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Abstract

Modular construction is considered as a preferred construction method over conventional

construction due to a number of benefits including reduction in project completion time,

improved environmental performance, better quality, enhanced workers’ safety and flexibil-

ity. However, successful implementation of modular construction is hindered by various risk

factors and uncertainties. Therefore, it is imperative to perform a comprehensive risk

assessment of critical risk factors that pose a negative impact on the implementation of

modular construction. Moreover, there is also a relatively less rate of modular construction

adoption in developing countries, highlighting the need to focus more on underdeveloped

regions. This study aims to propose a risk assessment framework for identification, evalua-

tion and prioritization of critical risk factors affecting the implementation of modular construc-

tion in Pakistan. 20 risk factors were identified from previous literature which were then

evaluated to shortlist the most significant risks using Fuzzy Delphi. The most significant risk

factors were then prioritized using a novel Full-Consistency Method (FUCOM). The results

specified ‘Inadequate skills and experience in modular construction’, ‘Inadequate capacity

of modular manufacturers’ and ‘Inability to make changes in design during the construction

stage’ as top three critical risks in the implementation of modular construction. This is the

first study to propose a risk assessment framework for modular construction in Pakistan.

The results of the study are useful to provide insights to construction industry practitioners in

highlighting and eliminating risks involved in modular construction planning and execution.

Introduction

Construction sector plays a crucial role in the progression of a country’s economy. One of the

major roles of construction sector is to fulfil the infrastructure and housing needs of countries.

Currently, cast in-situ or on-site construction is the most commonly used construction

method across the globe. However, this traditional method poses various challenges, a few of

them being on-site safety concerns, longer project completion time, cost over-runs, decreased
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quality, increased construction waste, inefficiency and environmental sustainability concerns

[1–3]. Many developed countries are now shifting their focus towards innovative construction

techniques to resolve the aforementioned issues in conventional construction method. In this

regard, off-site construction plays a significant role in resolving the current issues in conven-

tional on-site construction. It refers to a process in which the building elements and structures

are manufactured in off-site locations and then transported to construction site for final

assembly and installation [4, 5]. According to the percentage of work performed in a factory,

off-site construction can be categorized into four types namely component subassembly, Non-

volumetric preassembly, Volumetric preassembly, and Modular construction [6, 7]. Modular

construction is the most complete form of off-site construction in which 80–85% of work

involved in the construction stage is carried out in a factory whereas the remaining tasks such

as excavation, laying of foundation and module installation are performed at the construction

site [8]. The benefits associated with modular construction are workflow continuity [9], reduc-

tion in construction waste [10, 11], reduction in project completion time [12, 13], reduction in

carbon emissions [14, 15], reduction in number of on-site contractors and improved workers’

safety [16, 17].

The relative advantages of modular construction over traditional construction have led to

its increased adoption in many countries. Australian construction firms have identified modu-

lar construction as a key vision for the improvement of current state of construction industry

[18, 19]. In UK, the percentage of homes built from modular prefabricated methods is around

30% whereas in Scotland and Ireland, the rate of prefabrication method of construction is

expected to increase up to 70% in the coming years [20, 21]. Moreover, in Asia, Japan is the

leading practitioner of off-site modular construction with construction firms producing

approximately 70,000 prefabricated homes every year. Similarly, Malaysian construction firms

have also given importance to the use of modular construction practices. Industrialized Build-

ing System (IBS) is a terminology commonly used in Malaysia, which is defined as a construc-

tion method in which elements of a building are manufactured in a factory environment, and

then transported and assembled at on-site, thereby minimizing additional site-work [22]. In

China, conventional building construction accounts for a huge amount of construction waste

and carbon footprint. With the application of off-site construction methods, 74% reduction in

construction waste and 34% reduction in carbon emissions can be achieved [11, 23].

Considering the increased adoption of modular construction due to its well documented

benefits specifically project completion time, cost and construction waste reduction [6, 10, 12],

other less developed countries can also use it as a sustainable alternative over conventional

construction. However, the adoption and implementation of modular construction on a large

scale is a complicated process associated with multiple risks and uncertainties. For less devel-

oped countries, modular construction is an innovative construction method with a unique

scope, steps and interfaces [24, 25]. These unique characteristics are associated with various

complexities which give rise to potential risks hereby posing novel challenges to decision mak-

ers. For example, the supply chain of modular construction consists of multiple upstream and

downstream segments which requires effective coordination among the involved project par-

ticipants including developer, client, main contractor, sub-contractors, designer, architect,

manufacturer and transporter of modular building [26]. The increased number of supply

chain segments as well as the complexity of material and information flow may result in dis-

ruptions which can ultimately led to decline in schedule performance and project delays [27].

Modular building is an engineer-to-order product which means that shortages cannot be com-

pensated by other third-party manufacturers [28, 29]. Furthermore, the transportation of

modular components to site require special vehicles for transportation and cranes for assem-

bly. The restrictions on the size and weight of modular components puts constraints on the
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delivery of components to construction site [30]. From an economic point of view, the initial

capital cost for implementing modular construction is high and uncertainty in demand creates

a risk of delay in achieving return on initial investment [31]. Due to the novelty of modular

construction in developing countries, lack of experience and skilled workforce is also a poten-

tial risk in the implementation of modular construction [32].

The aforementioned risks eventually pose detrimental impacts on the schedule perfor-

mance, quality, safety and the productivity of modular construction projects. Therefore, it is

necessary to risk assessment of potential risks in order to reduce their negative impacts on con-

struction projects [33]. Developed countries have vast experience in handling modular con-

struction risks as a consequence of their failures and success in the construction industry. On

the contrary, developing countries have inadequate experience in this field; hence, the impact

of risks on the implementation of modular construction in developing countries is more sig-

nificant as compared to developed countries. The identification and prioritization of risks

based on their impact on construction projects can help practitioners recognise the most criti-

cal risks and subsequent risk management strategies can be formulated for the mitigation of

identified risks. Previous literature on modular construction risks in the context of developing

countries is somewhat limited. A study carried out in Malaysian construction industry assessed

various risks in modular construction from a contractor’s point of view [34]. The study identi-

fied financial constraints, unresolved contractual issues, lack of equipment and skilled labour,

and defective designs as the topmost risks in modular construction from contractors’ percep-

tion. Similarly, another study modelled risks in the transition towards modular construction

in China to determine the mutual influence of identified risks [35]. The study highlighted

insufficient policies and regulations, lack of expertise and knowledge in modular construction

techniques, low standardization and dominance of traditional construction as the major risk

factors.

The construction industry of Pakistan faces problems in the completion of construction

projects on time resulting in project delays [36, 37]. In addition to this, cost overruns, quality

issues and inability to meet project success factors also have a damaging impact on project

completion [38, 39]. The offsite modular construction practices have proven their worth in

terms of quicker project delivery and better quality as compared to conventional construction

[6]. Though, very limited applications of modular construction are witnessed in the Pakistani

construction industry. A research study highlighted various benefits and challenges in the

implementation of offsite construction in Pakistan from the perspective of contractors and

consultants [40]. However, a comprehensive risk assessment framework in the implementa-

tion of modular construction is missing. To fulfil this knowledge gap, this study aims to iden-

tify and evaluate critical risks in the implementation of modular construction in Pakistan. The

identified risks are then prioritized based on the criticality of each risk when compared with

each other. The most significant risks can then be mitigated by proposing appropriate strate-

gies and policies can be formulated to assist practitioners and decision makers in the promo-

tion of modular construction on a large scale. Since modular construction in Pakistan is in its

preliminary phase, a comprehensive risk assessment framework can guide potential modular

construction practitioners about how to effectively tackle potential risks and uncertainties aris-

ing during modular construction implementation. Furthermore, this research will also con-

tribute to the academic literature by providing a detailed literature review and risk analysis of

modular construction in developing country’s perspective. In this way, future studies can

incorporate important findings of this research as a benchmark for risk prioritization and

developing subsequent risk mitigation strategies in offsite modular construction. The remain-

ing study is structured as follows: The next section i.e. Literature review describes an overview

of modular construction and literature review on critical risks in modular construction. In the
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following section i.e. Methodology, the identified risks from literature review are then vali-

dated in Pakistani context through experts’ opinion and a questionnaire survey is used to

examine the risks. Afterwards, the ranking of most critical risks is performed and results are

described in Results and Discussion Section. Finally, in the Conclusion section, the study is

concluded by highlighting certain limitations in the study and potential future research areas.

Literature review

Overview of modular construction

Modular construction is an innovative construction method that has revolutionized the entire

construction industry by changing the way projects are planned, designed, implemented and

managed [25, 41]. It is defined as an innovative construction method in which three-dimen-

sional modular units of a building are manufactured and assembled in a factory, and trans-

ported in sections to the project site for final installation [39]. Due to substantial modifications

in the design, engineering, construction and delivery of building projects, modular construc-

tion is termed as an innovation in construction [42]. The stages in the modular building con-

struction process include design, legal approvals, procurement of construction materials,

module fabrication, transportation of modular components to project site and on-site installa-

tion [43]. Owing to the manifold stages involved, modular construction supply chain is highly

fragmented where several stakeholders have their own values, goals and objectives. Normally,

a client contracts designer and engineers to develop a modular building design considering

various factors such as reliability, durability, safety, constructability and transportability [6].

The modular building design is then forwarded to manufacturer and modules are fabricated in

a controlled factory environment according to engineering specifications [44]. After fabrica-

tion, the modules are either stored temporarily in warehouses or shipped directly to project

site for installation [26]. Finally, the installation process is carried out by sub-contractors at the

project site according to assembly plan and layout.

The Literature on modular construction is increasing from the last few years considering its

advantages over conventional construction. Research has proven that it is an environmental-

friendly and cleaner approach. A study found that the implementation of modular construc-

tion has resulted in less pollution, lowered business disruptions and decreased noise related

aspects of conventional construction [16, 45]. Similarly, another study reported that the

increased utilization of modular construction has resulted in a noteworthy decline in the con-

struction waste [46]. Conventional construction methods primarily drive various types of pol-

lution, which subsequently result in negative consequences, one of them is the climate change

[47]. Modular construction as an alternative construction method will leverage environmental

sustainability and consequently lead towards the prevention and mitigation of climate change.

To support this claim, a case study in China identified that 32 kg/m2 of greenhouse gas emis-

sions (GHG) are reduced by the implementation of modular construction [48]. Moreover, a

study carried out in Hong Kong identified that 52% reduction in construction waste has been

achieved by increased level of prefabrication [49]. This signifies that wider adoption of modu-

lar construction can resolve the ever-rising issue of environmental sustainability. A similar

research analysed and compared the amount of waste generated from modular construction

compared to the conventional caste-in-situ construction. The results revealed that 83.2% con-

struction and demolition waste reduction was achieved in the case of modular construction

[50].

Along with the environment related benefits of off-site construction, Similar studies have

reported other important benefits of using off-site construction methods. A research study

conducted in UK perspective identified that standardization and industrialization in
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construction industry must be increased in order to reduce project completion time, reduce

the total cost of the project and to enhance the quality of the final product [5]. This was also

supported by another study, which highlighted that modular construction enhances produc-

tivity [51]. A study focusing on performance assessment of modular buildings in Australia

highlighted that a 25% decrease in labour cost and a 40%-time reduction is achieved in the

construction phase of modular vs conventional building construction [52]. A review study on

IBS implementation in Malaysian perspective also highlighted reduced waste, improved qual-

ity, easy installation, reduced waste on construction sites, flexibility, less labour requirement

and fast completion time as the key advantages of modular construction [53]. Workplace

safety is another important aspect in the construction industry due to hazardous working con-

ditions. Apart from time reductions and quality enhancement, modular construction also

promises a pleasing working environment for construction workers [54, 55]. Another study

examined the workplace safety issues in conventional and modular construction methods and

found that relatively less injuries and fatalities have been reported in modular construction as

opposed to conventional method of construction [56]. This clearly supports that modular con-

struction methods improve workplace safety.

Critical risk factors in modular construction

Previous literature provides useful evidence on the presence of risk factors in various construc-

tion projects. Though some risk factors are mutual in several construction projects, other risk

factors are different for every construction project due to different requirements such as

resources, technologies and management skills [57]. Similarly, projects involving modular

construction method have specific risks. Modular construction requires significant amount of

initial investment which has been highlighted in several studies [6, 18, 55, 58]. This initial

investment incorporates various costs such as cost of land, factory, equipment, machinery and

labour etc. Due to fragmented and interdependent segments in the supply chain, high level of

integration and coordination is required for successful project delivery. The complexity of sup-

ply chain in modular construction is subjected to risk of ineffective coordination among vari-

ous project participants, leading to design defects, change orders, inefficiency and schedule

delays [9, 26, 59].

Stakeholders involved in the modular construction projects are also from diverse back-

grounds with each having own set of value system and objectives. Unlike traditional construc-

tion where all stakeholders mutually transfer project risk to a client, project participants in

modular construction are amalgamated into a single market hence responsible for steady proj-

ect delivery [60]. Due to the diversity of stakeholders, conflict of interest is a significant risk

which may affect the quality and performance of modular projects. Another important risk is

the limited expertise and experience in modular construction, highlighted in various research

studies [24, 61–64]. Limited expertise can result in problems such as poor design, manufactur-

ing, assembly, installation and erection practices [65]. Moreover, lack of experience can also

result in various conflicts due to poor coordination between designers and manufacturers in

the preliminary stages of construction, problems during production and schedule delays [66].

Modular construction being a novel construction approach in various countries lacks

proper design codes and standards [35, 67, 68]. This carries a since risk since implementing a

novel approach in the absence of regulatory guidance and policies may result in financial loss.

Lack of government support is also a significant factor since many countries have government

owned construction firms as clients. In countries such as Hong Kong, China, Australia, Malay-

sia, and UK, government plays a crucial role in setting policies and future plans for promotion

of modular construction as well as providing concessions and remittances to small and
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medium sized firms [18, 63]. In the absence of government support, potential risks such as dif-

ficulty in acquiring planning approvals and low market demand can restrict implementation

of modular construction [35].

Other important risk factors affecting the implementation of modular construction are

transportation constraints [45, 46, 55, 58], change order due to defective design [9, 34, 69],

complexity of modular building design [34, 70], unskilled labour [67, 71] and technology

incompetence [14, 46, 65]. A research study modelled the key risks affecting cost and schedule

performance of modular construction and showed that poor logistics, delayed design changes,

inept scheduling, contractual risks and inexperienced laborers are the key risks influencing

modular construction cost and schedule performance [72]. Similarly, a recent research study

identified construction cost, inadequate warehousing capacity and end-user preferences as the

key risk factors pertinent to the implementation of modular construction [73].

While previous studies have highlighted individual risks, few studies have made an attempt

to prioritize risk factors. A study was carried out in identifying and prioritizing various risks

influencing time and cost performance of modular construction projects in Canada using

Analytic Hierarchy Process (AHP) and simulation [69]. The limitations of the study are its

specificity to Canadian construction industry as well as narrow focus on project objectives

(time and cost). Another study identified and prioritized risks in IBS implementation in China

[65]. A similar study was carried out in Malaysian construction industry context for identifica-

tion and prioritization of risk factors [74, 75]. Both studies being region specific and focusing

more on barriers than risks depict a limitation in studies. A study focused on cost elevation

risk factors in korean modular construction industry [64]. However, the scope of this study

was also limited to Korea, hence not applicable in other countries. In the quest of a decision

support system for identifying, prioritizing and mitigating risk factors prevalent in modular

construction, a research identified and prioritized 29 risk factors using fuzzy synthetic model-

ling [76]. However, the research generalized the risks and it is imperative to understand the

sensitivity of risk factors based on objectives, locations, project types and countries. Hence,

bespoke research studies are essential in determining the critical nature of risk factors specific

to a project or location. A study modelled the risk factors in the design phase of modular con-

struction using experts reviews from international MIC experts and evaluated the data using

statistical analysis [77]. However, the study was limited to the design phase and did not take

into account the construction, transportation and assembly related risk factors. Similarly,

another research by Wuni et al prioritized critical risks in the assembly phase of modular con-

struction projects by introducing an index for computing risk severity [78]. The research gave

important insights into the onsite assembly related risk factors; however, the research could

not take into account the other phases of modular construction project. Moreover, risk factors

prevalent during the production phase of modular construction were also identified in a

research study [79]. Though the study signified risks in an important supply chain function, it

fails to take into account the risk factors in other segments of the modular construction supply

chain. A comprehensive and systematic literature review on modular constructions risks was

carried out which identified and prioritized critical risks [60]. These risks were generic mean-

ing that they are applicable in various geographic context but the prioritization was performed

using frequency of occurance. The study lacks a detailed evaluation and ranking of risks based

on expertise and knowledge of industry practitioners.

After a detailed evaluation of previous literature in modular construction projects, it can be

seen that the research studies are either focused on a specific phase of modular construction or

the identified risk factors are generic and require bespoke studies considering region, location,

project objectives. There is also a need of a comprehensive risk assessment framework that is

applicable across multiple offsite construction projects. Moreover, no existing study up to date
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has evaluated modular construction related risks in the Pakistani construction industry.

Hence, this study will provide a comprehensive framework for identification, evaluation and

prioritization of critical risks in modular construction implementation in Pakistan.

Table 1 below enlists the critical risk factors shortlisted after a rigorous literature review

and experts’ analysis. The entire process of shortlisting and selection of risk factors has been

explained in the subsequent section.

Research methodology

This study uses a combination of qualitative and quantitative methods to identify and priori-

tize the critical risks arising in the implementation of offsite modular construction. A combi-

nation of both qualitative and quantitative research methodologies can prove vital in gaining

insights and generating reliable and valuable results as suggested by [87]. The first step involves

a detailed review of peer-reviewed articles in international journals for identifying the risks

associated with the implementation of modular construction. The identified risks from litera-

ture are then submitted to a panel of experts for validation of risks in Pakistani context. Since

there are various risks involved in construction projects and not all of them are critical; it

requires a shortlisting of the most significant risks for further evaluation. For this purpose,

group consensus can be gained from experts regarding the most critical risk factors. Fuzzy Del-

phi method is used in this study for shortlisting the most significant risk factors through group

decision. Finally, the most critical risks are then prioritized using a novel Full Consistency

Method (FUCOM). A criticality index for each risk is calculated which is equal to the priority

weight obtained from FUCOM analysis and the risks are then prioritized on the basis of high-

est to lowest criticality index. The description of each methodological step is further illustrated

in the following sections below.

Table 1. Critical risks associated with the implementation of modular construction.

S. No Risk Factor Reference

1. High initial investment [6, 59, 62, 66]

2. Difficulty in attaining return on initial investment and longer break-even period [49, 65, 71]

3. Poor coordination among multi-interface [6, 57, 80]

4. Complex Supply chain and Stakeholder composition [9, 26, 68, 81]

5. Inability to make changes in design during the construction stage [8, 45, 55, 65, 82]

6. Change orders due to defective design [60, 64, 69, 70]

7. Lack of appropriate design codes and standards [65, 71, 83]

8. Poor government support and restrictive regulations [35, 60, 67]

9. Poor supply chain integration [45, 60, 84, 85]

10. Inadequate skills and experience in modular construction [24, 61, 66]

11. Skepticism and conservative attitude of terminal user [55, 58, 65]

12. Transportation restraints [39, 59, 68, 86]

13. Inept Scheduling [26, 27, 57, 60]

14. Lack of quality monitoring systems [63, 65]

15. Requirement of skilled labour [68, 71, 81]

16. Damage of modular components during transportation to building site and installation [18, 46, 65]

17. Complexity of modular building design [34, 59, 60, 70]

18. Technology incompetence [46, 65]

19. Delay in modules delivery to building site [27, 83, 85]

20. Inadequate capacity of modular manufacturers [35, 45, 60, 66]

https://doi.org/10.1371/journal.pone.0272448.t001
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Step 1: Identification of modular construction risks from literature review

The first step involved a systematic literature search for identifying critical risks in modular

construction targeting only English language peer-reviewed articles in international journals.

Construction Engineering and Management (CEM) databases included in this search are Sco-

pus, Web of Science, Elsevier, ASCE library, Emerald insight, and Taylor & Francis. The key-

words used for the retrieval of relevant articles are: “risks”, “barriers”, “offsite construction”

and “modular construction”. The search results generated a list of more than 120 articles in

more than 30 journals. The articles were then checked for duplication and repetition of papers,

after which the abstracts and titles of resultant papers were examined to ensure that the content

of the articles was relevant to the objectives and scope of our research. The final list of papers

selected for this study are 35 articles in 22 journals. The top three journals with most research

articles are: Journal of Cleaner Production (8), Construction Management and Economics (5)

and Automation in construction (3). After a detailed evaluation of previous literature, no rele-

vant study was found in the context of Pakistan. Therefore, this study relies on generic risk fac-

tors that are specific to modular construction highlighted in previous studies. These risk

factors are then subjected to a validation process to confirm the applicability of identified risks

in a particular geographic context.

In the preliminary stage, a total of 24 risks were identified and a questionnaire was

developed which was then scrutinized through discussions with a panel of experts for fur-

ther improvements in the list of identified risks considering the background of Pakistani

construction industry. Expert sampling, a subset of purposive sampling was used for short-

listing the audience for research. Relevant work experience of greater than or equal to five

years was considered as the inclusion criteria for shortlisting of the experts for study.

Large-scale implementation of modular offsite construction is not prevalent in Pakistan;

therefore, the experts were relatively limited. The initial panel comprised of 3 experts from

industry, all working in various offsite prefab and modular construction companies and 2

experts from academia having research on offsite construction. Moreover, all experts have

more than 5 years of experience which is an important criterion for the selection of experts.

The experts provided positive and valuable feedback regarding the questionnaire design

and suggested minor improvements in the questionnaire. After the validation process, a

total of 20 risk factors were finalized for further analysis. The list of finalized risk factors is

shown in Table 1.

Step 2: Fuzzy Delphi method

The classical Delphi method was introduced by Dalkey and Helmer [88] which is a survey

method based on opinions from a group of experts through an iterative and controlled feed-

back process until all experts agree on a single point or decision under consideration [89].

However, in real life scenario, the expert opinions in Delphi method cannot be precisely con-

verted and interpreted in numerical values [89]. Moreover, the modelling of real-life situations

using crisp numerical values is insufficient due to the uncertainty, imprecision, vagueness and

subjectivity involved in human judgements [90]. To encounter this issue, Fuzzy set theory pro-

posed by Zadeh [91] was integrated with Delphi method to develop a new Fuzzy Delphi

method (FDM) to improve the outcome in terms of better precision and reduced uncertainty

in the decision making [92].

Previous studies in risk assessment have utilized FDM in the identification of critical risks

in different contexts [93–96]. A research study made use of the FDM in barriers to sustainable

practices in solid waste management [97]. The methodology utilized qualitative information

obtained from waste management experts and shortlisted 44 critical barriers out of 146
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barriers to sustainable practices. Another study identified critical risks in worn-out building

structures during an earthquake and ranked the risks according to their probability of occur-

rence utilizing FDM [98]. During the outbreak of COVID-19, a research in India identified

critical safety risk factors arising in hospitals among health workers [99]. The research used

FDM to identify 15 safety risks whereas the hospitals were ranked based on those risk factors

using a combination of Fuzzy AHP and Fuzzy TOPSIS. Researchers have also used FDM in

risk management of supply chains. One such study modelled risks arising in different seg-

ments of Halal supply chain using a combination of FDM and DEMATEL approach [100].

The risks were identified via FDM whereas the prioritization as well as cause-effect study was

carried out via DEMATEL to study interrelationship among risks. A similar study used FDM

for the purpose of identifying factors that are critical in supplier selection considering a green

sustainable supply chain [101]. The research used qualitative information in the form of expert

opinion and converting it into numerical form, shortlisting 25 essential factors out of 58.

Another research evaluated risks in telecommunication industry of India, identifying most

important risks via literature review and FDM, whereas Interpretive Structural Modelling

(ISM) was used in combination with FDM to analysis the interrelationship among critical

risks [102]. FDM has also been used in the construction industry perspective, a study

highlighted major risks arising on construction sites using FDM in combination with DEMA-

TEL to examine cause and effect of risk factors [103]. A similar research examined the occupa-

tional health and safety (OHS) risks associated with green building construction projects

[104]. The study employed FDM in combination with Best-Worst method (BWM) in order to

enlist and rank safety risk factors. Also, a research identified 32 risks from Project Manage-

ment Body of Knowledge (PMBOK) and finalized 17 critical risk factors via Fuzzy Delphi

method to develop a hybrid qualitative and quantitative risk evaluation framework under

uncertainty [105]. A study in offsite construction perspective developed a risk assessment

model for identifying and ranking risks arising in the implementation of Building Information

Modelling (BIM) in modular construction projects [106]. The research combined FDM with

DEMATEL approach to classify and rank risk factors in BIM implementation in offsite modu-

lar construction projects.

Considering the applications of FDM in risk assessment as well as construction industry,

this research recommends the selection of FDM as a suitable method for risk assessment of

modular construction projects. The steps involved in the FDM are given below:

1. Identification of the possible risks relevant to this study

In this study, the possible risks pertaining to the implementation of modular construction

were identified through literature review and validation of experts as shown in Table 1.

2. Collection of opinions from experts

After the identification of risks, a suitable number of experts are invited and asked to deter-

mine the importance of a particular risk factor based on its impact on the implementation

of modular construction. A questionnaire is used to obtain the responses of experts in the

form of linguistic variables such as ‘Very High’ ‘Very Low’ etc. These linguistic variables are

then converted into corresponding fuzzy numbers using a scale shown in Table 2.

Moreover, triangular fuzzy sets have been used to covert linguistic variables in numeric

form.

3. Determination of experts’ group decision weights

To determine the experts’ group decision, the model developed by Hsu et al [89] has been

used in this study.

The formula for converting individual responses into a group decision is described below:
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If the significance of a risk factor ‘m’ assigned by expert ‘l’ of ‘n’ experts is Dlm = (alm, blm,

clm) where (l = 1,2,3,. . .,n) and (m = 1,2,3. . .,k), The fuzzy number corresponding to group

decision of risk factor ‘m’ is Dm = (am, bm, cm) where (m = 1,2,3. . .,k) among which,

am ¼ Minl almf g ð1Þ

bm ¼
1

n

Xn

l¼1
blm ð2Þ

cm ¼ Maxl clmf g ð3Þ

4. Defuzzification

The weights obtained from step 3 for each risk factor are defuzzified using center of gravity

method to obtain crisp values Sm for each risk. The formula for defuzzification is given

below:

Sm ¼
amþ bmþ cm

3
; m ¼ 1; 2; 3 . . . ; kð Þ ð4Þ

5. Identification of important risk factors

Finally, the most important risks are determined through a comparison of crisp values of

each risk factor obtained from step 4 with a threshold value “μ”. The value of μ is calculated

by taking the average of weights of all risk factors’ Sm weight. The following criteria is used

for the selection and rejection of a risk for further analysis:

If Sm� μ then the risk factor “m” is selected

If Sm < μ then the risk factor “m” is rejected

Step 3: Full Consistency Method (FUCOM)

The FUCOM is a novel multi-criteria decision-making (MCDM) method developed by

Pamučar, Stević, and Sremac [108] for determination of criteria weights through pairwise

comparison of criteria. FUCOM has many applications and has been applied by researchers in

recent research studies. A research determined and prioritized the driving factors associated

with cryptocurrency investments using a FUCOM-FB model [109]. The methodology

Table 2. Linguistic scale.

Linguistic variable Fuzzy number

Very Low (0, 0, 0.1)

Low (0, 0.1, 0.3)

Medium Low (0.1, 0.3, 0.5)

Medium (0.3, 0.5, 0.7)

Medium High (0.5, 0.7, 0.9)

High (0.7, 0.9, 1.0)

Very High (0.9, 1.0, 1.0)

Source: [107]

https://doi.org/10.1371/journal.pone.0272448.t002
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developed a comprehensive decision support framework that can be utilized by investors, pol-

icy makers and regulators in block chain technology implementation. A research used Fuzzy

FUCOM model in the ranking of demand management measures in transportation system,

considering Istanbul urban mobility system as a case in point [110]. Under uncertain condi-

tions, the model helped managers in assessing the demand management measures based on

pairwise comparisons generating accurate and credible results. Fuzzy FUCOM in combination

with Fuzzy weighted sum method (WSM) was used for developing a sustainability framework

in farm tourism, whereby Fuzzy FUCOM allocated priority weights to important sustainability

indices whereas Fuzzy WSM calculated the composite score [111]. The utilization of proposed

methodology generated sustainability indices, that can be utilized for contrasting different

sites’ performance, recognizing critical hotspots and benchmarking for best practices. A simi-

lar research utilized a hybrid Fuzzy MCDM framework for sustainability assessment of sewage

sludge-to-energy situation [112]. Fuzzy FUCOM was used to perform pairwise comparison of

important criteria whereas GRA, PRSRV, TOPSIS techniques ranked best alternatives under

the scenario. Another study identified cold supply chain resilience strategies to combat

COVID-19 via literature review and ranked the strategies used a fuzzy FUCOM model [113].

The results of study gave important insights to top most effective strategies for tackling risks

associated with COVID-19 in a cold supply chain. In a recent study, a hybrid Fuzzy

FUCOM-QFD model was implemented in the prioritization of resilient strategies to combat

the spread of COVID-19 in Pakistan’s healthcare sector [114]. The study developed a compre-

hensive framework that can be used by policy makers and health practitioners in determining

the best strategies to combat pandemics in the healthcare sector. A hybrid Fuzzy FUCOM-VI-

KOR-QFD has also been utilized in developing a risk assessment framework for electric power

sector of Pakistan [115, 116]. The criteria weight coefficients were determined by Fuzzy

FUCOM whereas Fuzzy VIKOR ranked the risks according to the weight coefficients obtained

from FUCOM. The mitigation strategies for risks were then prioritized using a Fuzzy-QFD

model. The hybrid Fuzzy MCDM model provided accurate results under uncertain

conditions.

The applications of FUCOM in various research areas make it a suitable methodology for

implementation in the current research. There are other similar MCDM methods similar to

FUCOM such as AHP and BWM that evaluate factors based on pairwise comparisons.

According to a research study [109], Analytic Hierarchy Process (AHP) is most widely used as

a risk assessment tool for prioritization of construction risks. However, this method suffers

from drawbacks such as too many pairwise comparisons and redundancy in comparison of

risk factors, causing errors in judgements. This problem is effectively addressed in the novel

FUCOM method such that it requires less pairwise comparisons equal to n-1 where “n” is the

number of risks as criteria and also sets certain constraints for the determination of optimal

values of risk factors weights [108].

Also, comparing BWM with FUCOM, BWM requires a pair of comparison vectors for eval-

uation of criteria, whereas FUCOM only requires one vector that results on the reduction in

number of comparisons. Moreover, FUCOM also calculates an error value DFC (deviation

from full consistency) for the criteria weight, thereby providing a validation of the model

[117]. Taking into consideration the advantages of FUCOM over other MCDM methods

including AHP and BWM, this research justifies the selection of FUCOM for risk assessment

of modular construction projects in Pakistan.

In this study, the critical risks in modular construction are considered as ‘criteria’ in

FUCOM and the weights of criteria will denote the criticality index of risk factors. The steps

involved in the methodology are described below:
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1. Ranking of criteria

The first step involves the ranking of criteria according to the level of significance of each

criterion. The ranking is performed by a group of experts who possess extensive knowledge

and experience in their respective field. Considering the critical risks as criteria, the set of

risks CR = {CR1,CR2,CR3,. . .,CRn} sare then arranged in the increasing order of their rank

as follows:

CRj 1ð Þ > CRj 2ð Þ > CRj 3ð Þ . . . > CRj Rð Þ ð5Þ

Where R denotes the rank of the observed risk factor. If two risk factors have the same level

of significance, then the “>” sign is replaced by “=“ in expression (5).

2. Determination of comparative priority

Comparative priority can be defined as the advantage of criterion/risk CRj(R) rank over cri-

teria/risk CRj(R+1) rank. There are two methods for the calculation of comparative priorities

i.e. the relative advantage of risk factor CRj(R) over risk factor CRj(R+1).

a. The first method deals with precise values where criteria/risks have absolute values/or

weights. In this case the comparative priorityȹ R
Rþ1

of criteria/risk CRj(R) over CRj(R+1) is

calculated by dividing the absolute value/weight of criteria/risk CRj(R) by the absolute

value of criteria/risk CRj(R+1). In this method, the decision makers compare the criteria/

risks on the basis of their internal knowledge, hence the comparative priorities are com-

puted based on subjective preference.

b. The second method allows the use of a pre-defined scale when precise values for criteria

cannot be determined. In this case, the decision makers first compute the significance of

each criterion ωR in expression (5) by comparing all the criteria, one-by-one with the

most significant (top ranked) criteria. The significance of top-ranked criterion with

respect to itself will be equal to 1. The significance of criteria is computed via a prede-

fined scale i.e. ωR 2 [1,9]. On the basis of significance of criteria and equation
ωR

ωRþ1
¼

ȹ R
Rþ1

the comparative priorities can be calculated.

Hence the comparative priority vectors of all criteria are obtained as shown below:

ȹ ¼ ȹ1
2
; ȹ2

3
; ȹ3

4
;
. . . ; ȹ R

Rþ1

� �
ð6Þ

3. Calculation of weight coefficients of criteria

In this step, the weight coefficient values of criteria are calculated (w1, w2, w3, . . ., wn) T.

The following two conditions must be satisfied for accepting the values of weight coeffi-

cients.

Condition 1: The ratio of weight coefficients must be equal to the comparative priority of

the criteria under observation ȹ R
Rþ1

� �
i.e.

wR

wRþ1

¼ ȹ R
Rþ1

ð7Þ

Condition 2: The condition of mathematical transitivity must be satisfied among the values
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of criteria weights i.e.

wR

wRþ2

¼ ȹ R
Rþ1
� ȹRþ1

Rþ2
ð8Þ

Based on Eqs (7) and (8), the final model for determination of criteria weights can be writ-

ten as follows:

min w

s.t.

wj Rð Þ

wj Rþ1ð Þ

� ȹ R
Rþ 1

�
�
�
�
�

�
�
�
�
�
� w; 8j

wR

w Rþ2ð Þ

� ȹ R
Rþ1ð Þ
� ȹRþ1

Rþ2

�
�
�
�

�
�
�
�
� w; 8j ð9Þ

Xn

j¼1
wj ¼ 1 ; 8j

wj � 0; 8j

Where χ denotes the minimum DFC value, which is satisfied only if the transitivity is fully

respected.

The solution of expression (9) in a linear programming solver results in the calculation of

final values of criteria weights (w1, w2, w3, . . ., wn) T and the DFC (χ) is also generated.

Modified FUCOM method

Conventional FUCOM method relies on the input from decision makers where in the first

stage, decision makers rank the criteria followed by their relative comparison in the second

stage. This method, though having less pairwise comparisons than AHP and BWM method, is

still exhaustive and time consuming since each decision maker may have his own preference

regarding the criteria thereby requiring separate analysis for each decision maker. Instead of

performing separate questionnaire surveys from decision makers in FDM and FUCOM

method, this study suggests the continuation of FUCOM taking the input from FDM for its

initial step i.e. the ranking of criteria. The essential risk factors obtained from FDM are rear-

ranged in descending order of their Sm value and ranked accordingly. This rank on the basis of

Sm value which represents ‘consensus of decision makers’ in FDM is used in FUCOM instead

of individual ranking by decision makers. This eliminates the need for performing separate

survey for FUCOM since the essential risks in FDM are obtained from the consensus of all

experts. A similar approach has been used in a study where rank from Delphi method was uti-

lized in the FUCOM for its first step [118].

The next step involves the pairwise comparison of all risk factors to obtain the comparative

priority. Here, instead of relying on experts for performing pairwise comparisons individually,

the Sm values can be used for this purpose. Followed by ranking of risk factors on the basis of

Sm value in Step 1, the significance of each risk factor is calculated by dividing the Sm value of

top ranked risk with Sm value of the successor risk factor. Subsequently, the comparative
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priority of each risk factor is calculated as described in Step 2b of FUCOM method. The

remaining steps are similar to the conventional FUCOM method.

Analysis and results

The risk factors identified from literature review (shown in Table 1) are evaluated for

highlighting the most essential risk factors for prioritization. A questionnaire survey included

all these risks and a seven-point Likert scale was used to ascertain the significance of each risk

according to decision makers. The survey questionnaire was sent to experts having knowledge

and experience in offsite prefab and modular construction through various platforms includ-

ing ResearchGate, LinkedIn, companies and academic institution websites. The questionnaire

included basic demographic information such as qualification, name of the company/institu-

tion, designation, years of experience in offsite construction etc. The sampling method, inclu-

sion and exclusion criteria for selecting survey respondents were the same as implemented in

the literature review stage for shortlisting risk factors. A total of 45 questionnaires were sent

out of which, only 15 valid responses were obtained. The suitable number of responses for

FDM lie in the range of 10–30 as depicted by previous studies [89, 107, 119]. Hence, a sample

of 15 respondents can be considered appropriate for the analysis. The profile of experts is

shown in Table 3.

The experts were asked to highlight the significance of a risk based on its effect on the

implementation of modular construction. The responses from experts are then used in Step 2

i.e. Fuzzy Delphi analysis. The results of FDM are described in Table 4:

The risk factors excluded from the analysis include ‘Poor coordination among multi-inter-

face’, ‘Change orders due to defective design’, ‘Lack of appropriate design codes and stan-

dards’, ‘Poor government support and restrictive regulations’, ‘Poor supply chain integration,

‘Inept scheduling’, ‘Lack of quality monitoring systems’ and ‘Complexity of modular building

design’. These risk factors have a group decision weight Sm less than the threshold value, which

means that the experts did not consider these factors significant. Hence, the most critical risk

factors have been highlighted by FDM which will be used for prioritization and calculation of

the criticality index. After removal of non-significant risk factors, the ranking based on FDM

in the decreasing order of Sm value is shown below in Table 5.

Table 3. Profile of experts.

Group Qualification Position/Designation Years of Offsite construction experience

Contractor Bachelors Construction Manager 5

Masters Project Manager 10

Bachelors Resident Engineer 7

Bachelors Project Manager 15

Masters Department Manager 6

Masters Engineer 5

Masters Project Manager 8

Bachelors Engineer 5

Bachelors Construction Manager 10

Bachelors Project Manager 8

Client Masters Manager 10

Masters Manager 8

Academic PhD Professor 6

PhD Assistant Professor 5

PhD Assistant Professor 5

https://doi.org/10.1371/journal.pone.0272448.t003
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The significance of using the FDM is that it shortlists the most important risk factors that

have a relatively high impact on the implementation of modular construction and rejects those

risks which do not have significant impact on the implementation of modular construction.

Moreover, in this study, FDM provides the group decision weights and rank which is further

used in FUCOM for determination of criticality index.

Table 4. Results of Fuzzy Delphi method.

Critical Risk

number CR

Risk Factor Sm

value

Selected/

Rejected

1. High initial investment 0.582 Accepted

2. Difficulty in attaining return on initial investment and longer

break-even period

0.54 Accepted

3. Poor coordination among multi-interface 0.531 Rejected

4. Complex Supply chain and Stakeholder composition 0.558 Accepted

5. Inability to make changes in design during the construction stage 0.609 Accepted

6. Change orders due to defective design 0.511 Rejected

7. Lack of appropriate design codes and standards 0.531 Rejected

8. Poor government support and restrictive regulations 0.529 Rejected

9. Poor supply chain integration 0.529 Rejected

10. Inadequate skills and experience in modular construction 0.622 Accepted

11. Skepticism and conservative attitude of terminal user 0.544 Accepted

12. Transportation restraints 0.604 Accepted

13. Inept Scheduling 0.471 Rejected

14. Lack of quality monitoring systems 0.487 Rejected

15. Requirement of skilled labour 0.562 Accepted

16. Damage of modular components during transportation to

building site and installation

0.556 Accepted

17. Complexity of modular building design 0.509 Rejected

18. Technology incompetence 0.556 Accepted

19. Delay in modules delivery to building site 0.549 Accepted

20. Inadequate capacity of modular manufacturers 0.611 Accepted

Threshold Value 0.54

https://doi.org/10.1371/journal.pone.0272448.t004

Table 5. Rank of critical risks based on group decision weight.

Critical Risk number

CR

Risk Factor Sm

value

Rank

CR1 Inadequate skills and experience in modular construction 0.622 1st

CR2 Inadequate capacity of modular manufacturers 0.611 2nd

CR3 Inability to make changes in design during the construction stage 0.609 3rd

CR4 Transportation restraints 0.604 4th

CR5 High initial investment 0.582 5th

CR6 Requirement of skilled labour 0.562 6th

CR7 Complex Supply chain and Stakeholder composition 0.558 7th

CR8 Damage of modular components during transportation to building site

and installation

0.556 8th

CR9 Technology incompetence 0.556 9th

CR10 Delay in modules delivery to building site 0.549 10th

CR11 Skepticism and conservative attitude of terminal user 0.544 11th

CR12 Difficulty in attaining return on initial investment and longer break-even

period

0.54 12th

https://doi.org/10.1371/journal.pone.0272448.t005
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Modified FUCOM was applied in the next step to prioritize the risk factors and to calculate

the criticality index. Firstly, the 12 critical risks shortlisted from FDM analysis are ranked on

the basis of their group decision weight i.e. Sm as shown in Table 5. in which CR1, CR2, CR3,

. . ., CR12 represents the rank of 12 risk factors on the basis of Sm value. Then the significance

of each risk factor is calculated by comparing each risk with the top-rank risk i.e. CR1. For

example, the significance of the top ranked risk i.e. CR1 with respect to itself is ω1 = 1. Simi-

larly, the significance of CR2 will be ω2 = S1/ S2 = 1.018. Similarly, the significance of all other

risk factors is calculated. The next step calculates the comparative priorities of the ranked risk

factors. For example, the significance ω1 and ω2 of the risk factor CR1 and CR2 is 1 and 1.018

respectively, Using the equation
ωR

ωRþ1
¼ ȹ R

Rþ1
the comparative priority for CR1 can be calcu-

lated as
ω2

ω1
¼ 1:018

1
which implies thatȹ1

2
¼ 1:018

1
¼ 1:018. Similarly, the comparative priorities

for all other risk factors are calculated as shown in Table 6 below.

Finally, the criticality index i.e. weight coefficients of all risk factors (w1, w2, w3, . . ., wn) T

are calculated which must satisfy the conditions in Eqs (7) and (8). Applying the first condition

i.e. Eq (7) yields the following expression:

w1=w2 ¼ 1:018; w2=w3 ¼ 1:003; w3=w4 ¼ 1:008; w4=w5 ¼ 1:038; w5=w6 ¼ 1:036; w6=w7 ¼ 1:007 ;

w7=w8 ¼ 1:004; w8=w9 ¼ 1:000; w9=w10 ¼ 1:013; w10=w11 ¼ 1:009; w11=w12 ¼ 1:007 ð10Þ

Similarly, after applying section condition i.e. Eq (8) yields the following expression:

w1=w3 ¼ ȹ1=2 �ȹ2=3 ¼ 1:021; w2=w4 ¼ ȹ2=3 �ȹ3=4 ¼ 1:012; w3=w5 ¼ ȹ3=4 �ȹ4=5

¼ 1:046; w4=w6 ¼ ȹ4=5 �ȹ5=6 ¼ 1:075; w5=w7 ¼ ȹ5=6 �ȹ6=7 ¼ 1:043; w6=w8

¼ ȹ6=7 �ȹ7=8 ¼ 1:011; w7=w9 ¼ ȹ7=8 �ȹ8=9 ¼ 1:004; w8=w10 ¼ ȹ8=9 �ȹ9=10

¼ 1:013; w9=w11 ¼ ȹ9=10 �ȹ10=11 ¼ 1:022; w10=w12 ¼ ȹ10=11 �ȹ11=12 ¼ 1:017

ð11Þ

The results from expression (10) and (11) can be used to generate a non-linear optimi-

zation model for determining deviation from full consistency i.e. DFC (χ) to represent the

error in weights obtained. The final equation for calculating the weights of risk factors is

given below:

Min ¼ w;

Table 6. Comparative priorities of critical risk factors.

Comparative Priorities

ȹ1/2 1.018

ȹ2/3 1.003

ȹ3/4 1.008

ȹ4/5 1.038

ȹ5/6 1.036

ȹ6/7 1.007

ȹ7/8 1.004

ȹ8/9 1.000

ȹ9/10 1.013

ȹ10/11 1.009

ȹ11/12 1.007

https://doi.org/10.1371/journal.pone.0272448.t006
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Subjected to

�
�
�
�
w1

w2

� 1:018

�
�
�
� � w ;

�
�
�
�
w2

w3

� 1:003

�
�
�
� � w;

�
�
�
�
w3

w4

� 1:008

�
�
�
� � w;

�
�
�
�
w4

w5

� 1:038

�
�
�
� � w;

�
�
�
�
w5

w6

� 1:036

�
�
�
� � w;

�
�
�
�
w6

w7

� 1:007

�
�
�
� � w;

�
�
�
�
w7

w8

� 1:004

�
�
�
� � w;

�
�
�
�
w8

w9

� 1:000

�
�
�
� � w;

�
�
�
�
w9

w10

� 1:013

�
�
�
� � w;

�
�
�
�
w10

w11

� 1:009

�
�
�
� � w;

�
�
�
�
w11

w12

� 1:007

�
�
�
� � w;

�
�
�
�
w1

w3

� 1:021

�
�
�
� � w;

�
�
�
�
w2

w4

� 1:012

�
�
�
� � w;

�
�
�
�
w3

w5

� 1:046

�
�
�
� � w;

�
�
�
�
w4

w6

� 1:075

�
�
�
� � w;

�
�
�
�
w5

w7

� 1:043

�
�
�
� � w;

�
�
�
�
w6

w8

� 1:011

�
�
�
� � w;

�
�
�
�
w7

w9

� 1:004

�
�
�
� � w;

�
�
�
�
w8

w10

� 1:013

�
�
�
� � w;

�
�
�
�
w9

w11

� 1:022

�
�
�
� � w;

�
�
�
�
w10

w12

� 1:017

�
�
�
� � w; w1 þ w2 þ w3 þ w4 þ w5 þ w6 þ w7 þ w8 þ w9 þ w10 þ w11 þ w12 ¼ 1

ð12Þ

After solving the above expression in LINGO software version 18.0, the final weight coeffi-

cients i.e. the criticality index of each risk factor is obtained. The program code as well as the

optimal solution resulting from the software are given in Figs 1 and 2 respectively.

The criticality index of each risk factor is described in Table 7.

It is important to mention that the rank obtained from FUCOM in Table 7 is similar to

FDM since the ranking of risk factors in the first step of FUCOM is obtained from FDM

which is subsequently used in the later steps. However, the rationale of using FUCOM is as

follows:

i. FDM results in the ranking of factors based on absolute weights whereas FUCOM computes

the weight coefficients and ranking of risk factors based on pairwise comparison.

Fig 1. Code description on LINGO software.

https://doi.org/10.1371/journal.pone.0272448.g001
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ii. FUCOM provides full consistency in a sense that it uses the consensus of decision makers

from FDM and consequently performs pairwise comparisons of most essential risk factors

based on the group decision weight i.e. Sm value, thereby eliminating the need for addi-

tional survey from experts for pairwise comparison.

iii. The weight coefficients i.e. criticality index obtained from FUCOM is free from any incon-

sistency since the method validates the computed weights as well as ranking based on two

Fig 2. Optimal solution obtained from LINGO software.

https://doi.org/10.1371/journal.pone.0272448.g002

Table 7. Final ranking of critical risks based on criticality index.

Critical Risk number CR Risk Factor Criticality index Rank

CR1 Inadequate skills and experience in modular construction 0.0902 1st

CR2 Inadequate capacity of modular manufacturers 0.0886 2nd

CR3 Inability to make changes in design during the construction stage 0.0884 3rd

CR4 Transportation restraints 0.0877 4th

CR5 High initial investment 0.0845 5th

CR6 Requirement of skilled labour 0.0815 6th

CR7 Complex Supply chain and Stakeholder composition 0.0809 7th

CR8 Damage of modular components during transportation to building site and installation 0.0806 8th

CR9 Technology incompetence 0.0806 9th

CR10 Delay in modules delivery to building site 0.0796 10th

CR11 Skepticism and conservative attitude of terminal user 0.0789 11th

CR12 Difficulty in attaining return on initial investment and longer break-even period 0.0782 12th

https://doi.org/10.1371/journal.pone.0272448.t007
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conditions as mentioned in Eqs (7) and (8). Moreover, the sum of weights obtained from

FUCOM analysis are equal to 1 in this study which also validates that the computed weight

coefficients are consistent and obeying the steps of methodology.

iv. An error term χ is also calculated which determines the error in weight coefficients and it

must be closer to zero. This value equals 0.000324 in this study, suggesting that the analysis

and obtained weight coefficients are correct.

Discussion

Table 7 shows the final ranking and criticality index of risk factors. It can be seen that the most

significant risk in the implementation of modular construction in Pakistan is ‘Inadequate skills

and experience in modular construction’ having the highest criticality index i.e. 0.0902. This risk

has also been highlighted in a study by [66] who specifically mentioned that inadequate skills

and experience in modular construction is more prevalent in developing countries. Modular

construction involves many stakeholders and consists of multiple segments which requires effi-

cient and effective coordination among the involved parties. Inexperience in modular construc-

tion projects can ultimately lead to disruption in schedule performance resulting in delayed

deliveries and reduced quality. The prominent reason for the lack of skills and experience is the

innovative nature of the offsite modular construction in Pakistani construction industry. Even

through offsite modular construction is currently being used for meeting the housing needs of

society, the rate of adoption is relatively lower as compared to other countries such as China and

Malaysia. Some of the noteworthy construction firms using prefabricated and modular con-

struction techniques in Pakistan are Frontier Works Organization (FWO), ModulusTech, Izhar

Foster, Paragon Constructors and Majestic builders. Since the relative adoption of modular con-

struction is slower than other countries, Pakistani contractors are less experienced in managing

modular construction projects. This can also be supported from the fact that no mega-construc-

tion project has yet been carried out utilizing modular construction. Moreover, there is a lack of

continuous improvement and innovation culture in Pakistan, due to which contractors mostly

rely on conventional skills and methods and show reluctance towards innovation and learning

new skills. The consequences of having less skills and experience are the highest since it can lead

to defective design, poor facility management and production, poor coordination, poor quality

and substandard erection practices. Since modular construction supply chain is highly frag-

mented and interdependent, lack of expertise can result in dissention between manufacturers

and designers in the initial stages of construction, problems during the production phase and

delay in delivery of modular components to site. The way forward to address this risk is to adopt

the construction practices from other developed countries in handling mega modular construc-

tion projects. Training and skill development programs in cost-benefit analysis, design charac-

teristics and methods can also reduce the skill gap of Pakistani contractors. In this regard, it is

important to mention that the government of Pakistan is in negotiation with Chinese construc-

tion company to execute mega housing project in Pakistan utilizing modular construction [120].

This can be a significant step since local contractors can gain insights to the techniques and

methods to gain skills while also gaining experience in managing mega projects.

While inadequate skills and experience in modular construction is considered critical,

another important risk affecting modular construction implementation is the inadequate

capacity of modular manufacturers, which is the second most critical risk with a criticality

index 0.0886. Generally, the production line for manufacturing of a typical modular house

consists of 20–24 manufacturing stations. The decision regarding the fabrication of a single or

double-unit module depends on the size of manufacturing facility. Along with the size
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requirement for manufacturing stations, space for quality control checks is also required sepa-

rately. Moreover, the factory requires separate storage space for finished modules before ship-

ping these modules to the project site. Majority of offsite construction firms in Pakistan are

small or medium sized where limited financial resources hinder modular manufacturers to

upgrade their capacity according to the space requirements. This subsequently restricts the

number as well as size of modular components to be manufactured. Due to the novelty of off-

site construction in Pakistan, high rates of prefabrication and modularization are not feasible

at this stage since it may lead to quality related issues due to inexperience such as defective

designs, leakages and cracks propagations, geometric intolerances and joint failures etc. The

risk of low production capacity can make it difficult for modular construction firms to gain

market growth when demand is increased. Hence, to mitigate this risk, the prime focus should

be improvement in the quality of manufacturing. Once a desired level of quality is attained, the

next focus should be financing these small and medium sized firms to increase their produc-

tion capacity. Modular construction firms can also collaborate with external partners that pro-

vide warehousing and storage services in case where internal expansion is relatively less

feasible from an economic point of view.

Another critical risk highlighted by experts is the inability to make changes in the design

during the construction stage if needed, which has been ranked third with a criticality index of

0.0884. The design process is the preliminary step in modular construction supply chain in

which buildings are designed based on local building codes and standards, which requires

early involvement of multiple stakeholders to give valuable input regarding the design to final-

ize and subsequently freeze design. This aids the design of building to freeze early, to enable

the subsequent phases such as permits and approvals, material procurement, and manufactur-

ing to commence. However, this limits the design to be modified in the later stages if any error

or defect arises during the on-site assembly stage, resulting in change orders by customers.

The entire process of redesign, remanufacture and reassemble then becomes time consuming,

also leading to loss in efficiency. It might also require additional cost if the modifications

require reconfiguration of material procurement or assembly line. The rigid nature of design

process prevents the adoption of modular construction by construction firms in Pakistan since

traditional construction method allows changes in the design till the last possible moment

which makes it easy to readjust budget and cut costs. Existing modular construction firms in

Pakistan should focus on early and effective collaboration among contractor, material supplier,

manufacturer, distributor and other involved project participants to gain a consensus on the

final design in order to avoid future disagreements. Furthermore, pilot projects involving fab-

rication of a prototype similar to the desired module and trail assembly runs must be carried

out to reduce further chances of geometric variabilities and defects in design.

Another important risk factor impeding the adoption of modular construction is the trans-

portation constraints, being ranked fourth with a criticality index of 0.0877. Since modular

components have larger dimensions and are quite heavy, they require special transportation

vehicles such as Self-Propelled Modular Trailer or shipping containers, for transportation to

project site for final assembly. Since road transport is the most viable option for modular com-

ponents transportation to site, there is a definite requirement of separate, well-constructed

highways having less surface irregularity, since the components are prone to crack initiation

and surface deterioration during transportation. The current highway infrastructure of Paki-

stan faces issues such as increased traffic congestion, deteriorated road surfaces, lack of main-

tenance, and negligence of government. These conditions are risky for the transportation of

modular components as it can damage the components during transportation to construction

site. Additionally, the highways are subjected to strict regulations regarding the size and weight

of transportation vehicles, thus limiting the transportation capacity of modules. This is a
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significant issue as it can result in schedule delays as a bottleneck in the supply chain. Trans-

portation related risks can be mitigated by devising lenient policies and regulations on size and

weight of modules to provide assistance to modular manufactures. In addition, road infra-

structure should be improved through regular maintenance, periodic check and balance, and

expansion of roads and highways for accommodation of large special-purpose vehicles.

There is a significant amount of initial investment required for modular construction

which includes land acquisition cost, cost of building manufacturing facilities, purchasing

equipment, molds, hiring skilled labour and cost associated with the warehouses for temporary

storage of modules. This risk factor is ranked fifth with a criticality index 0.0845. Despite being

cost effective in the long run, the initial capital required for setting up the manufacturing of

modules creates uncertainty in the mind of investors. Moreover, due to uncertain demand and

monopoly of conventional construction firms in Pakistan, investors find it difficult to compre-

hend the potential future benefits of modular construction. Uncertainty in demand, made-to-

order nature of modular components, higher prices of construction materials, and highly cus-

tomized nature of the modular components also make it difficult to achieve benefits from

economies of scale, consequently making it tough to attain return on initial investment. The

investment related risk can effectively be mitigated through time savings, resource reduction

and labour savings. It is important to mention that financial assistance is offered by the gov-

ernment to modular manufacturers in developed countries such as Singapore for the promo-

tion of modular manufacturing SMEs. Considering the growing need of houses in Pakistan,

similar approach can be adopted by Pakistan government to assist modular manufacturers

financially to carry out large scale production of houses. In this way, housing demand can be

met timely while also availing the benefits of economies of scale and reduction in per unit cost.

Other critical risks in the implementation of modular construction include requirement of

skilled labour, complex stakeholder and supply chain composition, damage of modular com-

ponents during transportation to building site and installation, technology incompetence,

delay in modules delivery to building site, skepticism and conservative attitude of terminal

user and difficulty in attaining return on initial investment and longer break-even period. The

prioritization of risks provided in this study through a decision support system can help indus-

try practitioners in identifying the most critical risks to address first along with devising appro-

priate strategies for successful mitigation of identified risks.

Limitations and future recommendations

The study provides significant contribution to the theoretical body of knowledge; however,

there are some limitations in the current study. First of all, the results of this study are specific

to Pakistani construction industry context. Each country’s construction industry is character-

ized by its own set of risks and uncertainties due to different level of development. Secondly,

even though the sample size of experts lies within the acceptable range, it is better to obtain

more responses to better highlight the current status of modular construction implementation.

Moreover, the risk factors are not categorized or grouped into well-defined dimensions in this

study. Future studies can rectify the limitations of this study by categorizing risk factors based

on the nature of risks in well-defined dimensions. Future studies can also try to carry out a

comparative analysis of risks between developing and developed countries to highlight the dif-

ferences. Since risk factors are interrelated, future studies can also model the mutual interac-

tion among these risks through various quantitative and qualitative methodologies. Finally, the

hybrid methodology used in this study relies on experts’ judgement, hence prone to subjectiv-

ity and bias. Future studies should use a case study-based approach to validate the identified

risks or to generate new set of risks.
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Conclusion

The adoption of modular construction is increasing in many countries due to its well docu-

mented benefits; however, for developing countries, this method is novel and the current rate

of adoption is low due to various risk events and uncertainties associated with it. Since risks

are inevitable, it is necessary for practitioners to identify, evaluate, prioritize, control and mon-

itor these risks.

• This study focused on the development of a comprehensive framework for identification

and prioritization of critical risks in the implementation of modular construction in

Pakistan.

• For risk prioritization, a hybrid Fuzzy Delphi and MCDM based Full Consistency Method

(FUCOM) was used.

• The decision support system in this study modelled risks based on their relative importance

while also resolving the issues of imprecision, uncertainty, vagueness and inconsistency

through the hybrid methodology.

• The result of this study determined 12 critical risks that have a detrimental impact on the

implementation of modular construction in Pakistan. The top five risks were ‘Limited skills

and experience of contractors in modular construction’, ‘Inadequate capacity of modular

manufacturers’, ‘Inability to make changes in design during the construction stage’, ‘Trans-

portation restraints’ and ‘High initial investment’ respectively.

• The results of this study can be used by potential modular manufacturers while implement-

ing an offsite construction project to look for most prominent risks and devise correspond-

ing risk mitigation strategies.
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References
1. Ingle A, Waghmare, AP. Advances in Construction: Lean Construction for Productivity enhancement

and waste minimization. Int J Eng Appl Sci. 2015; 2(11).

2. Kibert CJ. The next generation of sustainable construction. Build Res Inf. 2007 Nov; 35(6):595–601.

3. Lu W, Chen K, Xue F, Pan W. Searching for an optimal level of prefabrication in construction: An ana-

lytical framework. J Clean Prod. 2018 Nov; 201:236–45.

4. Ahn SJ, Han S, Altaf MS, Al-Hussein M. Integrating off-site and on-site panelized construction sched-

ules using fleet dispatching. Autom Constr. 2022 May; 137:104201.

5. Goodier C, Gibb A. Future opportunities for offsite in the UK. Constr Manag Econ. 2007 Jun; 25

(6):585–95.

6. Kamali M, Hewage K. Life cycle performance of modular buildings: A critical review. Renew Sustain

Energy Rev. 2016 Sep; 62:1171–83.

7. Pervez H, Ali Y, Petrillo A. A quantitative assessment of Greenhouse Gas (GHG) emissions from con-

ventional and modular construction: A case of developing country. J Clean Prod. 2021 Feb;126210.

PLOS ONE Evaluation of critical risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0272448 August 8, 2022 22 / 27

https://doi.org/10.1371/journal.pone.0272448


8. Kamali M, Hewage K. Development of performance criteria for sustainability evaluation of modular ver-

sus conventional construction methods. J Clean Prod. 2017 Jan; 142:3592–606.

9. Li CZ, Hong J, Xue F, Shen GQ, Xu X, Luo L. SWOT analysis and Internet of Things-enabled platform

for prefabrication housing production in Hong Kong. Habitat Int. 2016 Oct; 57:74–87.

10. Banihashemi S, Tabadkani A, Hosseini MR. Integration of parametric design into modular coordina-

tion: A construction waste reduction workflow. Autom Constr. 2018 Apr; 88:1–12.

11. Tam VWY, Tam CM, Zeng SX, Ng WCY. Towards adoption of prefabrication in construction. Build

Environ. 2007 Oct; 42(10):3642–54.

12. Arashpour M, Wakefield R, Blismas N, Minas J. Optimization of process integration and multi-skilled

resource utilization in off-site construction. Autom Constr. 2015 Feb; 50:72–80.

13. Generalova EM, Generalov VP, Kuznetsova AA. Modular Buildings in Modern Construction. Procedia

Eng. 2016; 153:167–72.

14. Jaillon L, Poon CS. Sustainable construction aspects of using prefabrication in dense urban environ-

ment: a Hong Kong case study. Constr Manag Econ. 2008 Sep; 26(9):953–66.

15. Quale J, Eckelman MJ, Williams KW, Sloditskie G, Zimmerman JB. Construction Matters: Comparing

Environmental Impacts of Building Modular and Conventional Homes in the United States. J Ind Ecol.

2012 Apr; 16(2):243–53.

16. Blismas N, Pasquire C, Gibb A. Benefit evaluation for off-site production in construction. Constr

Manag Econ. 2006 Feb; 24(2):121–30.

17. Pan W, Hon CK. Briefing: Modular integrated construction for high-rise buildings. Proc Inst Civ Eng—

Munic Eng. 2020 Jun; 173(2):64–8.

18. Blismas N, Wakefield R. Drivers, constraints and the future of offsite manufacture in Australia. Arif M,

editor. Constr Innov. 2009 Jan 1; 9(1):72–83.

19. Navaratnam S, Satheeskumar A, Zhang G, Nguyen K, Venkatesan S, Poologanathan K. The chal-

lenges confronting the growth of sustainable prefabricated building construction in Australia: Construc-

tion industry views. J Build Eng. 2022 May; 48:103935.

20. Arif M, Goulding J, Rahimian FP. Promoting off-site construction: Future challenges and opportunities.

J Archit Eng. 2012; 18(2):75–8.

21. Perera S, Ginigaddara B, Feng Y, Rahnamayiezekavat P. The New Generation of Construction Skills:

Transition from Onsite to Offsite. In: Ghaffar SH, Mullett P, Pei E, Roberts J, editors. Innovation in Con-

struction [Internet]. Cham: Springer International Publishing; 2022 [cited 2022 Jun 20]. p. 429–46.

Available from: https://link.springer.com/10.1007/978-3-030-95798-8_17

22. Mohamad Kamar KA, Abd. Hamid Z, Ghani MK, Egbu C, Arif M. Collaboration Initiative on Green Con-

struction and Sustainability through Industrialized Buildings Systems (IBS) in the Malaysian Construc-

tion Industry. Int J Sustain Constr Eng Technol. 2011 May 26; 1(1):119–27.

23. Mao C, Shen Q, Pan W, Ye K. Major Barriers to Off-Site Construction: The Developer’s Perspective in

China. J Manag Eng. 2015 May; 31(3):04014043.

24. Lovell H, Smith SJ. Agencement in housing markets: The case of the UK construction industry. Geo-

forum. 2010 May; 41(3):457–68.

25. Olawumi TO, Chan DWM, Ojo S, Yam MCH. Automating the modular construction process: A

review of digital technologies and future directions with blockchain technology. J Build Eng. 2022

Apr; 46:103720.

26. Hsu PY, Angeloudis P, Aurisicchio M. Optimal logistics planning for modular construction using two-

stage stochastic programming. Autom Constr. 2018 Oct; 94:47–61.

27. Wang Z, Hu H, Gong J. Simulation based multiple disturbances evaluation in the precast supply chain

for improved disturbance prevention. J Clean Prod. 2018 Mar; 177:232–44.

28. Dallasega P, Rauch E, Frosolini M. A Lean Approach for Real-Time Planning and Monitoring in Engi-

neer-to-Order Construction Projects. Buildings. 2018 Mar 9; 8(3):38.

29. Bortolini R, Formoso CT, Viana DD. Site logistics planning and control for engineer-to-order prefabri-

cated building systems using BIM 4D modeling. Autom Constr. 2019 Feb; 98:248–64.

30. Ferdous W, Bai Y, Ngo TD, Manalo A, Mendis P. New advancements, challenges and opportunities of

multi-storey modular buildings–A state-of-the-art review. Eng Struct. 2019 Mar; 183:883–93.

31. Kamali M, Hewage K, Milani AS. Life cycle sustainability performance assessment framework for

residential modular buildings: Aggregated sustainability indices. Build Environ. 2018 Jun;

138:21–41.

32. Kisi K, Mani N, Shrestha KJ, Shrestha K, Kayastha R. Opportunities and Challenges for Modular Con-

struction in Developing Nations: A Case Study in the Nepalese Construction Industry. 2019.

PLOS ONE Evaluation of critical risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0272448 August 8, 2022 23 / 27

https://link.springer.com/10.1007/978-3-030-95798-8_17
https://doi.org/10.1371/journal.pone.0272448


33. Tavakkoli-Moghaddam R, Mousavi SM, Hashemi H. A fuzzy comprehensive approach for risk identifi-

cation and prioritization simultaneously in EPC projects. Risk management in environment, production

and economy. 2011 Sep 12:123–46.

34. Hassim S, Jaafar MS, Sazalli SA. The contractor perception towers industrialised building system risk

in construction projects in Malaysia. Am J Appl Sci. 2009; 6(5):937.

35. Gan X, Chang R, Zuo J, Wen T, Zillante G. Barriers to the transition towards off-site construction in

China: An Interpretive structural modeling approach. J Clean Prod. 2018 Oct; 197:8–18.

36. Maqsoom A, Charoenngam C. Motives and competitive assets of Pakistani international construction

contracting firms: Impact of size and international experience. J Financ Manag Prop Constr. 2014 Jul

29; 19(2):138–51.

37. Maqsoom A, Khan MU, Khan MT, Khan S, Naeemullah, Ullah F. Factors Influencing the Construction

Time and Cost Overrun in Projects: Empirical Evidence from Pakistani Construction Industry. In Pro-

ceedings of the 21st International Symposium on Advancement of Construction Management and

Real Estate 2018 (pp. 769–778). Springer, Singapore.

38. Siddiqui SQ, Ullah F, Thaheem MJ, Gabriel HF. Six Sigma in construction: a review of critical success

factors. Int J Lean Six Sigma. 2016 Jun 6; 7(2):171–86.

39. Kamali M, Hewage K, Sadiq R. Conventional versus modular construction methods: A comparative

cradle-to-gate LCA for residential buildings. Energy Build. 2019 Dec; 204:109479.

40. Ansari WS, Thaheem MJ, Khalfan MMA. Use of offsite construction techniques in Pakistan. Middle

East J Manag. 2016; 3(3):218–29.

41. Musa MF, Mohammad MF, Mahbub R, Yusof MR. Enhancing the Quality of Life by Adopting Sustain-

able Modular Industrialised Building System (IBS) in the Malaysian Construction Industry. Procedia—

Soc Behav Sci. 2014 Oct; 153:79–89.

42. Wu L, Lu W, Xue F, Li X, Zhao R, Tang M. Linking permissioned blockchain to Internet of Things (IoT)-

BIM platform for off-site production management in modular construction. Comput Ind. 2022 Feb;

135:103573.

43. Azhar S, Lukkad MY, Ahmad I. An Investigation of Critical Factors and Constraints for Selecting Modu-

lar Construction over Conventional Stick-Built Technique. Int J Constr Educ Res. 2013 Jul; 9(3):203–

25.

44. Lee J, Hyun H. Multiple Modular Building Construction Project Scheduling Using Genetic Algorithms. J

Constr Eng Manag. 2019 Jan; 145(1):04018116.

45. Wuni IY, Shen GQ. Barriers to the adoption of modular integrated construction: Systematic review and

meta-analysis, integrated conceptual framework, and strategies. J Clean Prod. 2020 Mar;

249:119347.

46. Jaillon L, Poon CS. The evolution of prefabricated residential building systems in Hong Kong: A review

of the public and the private sector. Autom Constr. 2009 May; 18(3):239–48.

47. Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C. Climate change 2007-impacts, adap-

tation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Vol.

4. Cambridge University Press; 2007.

48. Mao C, Shen Q, Shen L, Tang L. Comparative study of greenhouse gas emissions between off-site

prefabrication and conventional construction methods: Two case studies of residential projects.

Energy Build. 2013 Nov; 66:165–76.

49. Jaillon L, Poon CS, Chiang YH. Quantifying the waste reduction potential of using prefabrication in

building construction in Hong Kong. Waste Manag. 2009 Jan; 29(1):309–20. https://doi.org/10.1016/j.

wasman.2008.02.015 PMID: 18434128

50. Loizou L, Barati K, Shen X, Li B. Quantifying Advantages of Modular Construction: Waste Generation.

Buildings. 2021 Dec 7; 11(12):622.

51. Said H. Modeling and likelihood prediction of prefabrication feasibility for electrical construction firms. J

Constr Eng Manag. 2016; 142(2):04015071.

52. Navaratnam S, Ngo T, Gunawardena T, Henderson D. Performance Review of Prefabricated Building

Systems and Future Research in Australia. Buildings. 2019 Feb 3; 9(2):38.

53. Rahim AA, Qureshi SL. A review of IBS implementation in Malaysia and Singapore. Planning Malay-

sia. 2018 Sep 12;16.

54. Jeong G, Kim H, Lee HS, Park M, Hyun H. Analysis of safety risk factors of modular construction to

identify accident trends. J Asian Archit Build Eng. 2022 May 4; 21(3):1040–52.

55. Pan W, Gibb AGF, Dainty ARJ. Perspectives of UK housebuilders on the use of offsite modern meth-

ods of construction. Constr Manag Econ. 2007 Feb; 25(2):183–94.

PLOS ONE Evaluation of critical risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0272448 August 8, 2022 24 / 27

https://doi.org/10.1016/j.wasman.2008.02.015
https://doi.org/10.1016/j.wasman.2008.02.015
http://www.ncbi.nlm.nih.gov/pubmed/18434128
https://doi.org/10.1371/journal.pone.0272448


56. Fard MM, Terouhid SA, Kibert CJ, Hakim H. Safety concerns related to modular/prefabricated building

construction. Int J Inj Contr Saf Promot. 2017 Jan 2; 24(1):10–23. https://doi.org/10.1080/17457300.

2015.1047865 PMID: 26105510

57. Luo L, Qiping Shen G, Xu G, Liu Y, Wang Y. Stakeholder-Associated Supply Chain Risks and Their

Interactions in a Prefabricated Building Project in Hong Kong. J Manag Eng. 2019 Mar; 35

(2):05018015.

58. Sun Y, Wang J, Wu J, Shi W, Ji D, Wang X, et al. Constraints Hindering the Development of High-Rise

Modular Buildings. Appl Sci. 2020 Oct 14; 10(20):7159.

59. Hwang BG, Shan M, Looi KY. Key constraints and mitigation strategies for prefabricated prefinished

volumetric construction. J Clean Prod. 2018 May; 183:183–93.

60. Wuni IY, Shen GQP, Mahmud AT. Critical risk factors in the application of modular integrated con-

struction: a systematic review. Int J Constr Manag. 2022 Jan 25; 22(2):133–47.

61. Han Y, Wang L. Identifying barriers to off-site construction using grey DEMATEL approach: case of

China. J Civ Eng Manag. 2018 Sep 6; 24(5):364–77.

62. Jiang L, Li Z, Li L, Gao Y. Constraints on the Promotion of Prefabricated Construction in China. Sus-

tainability. 2018 Jul 18; 10(7):2516.

63. Kamar KM, Alshawi M, Hamid Z. Barriers to industrialized building system (IBS): The case of Malaysia.

In: Proceedings of the BuHu 9th international postgraduate research conference (IPGRC), Salford, UK

2009 Jan 29 (Vol. 30).

64. Lee JS, Kim YS. Analysis of cost-increasing risk factors in modular construction in Korea using FMEA.

KSCE J Civ Eng. 2017 Sep; 21(6):1999–2010.

65. Luo LZ, Mao C, Shen LY, Li ZD. Risk factors affecting practitioners’ attitudes toward the implementa-

tion of an industrialized building system: A case study from China. Eng Constr Archit Manag. 2015 Nov

16; 22(6):622–43.

66. Jiang R, Mao C, Hou L, Wu C, Tan J. A SWOT analysis for promoting off-site construction under the

backdrop of China’s new urbanisation. J Clean Prod. 2018 Feb; 173:225–34.

67. Rahman MM. Barriers of Implementing Modern Methods of Construction. J Manag Eng. 2014 Jan; 30

(1):69–77.

68. Zhai X, Reed R, Mills A. Factors impeding the offsite production of housing construction in China: an

investigation of current practice. Constr Manag Econ. 2014 Feb; 32(1–2):40–52.

69. Li HX, Al-Hussein M, Lei Z, Ajweh Z. Risk identification and assessment of modular construction utiliz-

ing fuzzy analytic hierarchy process (AHP) and simulation. Can J Civ Eng. 2013 Dec; 40(12):1184–95.

70. Wu P, Xu Y, Jin R, Lu Q, Madgwick D, Hancock CM. Perceptions towards risks involved in off-site con-

struction in the integrated design & construction project delivery. J Clean Prod. 2019 Mar; 213:899–

914.

71. Zhang X, Skitmore M, Peng Y. Exploring the challenges to industrialized residential building in China.

Habitat Int. 2014 Jan; 41:176–84.

72. Abdul Nabi M, El-adaway IH. Understanding the Key Risks Affecting Cost and Schedule Performance

of Modular Construction Projects. J Manag Eng. 2021 Jul; 37(4):04021023.

73. Agapiou A. Barriers to Offsite Construction Adoption: A Quantitative Study among Housing Associa-

tions in England. Buildings. 2022 Mar 2; 12(3):283.

74. Chai TJ, Tan CS, Chow TK, Ling PCH, Koh HB. A Review on Prefab Industrialised Building System

Modular Construction in Malaysia: The Perspective of Non-structural Studies. In International Confer-

ence on Architecture and Civil Engineering Conference: 2018 May 9 (pp. 11–21). Springer, Singapore.

Available from: http://link.springer.com/10.1007/978-981-13-2511-3_2

75. Hassim S, Sazalli S, Jaafar MS. Identification of sources of risk in IBS project. Editor Advis Board.

2008; 6(3):315.

76. Wuni IY, Shen GQ, Osei-Kyei R, Agyeman-Yeboah S. Modelling the critical risk factors for modular

integrated construction projects. Int J Constr Manag. 2020 May 13;1–14.

77. Wuni IY, Shen GQ, Antwi-Afari MF. Exploring the design risk factors for modular integrated construc-

tion projects. Constr Innov. 2021 Dec 21.

78. Wuni IY, Shen GQ, Saka AB. Computing the severities of critical onsite assembly risk factors for mod-

ular integrated construction projects. Eng Constr Archit Manag. 2022 Feb 9.

79. Wuni IY, Shen GQ. Exploring the critical production risk factors for modular integrated construction

projects. J Facil Manag. 2021 Oct 11.

80. Arif M, Egbu C. Making a case for offsite construction in China. Eng Constr Archit Manag. 2010 Nov 9;

17(6):536–48.

PLOS ONE Evaluation of critical risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0272448 August 8, 2022 25 / 27

https://doi.org/10.1080/17457300.2015.1047865
https://doi.org/10.1080/17457300.2015.1047865
http://www.ncbi.nlm.nih.gov/pubmed/26105510
http://link.springer.com/10.1007/978-981-13-2511-3_2
https://doi.org/10.1371/journal.pone.0272448


81. Wuni IY, Shen GQ. Risks Identification and Allocation in the Supply Chain of Modular Integrated Con-

struction (MiC). Modul Offsite Constr MOC Summit Proc. 2019 May 24;189–97.

82. Blismas NG, Pendlebury M, Gibb A, Pasquire C. Constraints to the Use of Off-site Production on Con-

struction Projects. Archit Eng Des Manag. 2005 Jan; 1(3):153–62.

83. Li CZ, Zhong RY, Xue F, Xu G, Chen K, Huang GG, et al. Integrating RFID and BIM technologies for

mitigating risks and improving schedule performance of prefabricated house construction. J Clean

Prod. 2017 Nov; 165:1048–62.

84. Li CZ, Xu X, Shen GQ, Fan C, Li X, Hong J. A model for simulating schedule risks in prefabrication

housing production: A case study of six-day cycle assembly activities in Hong Kong. J Clean Prod.

2018 Jun; 185:366–81.

85. Li CZ, Hong J, Xue F, Shen GQ, Xu X, Mok MK. Schedule risks in prefabrication housing production in

Hong Kong: a social network analysis. J Clean Prod. 2016 Oct; 134:482–94.

86. Durdyev S, Ismail S. Offsite Manufacturing in the Construction Industry for Productivity Improvement.

Eng Manag J. 2019 Jan 2; 31(1):35–46.

87. Fellows RF, Liu AM. Research methods for construction. John Wiley & Sons; 2021.

88. Dalkey N, Helmer O. An Experimental Application of the DELPHI Method to the Use of Experts.

Manag Sci. 1963 Apr; 9(3):458–67.

89. Hsu YL, Lee CH, Kreng VB. The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant

regenerative technology selection. Expert Syst Appl. 2010 Jan; 37(1):419–25.

90. Xiao Z, Xia S, Gong K, Li D. The trapezoidal fuzzy soft set and its application in MCDM. Appl Math

Model. 2012 Dec; 36(12):5844–55.

91. Zadeh LA, Klir GJ, Yuan B. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A.

Advances in Fuzzy Systems River Edge: NJ World Scientific. Applications and Theory. 1996;6.

92. Ishikawa A, Amagasa M, Shiga T, Tomizawa G, Tatsuta R, Mieno H. The max-min Delphi method and

fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 1993 May; 55(3):241–53.

93. Ma Z, Shao C, Ma S, Ye Z. Constructing road safety performance indicators using Fuzzy Delphi

Method and Grey Delphi Method. Expert Syst Appl. 2011 Mar; 38(3):1509–14.

94. Manoliadis O. The assessment of construction project risks with the use of fuzzy Delphi methodology

—case study photovoltaic project in Greece. Int J Manag Fuzzy Syst. 2018; 4(1):7–14.

95. Qiu M, Shi L, Teng C, Zhou Y. Assessment of Water Inrush Risk Using the Fuzzy Delphi Analytic Hier-

archy Process and Grey Relational Analysis in the Liangzhuang Coal Mine, China. Mine Water Envi-

ron. 2017 Mar; 36(1):39–50.

96. Sayari E, Yaghoobi M, Ghanaatpishe M. Using fuzzy Delphi method in risk management (Case study:

Implementation of fuzzy Delphi method to identify credit risks in convert financial and credit institutions

into the bank). World Appl Sci J. 2014; 31(5):759–66.

97. Bui TD, Tsai FM, Tseng ML, Ali MH. Identifying sustainable solid waste management barriers in prac-

tice using the fuzzy Delphi method. Resour Conserv Recycl. 2020 Mar; 154:104625.

98. Sadeghi J, Oghabi M, Sarvari H, Sabeti MS, Kashefi H, Chan D. Identification and prioritization of seismic

risks in urban worn-out textures using fuzzy delphi method. Environ Eng Manag J. 2021; 20(6):1035–46.

99. Rathore B, Gupta R. A fuzzy based hybrid decision-making framework to examine the safety risk fac-

tors of healthcare workers during COVID-19 outbreak. J Decis Syst. 2022 Apr 3; 31(1–2):68–101.

100. Khan S, Haleem A, Khan MI. Risk management in Halal supply chain: an integrated fuzzy Delphi and

DEMATEL approach. J Model Manag. 2021 Apr 7; 16(1):172–214.

101. Mabrouk NB. Green supplier selection using fuzzy Delphi method for developing sustainable supply

chain. Decis Sci Lett. 2021;63–70.

102. Chen WK, Nalluri V, Ma S, Lin MM, Lin CT. An Exploration of the Critical Risk Factors in Sustainable

Telecom Services: An Analysis of Indian Telecom Industries. Sustainability. 2021 Jan 6; 13(2):445.

103. Mohandes SR, Sadeghi H, Fazeli A, Mahdiyar A, Hosseini MR, Arashpour M, et al. Causal analysis of

accidents on construction sites: A hybrid fuzzy Delphi and DEMATEL approach. Saf Sci. 2022 Jul;

151:105730.

104. Durdyev S, Mohandes SR, Tokbolat S, Sadeghi H, Zayed T. Examining the OHS of green building con-

struction projects: A hybrid fuzzy-based approach. J Clean Prod. 2022 Mar; 338:130590.

105. Barghi B, Shadrokh sikari S. Qualitative and quantitative project risk assessment using a hybrid

PMBOK model developed under uncertainty conditions. Heliyon. 2020 Jan; 6(1):e03097. https://doi.

org/10.1016/j.heliyon.2019.e03097 PMID: 31922046

106. Tabatabaee S, Mahdiyar A, Ismail S. Towards the success of Building Information Modelling imple-

mentation: A fuzzy-based MCDM risk assessment tool. J Build Eng. 2021 Nov; 43:103117.

PLOS ONE Evaluation of critical risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0272448 August 8, 2022 26 / 27

https://doi.org/10.1016/j.heliyon.2019.e03097
https://doi.org/10.1016/j.heliyon.2019.e03097
http://www.ncbi.nlm.nih.gov/pubmed/31922046
https://doi.org/10.1371/journal.pone.0272448


107. Bouzon M, Govindan K, Rodriguez CMT, Campos LMS. Identification and analysis of reverse logistics

barriers using fuzzy Delphi method and AHP. Resour Conserv Recycl. 2016 Mar; 108:182–97.
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