g013
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The analytical solution of (20) is given by

yðtÞ ¼
2ky0

ðkþ 1ÞðR0 þ 2Þð1 � emtÞy0 þ 2kemt
; ð21Þ

where y0 is the initial value of y and the expansion of (20) is most accurate if

y < min
6k2

3kþ 2

�
�
�
�
�

1

k � 2

�
�
�
�
�
;

3k
2kþ 1

;

�
�
�
�
�

3k
k � 1

�
�
�
�
�

( )

� yagr2 ; ð22Þ

where k 6¼ {1, 2}.

The analytical (21) and numerical solutions of model (20) are depicted in Fig 14. By increas-

ing k, region (22) (in grey) gets larger. From this figure, it is demonstrated that both analytical

and numerical solutions are in good agreement, especially when the initial value y0 is suffi-

ciently close to zero and k is small. Nevertheless, for y0 in the neighbourhood of zero, these two

solutions eventually approach zero for arbitrary k and R0 values. In conclusion, the disease-

free equilibrium is locally asymptotically stable and the disease will die off whenever y0 is suffi-

ciently close to zero.

Fig 14. The comparisons of analytical (21) and numerical (18) solutions with arbitrary k, R0 and initial values around y = 0. Both analytical and

numerical solutions are eventually converging to zero.

https://doi.org/10.1371/journal.pone.0272600.g014

PLOS ONE A prevalence-based transmission model for soil-transmitted helminthiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0272600 August 25, 2022 21 / 28

https://doi.org/10.1371/journal.pone.0272600.g014
https://doi.org/10.1371/journal.pone.0272600


Stochastic prevalence model

To investigate further the dynamical behaviour around the disease-free equilibrium (y = 0), we

introduce stochastic perturbations into the deterministic model (5) and investigate how the

stochastic noise affects the dynamics of the model (5) around the disease-free equilibrium

(DFE). By adding demographic noise into model (5), a stochastic version of the prevalence

model (5) is given as follows:

dyðtÞ ¼ mk½1 � yðtÞ� 1 � ½1 � yðtÞ�
1

k

8
<

:

9
=

;
½R0FðyðtÞ; k; zÞ � 1�dt

þ ryðtÞdBðtÞ ;

ð23Þ

where ρ is the intensity of the Gaussian white noise and B(t) is Brownian motion.

The introduction of the noise term in (23) is motivated by the sample variance induced

through finite population effects. Such a term is derivable in the mean-field expansion from a

master equation approach, which we do not demonstrate here. Due to the population hetero-

geneity introduced by aggregation in STH (and other helminth) transmission models, this

term is will be accompanied by higher-order additional noise terms in the full expansion,

whose derivation we leave to future work.

The sufficient condition for parasite extinction is defined in the following theorem.

Theorem 3 Let Fmax ¼ Fðybp; k; zÞ. If R0 � 1=Fmax and ρ
2 > 2μk, then the solution of (23)

satisfies

lim sup
t!1

� mk �
r2

2
< 0 almost surely:

That is, model (23) predicts that the parasite will die out with probability one.
Proof. By Itô’s formula, we get

dðln yÞ ¼

2mkð1 � yÞ 1 � ð1 � yÞ
1

k

2

4

3

5½R0Fðy; k; zÞ � 1� � r2y

2y

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

dt

þ rdBðtÞ

� � mk½R0Fðy; k; zÞ � 1� �
r2

2

� �

dt þ rdBðtÞ ;

� mk �
r2

2

� �

dt þ rdBðtÞ ;

ð24Þ

where ð1 � yÞ 1 � ð1 � yÞ
1
k

h i
� � y and R0Fðy; k; zÞ � 1 � 0 if R0 �

1

Fmax
.

Integrating (24) from 0 to t yields

ln yðtÞ � ln yð0Þ þ mk �
r2

2

� �

t þ G1ðtÞ ; where G1ðtÞ ¼
R t

0
rdBðzÞ :
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Thus

lim sup
t!1

ln yðtÞ
t
� mk �

r2

2

� �

< 0 a:s: if r2 > 2mk :

Moreover,

lim sup
t!1

hG1;G1i

t
¼ lim sup

t!1

1

t

Z t

0

r2dz ¼ r2 <1

and, by the strong law of large numbers of martingales, lim supt!1 G1(t)/t = 0 almost surely

[38].

By selecting z = 0.96, μ = 0.5 and parameter values that fulfil the requirements of Theorem

3, the comparisons of numerical simulation of the stochastic (23) and deterministic (5) models

are depicted in Fig 15. For sufficiently small y0 values, we find that both numerical solutions of

the stochastic and deterministic models eventually converge to zero (see Fig 15(a) and 15(c))

and lead to the same conclusion: the infection will die out. However, both models produce

contradictory results whenever y0 is sufficiently large (see Fig 15(b) and 15(d)). The stochastic

model (23) predicts disease eradication, but the deterministic model (5) forecasts the

Fig 15. Comparisons of the stochastic (23) and deterministic (5) models with arbitrary k, ρ and y0 values. By choosing parameter values that satisfy

the conditions in Theorem 3, all solutions of the stochastic model (23) with arbitrary k and y0 eventually converge to zero. However, if y0 is sufficiently

large, the stochastic and deterministic models produce conflicting results. That is, solutions of the stochastic model approach zero, whereas solutions of

the deterministic model remain endemic.

https://doi.org/10.1371/journal.pone.0272600.g015
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persistence of the infection. Nonetheless, we can see that, if all the sufficient conditions under

which the infection will go extinct are satisfied, all solutions of the stochastic model (23) even-

tually converge to zero for arbitrary k, ρ and y0 values. These numerical results validate Theo-

rem 3.

Conversely, by choosing z = 0.96, μ = 0.5, R0 ¼ 2 > 1=Fmax and ρ2 < 2μk (which violate the

conditions of Theorem 3), we observe that, in Fig 16(b) in particular, the solution of the sto-

chastic model is fluctuating around the endemic equilibrium for small k and sufficiently large

y0 values. Thus disease extinction is not guaranteed if the conditions of Theorem 3 are violated.

Hence model (23) predicts that disease eradication will occur if R0 and k values are bounded

by 1=Fmax and ρ2/(2μ), respectively.

Discussion

Adapting the human helminth parasite transmission model with an infectious reservoir from

Anderson & May [23], we have developed a novel deterministic model to investigate the trans-

mission dynamics of STH infections in a human population, which focuses on the prevalence

of infection as an easily measurable epidemiological statistic. Where there is continuous expo-

sure to infection in the human population, no host demography changes and no intervention

has taken place, we described the existence of equilibria and their stability. Analytical results

Fig 16. Comparisons of the stochastic (23) and deterministic (5) models, with varying k, ρ and y0 values. By choosing parameter values such that

the sufficient conditions as in Theorem 3 are violated, not all solutions of the stochastic model (23) approach zero. For small k and sufficiently large y0

values, the solution of the stochastic model (23) fluctuates around the endemic equilibrium state (see (b)).

https://doi.org/10.1371/journal.pone.0272600.g016

PLOS ONE A prevalence-based transmission model for soil-transmitted helminthiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0272600 August 25, 2022 24 / 28

https://doi.org/10.1371/journal.pone.0272600.g016
https://doi.org/10.1371/journal.pone.0272600


are obtained by approximation to examine movement/dynamical trajectories around the vari-

ous equilibrium states. The predictions and behaviour of the simple prevalence-based model

match well with the more complex macroparasite-distribution models for arbitrary k, R0 and

initial values of prevalence. As such, the simplifications embedded in the model permit greater

analytical exploration.

Our theoretical work has potential applications in the real world, given current efforts to

control or eradicate STH infections in regions of endemic infection by mass drug administra-

tion and improvements in clean water supply and sanitation. The TUMIKIA project in Kenya,

for example, used several schemes for mass drug administration [31], but these could be tai-

lored to different regions, depending, for example, on the intensity of worm clumping.

The second derivatives around the equilibrium states (both stable and unstable) inform

how situations in the real world might behave as control measures intensify. The movement of

y and its implication are summarized in Table 2. In addition, we also discussed two special

cases: the limit of highly aggregated parasite distribution within human communities (k! 0),

and the absence of density-dependent effects acting on the parasite fecundity (z = 1). The for-

mer informs types of behaviour that might be observed when control actions restrict infection

to a few individuals who have been non-compliers to treatment. Targeting these individuals

could lead to transmission interruption, but identifying them may pose many challenges.

When aggregation of STH parasites in the human host population is low (i.e., when k is

large), the prevalence value at the endemic state y� increases. See Fig 1, as predicted by the neg-

ative binomial model of parasite distributions within host communities [23]. Such patterns are

recorded in large-scale epidemiological studies.

The eradication of parasite transmission in a defined human community, in the absence of

migration in and out of the community, is possible if the aggregation of STH parasites in the

host population is high. In other words, if only a few people in the population carry the vast

majority of STH infection, as is sometimes observed, it is possible to eradicate the infection

with highly targeted treatment of these few individuals. The challenge is of course to identify

these infected individuals, which may be costly in terms of implementing well-structured

monitoring and evaluation programmes.

The eradication of transmission is not always possible, particularly if we assume that there

are no, or limited, density-dependent effects acting on parasite fecundity (i.e., when γ = 0, it

follows that z = 1). For this case, STH infection will stay in the endemic state if the initial value

of prevalence is sufficiently large. Otherwise, the infection may die out. The clumping parame-

ter k and the initial value of prevalence have a significant influence on the likelihood of parasite

eradication.

Table 2. The movement of y and its implications.

Prevalence 0 < y < y� y� < y < y� y� < y < 1

Velocity Negative Positive Negative

Acceleration Increasing from negative values (around

y = 0) to zero and then to positive values

(around y�).

Decreasing from positive values (around y�) to zero

and then to negative values (around y�).
Increasing from negative values (around y�) to

zero and then to positive values (around y = 1).

Movement of

solution y
For y < y�, y moves towards y = 0 slowly,

but its movement is speeding up when it

moves sufficiently close to y = 0.

Solution y moves away from y� quicker and eventually

approaches y� with slower speed.

Solution y moves towards y� slowly from the

neighbourhood of y = 1, but its movement is

speeding up when it is approaching y�.
Implication The elimination of STH is possible if the

prevalence value can be suppressed below

y�.

STH infection remains endemic whenever y> y�.
Hence control strategies or treatment are required in

order to lower the prevalence or eradicate the disease.

Similar implications as in the case of y� < y < y�.

https://doi.org/10.1371/journal.pone.0272600.t002

PLOS ONE A prevalence-based transmission model for soil-transmitted helminthiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0272600 August 25, 2022 25 / 28

https://doi.org/10.1371/journal.pone.0272600.t002
https://doi.org/10.1371/journal.pone.0272600


To investigate the impact of stochastic perturbation in the transmission dynamics of STH

infection, especially around the disease-free equilibrium, stochastic noise was added into the

deterministic model (5). Sufficient conditions for the extinction of the infection were identi-

fied and the numerical solutions of the stochastic and deterministic models compared. The

stochastic model (23) predicts that disease extinction is certainly possible (even if y0 is large) if

R0 and k values are bounded by 1=Fmax and ρ2/(2μ), respectively.

The models analysed here have several limitations, which should be acknowledged. We

have made the following key assumptions: namely, there is continuous exposure to infection

by STHs (with a force of infection as in the Anderson and May model [23], which is constant

with host age), that no intervention has previously been applied, that the total human popula-

tion remains constant and that the dynamics of the infectious reservoir of eggs or larvae oper-

ate on a sufficiently fast timescale so that the reservoir is in quasi steady state.

This work is a preliminary study of the properties of prevalence-based macro-parasite mod-

els to help explore the transmission dynamics of STH infection in a human population by con-

sidering continuous infection using prevalence of infection as the most easily measurable

epidemiological quantity. Most WHO guidelines for STH control and monitoring and evalua-

tion programmes employ prevalence of infection as the key outcome variable. The intensity of

infection is much more difficult to measure reliably in field-based studies. In future work, the

prediction abilities of the prevalence-based model described in this paper could be improved

by considering age structure in the human population. This would permit examining the

application of interventions and assessing the effectiveness of different control strategies where

treatment with drugs or behavioural change varies between different age groupings such as

pre-school-aged children, school-aged children and adults. These three age groupings are

commonly used to define who should be treated in MDA programmes. As control efforts

intensify, human movement patterns will become important, given spatial heterogeneity in

infection levels and drug coverage, as observed by health-intervention units. As such, spatially

structured models are also an important expansion in future research for the prevalence-based

model structures outlined in this paper.
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