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Abstract

Annual monitoring of the spatial distribution of cultivated land is important for maintaining

the ecological environment, achieving a status quo of land resource management, and

guaranteeing agricultural production. With the gradual development of remote sensing tech-

nology, it has become a common practice to obtain cultivated land boundary information on

a large scale with the help of satellite Earth observation images. Traditional land use classifi-

cation methods are affected by multiple types of land cover, which leads to a decrease in the

accuracy of cultivated land mapping. In contrast, although the current advanced methods

(such as deep learning) can obtain more accurate cultivated land mapping results than tradi-

tional methods, such methods often require the use of a massive amount of training sam-

ples, large computing power, and highly complex model tuning processes, increasing the

cost of mapping and requiring the involvement of more professionals. This has hindered the

promotion of related methods in mapping institutions. This paper proposes a method based

on time series vector features (MTVF), which uses vector thinking to establish the features.

The advantage of this method is that the introduction of vector features enlarges the differ-

ences between the different land cover types, which overcomes the loss of mapping accu-

racy caused by the influences of the spectra of different ground objects and ensures the

calculation efficiency. Moreover, the MTVF uses a traditional method (random forest) as the

classification core, which makes the MTVF less demanding than advanced methods in

terms of the number of training samples. Sentinel-2 satellite images were used to carry out

cultivated land mapping for 2020 in northern Henan Province, China. The results show that

the MTVF has the potential to accurately identify cultivated land. Furthermore, the overall

accuracy, producer accuracy, and user accuracy of the overall study area and four sub-

study areas were all greater than 90%. In addition, the cultivated land mapping accuracy of

the MTVF is significantly better than that of the maximum likelihood, support vector

machine, and artificial neural network methods.
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Introduction

Cultivated land is one of the main types of land cover, and it is a key component of human

food production. At present, the world’s cultivated land feeds more than seven billion people.

Due to rapid population growth, the development of cultivated land far exceeds its carrying

capacity. Therefore, monitoring the annual spatial distribution of cultivated land is an impor-

tant prerequisite for protecting the ecological environment [1], establishing a new status quo

in land resource management [2], and guaranteeing agricultural production [3–8]. The mas-

tery of annual cultivated land mapping data has become an important research topic.

Satellite remote sensing technology has gradually become one of the main methods for cul-

tivated land mapping due to its timeliness, low cost, and large-scale observation capabilities.

At present, with the help of remote sensing observation archives, many global cultivated land

mapping products and global land cover mapping products containing cultivated land map

layers have been released, including the finer resolution observation and monitoring of global

land cover (FROM–GLC) [9, 10], GlobeLand 30 [11], data and information system global land

cover (DISCover) [12], and moderate resolution imaging spectroradiometer (MODIS) [13, 14]

land cover products. However, the above products are only available for certain years (such as

2015 and 2020), and thus, they do not meet the requirements for annual cultivated land map-

ping. Furthermore, due to the limitations of the spatial scales of the existing global cultivated

land mapping products, the definition of cultivated land often fails to take into account the

local scale. Sustainable development research, food security, and other fields have created new

requirements for higher resolution, high precision, and local cultivated land monitoring data.

There are various methods for cultivated land mapping based on remote sensing observa-

tion data, including traditional supervised classification models (e.g., the maximum likelihood

method [15], support vector machines [16], and artificial neural networks [17]) and advanced

methods (e.g., deep learning [18] and artificial immune networks [19]). However, regarding

the cultivated land mapping process, the existing methods still encounter many limitations.

For example, traditional methods are susceptible to the effects of multiple land cover types,

resulting in a decrease in the accuracy of cultivated land surveying and mapping [20]; whereas

advanced methods (e.g., deep learning) need to rely more on massive training samples, super-

computing power, and complex model tuning [21, 22]. Establishing a simple but reliable

method is the key to cultivated land mapping research.

The selection of data for cultivated land mapping is also important. One feasible idea is to

use time series data. Many studies have shown that multi-spectral remote sensing images

based on time series sequences are an effective means of large-scale, long-term, continuous

agricultural remote sensing mapping [23, 24]. Multispectral remote sensing image data based

on time series can overcome the influences of various factors, such as the weather, and can

provide a data basis for continuous crop growth curve extraction [25, 26]. Time series analysis

combined with the vegetation index is also an effective idea for cultivated land mapping. As

the most widely used characteristic parameter to describe vegetation phenological changes

[27], the vegetation index time series can reflect the dynamic changes in different crop types

over time. The vegetation index based on time series multi-spectral remote sensing image data

reflects the dynamic changes in different crop types over time.

Based on the above discussion, a method based on time series vector features (MTVF) is

proposed in this article. The core of this method is to use a time series based on spectral and

vegetation indices as a vector and to extract the vector features to distinguish the differences

between cultivated land and other land cover types. The purposes of this approach are as fol-

lows. 1) This approach can widen the difference between other land cover types and cultivated

land and reduce the impact of spectral overlap. 2) Compared with deep learning methods, the
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proposed method requires fewer training samples and less computing power, and thus, it can

significantly improve the efficiency of cultivated land mapping. In this study, Sentinel-2 satel-

lite data were used to generate a 10-m spatial resolution cultivated land map because these data

have a short revisit period and contain rich red-edge band information. This method was

applied to the study area in the northern part of Henan Province, China, to verify its applica-

bility to cultivated land mapping. In addition, four sub-study areas located in different land-

scapes within the study area were established to evaluate the cultivated land maps. Finally, the

MTVF was compared with three traditional supervised classification models (the maximum

likelihood, support vector machine, and artificial neural network models) to evaluate the

advantages of this method in cultivated land mapping.

Study area

In this study, a 50 km × 50 km area in the northern part of Henan Province was selected as the

study area (Fig 1). The selection of this location was mainly based on the following factors: (i)

the diversity of the plant types, (ii) the complexity of the land cover, (iii) the presence of multi-

ple types of topography, and (iv) the heterogeneous spatial distribution of the grain yield.

Henan Province, which is located in the central part of China, is one of the country’s major

grain cultivation areas. According to official statistics [28], the total cultivated land area in

Henan Province was about 14.68×106 hectares in 2019, an increase of about 2.01% compared

to that in 2012. The northern part of Henan Province has a warm, temperate, monsoon cli-

mate, with an average annual rainfall of 500–900 mm and an average annual sunshine duration

of 1285.7–2292.9 h, which makes it suitable for the growth of a variety of crops. Agricultural

production activities in this area are affected by many factors, such as the water resources [29],

labor per unit area, and urbanization rate [30].

To evaluate the effectiveness of the cultivated land mapping, four sub-areas within the

study area were selected. Sub-study area A (LZ) was located in Linzhou County. LZ was

located in the Taihang Mountains, and it contained a large amount of abandoned land, as well

as abundant grass, woodland, and other natural vegetation. This was the main reason that LZ

was selected as a sub-study area. Sub-study area B (XX) was located in the city of Xinxiang.

The reason for choosing XX was mainly to consider the impact of open-pit mines on cultivated

land. Sub-study area C (HB) was located in the city of Hebi. The natural grassland in HB was

very lush, and the distribution of the cultivated land landscape was relatively fragmented.

Experimentation in this area helped us to analyze the ability of the algorithm to separate grass-

land and cultivated land. Sub-study area D (WH) was located in Weihui County and contained

large grape plantations. WH was selected to analyze the ability of the algorithm to strip

orchards (grapes) in the process of cultivated land mapping. All of the sub-study areas were

delimited by a 3 km × 3 km rectangle, and the winter wheat-summer corn rotation pattern was

dominant in the four sub-study areas.

Data preparation

Satellite data

Sentinel-2 is a polar-orbit, high-resolution, multi-spectral imaging mission for terrestrial mon-

itoring. It consists of two satellites, Sentinel-2A and Sentinel-2B, which are each equipped with

a multi-spectral imager (MSI). Sentinel-2 satellite data includes data for 13 spectral bands,

ranging from visible and near-infrared light to short-wave infrared light, with a ground resolu-

tion of up to 10 m (Table 1). Since the Sentinel-2 satellite can provide data in three spectral

bands within the red-edge range and the data update cycle is 5 days (two satellites for monitor-

ing), the Sentinel-2 satellite data have advantages relevant to vegetation time series monitoring.
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All of the data collected by the Sentinel-2 satellite can be downloaded from the European

Space Agency (ESA) Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/

#/home).

Since the main planting pattern in the study area was the rotation of winter wheat and sum-

mer corn, October (the winter wheat was sown in the study area during this month) was

selected as the annual time node. Based on this idea, we selected 12 scenes of Sentinel-2 images

from October 2019 to September 2020 (Table 2). The scenes were selected to be as cloudless,

fogless, and evenly distributed in each month as possible. These image data served as the basis

for constructing the vegetation index time series.

It should be noted that Sentinel-2 images acquired in the middle of each month were

selected to ensure the uniform distribution of the time series. Still, the acquisition times of

Fig 1. Study area. Note: The pseudo-color image (R: NIR, G: Red, B: Green) presented in the figure is a Landsat-8 image acquired on March 19, 2020

(https://landsat.visibleearth.nasa.gov/), this Landsat image is similar but not identical to the original image used in the study. The digital elevation image

is an advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM) Version 3 image (https://

earthdata.nasa.gov/learn/articles/new-aster-gdem), and the digital elevation imagery legend is in meters.

https://doi.org/10.1371/journal.pone.0272300.g001
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some of the images changed to avoid excessive cloud cover. For example, the acquisition times

of the October and December 2019 images were later in the month, and the acquisition times

of the June and July 2020 images were in the early part of the month. The L2A level Sentinel-2

images were obtained from the ESA Copernicus Open Access Hub and had already been sub-

jected to official ESA geometric and atmospheric corrections (see https://sentinel.esa.int/web/

sentinel/user-guides/sentinel-2-msi/processing-levels/level -2), so they could be directly used

to calculate the vegetation index.

Collection of reference data

Reference land cover classes in study area. To investigate the algorithm’s ability to sepa-

rate cultivated land from other land cover types, based on the results of field investigations and

the land cover classification system developed by the Chinese Academy of Sciences, the main

land cover types in the study area were determined.

• Cultivated land: This refers to the land on which crops are grown, including food crops and

some vegetables. It should be noted that fruit plantations were not included in this category,

because in the study area, orchards were not the main form of agriculture and were also

under the jurisdiction of the local forestry management department.

Table 1. Spectral bands of the Sentinel-2 sensors (Sentinel-2A and Sentinel-2B).

Sentinel-2 Bands S2A S2B Spatial resolution (m)

Central wavelength (nm) Bandwidth (nm) Central wavelength (nm) Bandwidth (nm)

Band 1—Coastal aerosols 442.7 21 442.2 21 60

Band 2—Blue 492.4 66 492.1 66 10

Band 3—Green 559.8 36 559.0 36 10

Band 4—Red 664.6 31 664.9 31 10

Band 5—Vegetation red edge 704.1 15 703.8 16 20

Band 6—Vegetation red edge 740.5 15 739.1 15 20

Band 7—Vegetation red edge 782.8 20 779.7 20 20

Band 8—NIRa 832.8 106 832.9 106 10

Band 8A—Vegetation red edge 864.7 21 864.0 22 20

Band 9—Water vapor 945.1 20 943.2 21 60

Band 11—SWIRb 1373.5 31 1376.9 30 60

Band 12—SWIR 1613.7 91 1610.4 94 20

a NIR refers to the near infrared band.
b SWIR refers to the shortwave infrared band.

https://doi.org/10.1371/journal.pone.0272300.t001

Table 2. Sentinel-2 image acquisition dates.

Image acquisition date Satellite Image acquisition date Satellite

10/30/2019 S2B 5/17/2020 S2B

11/14/2019 S2A 6/6/2020 S2B

12/29/2019 S2B 7/6/2020 S2B

1/28/2020 S2B 8/30/2020 S2A

2/17/2020 S2B 9/4/2020 S2B

3/18/2020 S2B 9/19/2020 S2A

4/17/2020 S2B

https://doi.org/10.1371/journal.pone.0272300.t002
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• Woodland: This refers to forestry land where trees, shrubs, bamboo, and orchards grow.

• Grassland: This refers to land dominated by natural herbaceous plants. The study area did

not contain artificial grassland, so it was not considered.

• Water: This refers to natural terrestrial water area and land used for water conservancy facili-

ties, such as rivers, artificial canals, lakes, ponds, and pools.

• Artificial construction land: This refers to urban, rural, industrial, mining, and residential

land.

• Bare land: This refers to land and rocks with vegetation coverage of less than 5%. In the

study area, rock exposed by mining was also included in this type.

Collection of training and validation samples. We collected training and validation sam-

ples in the study area in the form of pixels. In order to obtain the above information, we com-

bined a field survey (May 2021) and a visual inspection of very-high-resolution (VHR) images

from Google Earth and unmanned aerial vehicle (UAV) field measurements, the VHR image

from Google Earth was acquired on December 31, 2019, and the VHR images from the UAV

were acquired on May 11–14, 2021. December and May were chosen because of the agricul-

tural characteristics of the study area. December is the emergence period of winter wheat, so it

is possible to effectively distinguish cultivated land from other vegetation in this month. May

is the maturity period of wheat, so it is convenient to screen non-vegetation covered land types

in this month. During the field investigations, the coordinates and attribute information about

the ground objects were mainly recorded using a handheld global positioning system (GPS).

To overcome the inaccuracy caused by the different years, the samples were screened by man-

ually comparing the 2021 VHR images acquired using the UAV and the Sentinel-2 images to

ensure that the attributes of the sample points were consistent with the actual land cover types

in 2020. In the study area, 698 and 14,158 well disturbed pixels were used as training samples

and verification samples, respectively (Fig 2). Although including more training samples

would have had a positive effect on the remote sensing supervised classification calculations,

we used fewer training samples in order to verify the advantages of our algorithm. For super-

vised classification, the general rule is that the number of training samples per class should be

10–30 times the input image band [31–33]. Therefore, in this paper, ten times the number of

bands of the Sentinel-2 satellite imagery was used as the reference value. Training samples for

each surface coverage category were selected from the collected samples, and the remaining

samples were used as the verification samples. However, the distributions of the water and

bare land in the study area were limited, so only 70 pixels were selected as training samples for

each of these two land cover types.

In order to verify the accuracy of the results for the four sub-study areas, several pixels were

collected from each sub-study area as verification samples. According to the ground truth,

these pixels were labeled as 1 (cultivated land) or 0 (non-cultivated land). The distribution of

the samples is shown in Table 3.

Methods

Methodological overview

Fig 3 summarizes the method of annual cultivated land mapping using time series vector fea-

tures. First, we extracted each band value from the Sentinel-2 satellite images with different

acquisition times and calculated the 23 vegetation indices for the corresponding times. The

selection of the vegetation indices mainly followed the principle that the Sentinel-2 image
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bands could be generated and verified in practice. The time series of multiple spectra and the

time series of multiple vegetation indices (Table 4) were used as vectors for the subsequent cal-

culations (see Vector Construction). Five parameters (i.e., the cosine, distance, maximum,

minimum, and range of each vector) were calculated (see Feature Extraction). Then, we calcu-

lated the importance score of each parameter (based on the random forest model) to evaluate

the contribution of each parameter to the cultivated land mapping and to provide a thorough

analysis and discussion. By sorting and grouping the importance scores of the parameters and

calculating the performances of the different groupings in terms of the random forest

Fig 2. Numbers of training samples and validation samples for each type of land cover.

https://doi.org/10.1371/journal.pone.0272300.g002

Table 3. Numbers of verification samples in the four sub-study areas (pixels).

Land cover classification Cultivated land Non-cultivated land Total

LZ 837 1044 1881

XX 153 1213 1366

HB 952 1969 2921

WH 2381 1552 3933

https://doi.org/10.1371/journal.pone.0272300.t003
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prediction accuracy and the out-of-bag error, several optimal parameters that could be used in

the calculations for the cultivated land mapping in the study area were determined. The num-

ber of trees was also determined in this manner (see Random Forest Model). The training sam-

ples and optimal parameters were introduced into the random forest classification algorithm

to generate the cultivated land map layer in the next step. Finally, the classification accuracy of

the cultivated land map was evaluated through the verification sample and compared with the

results obtained using other algorithms (i.e., the maximum likelihood, support vector

machine, and artificial neural network methods; see Other Classification Models and Accuracy

Assessment).

Fig 3. Work flow of the proposed method (the vector parameters included Cos, Dis, Max, Min, and Ran).

https://doi.org/10.1371/journal.pone.0272300.g003
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Vector construction

The parameters used to build the vector included the Sentinel-2 satellite band value and vege-

tation indices. The reflectivity characteristics of the different features in each wavelength range

were dissimilar. Thus, the 13 bands of the Sentinel-2 satellite were used as the radiation param-

eters to establish the vector, and these data were normalized. Furthermore, a total of 23 vegeta-

tion indices (Table 4) were selected as the vegetation index parameters for the cultivated land

mapping. The selection of the vegetation indices mainly followed two rules: 1.) they can be

produced from the bands of the Sentinel-2 satellite images; and 2.) they have been verified in

practice. These vegetation indices were calculated using the ESA Sentinel Application Platform

(SNAP) software (http://step.esa.int/main/toolboxes/snap/). All of the radiation parameters

and vegetation index parameters were constructed as vectors in the form of time series and

can be expressed as follows:

Vp
!
¼

pOct
pNov

pDec

..

.

pSept

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

; ð1Þ

where Vp
!

is the time series vector of parameter p from October 2019 to September 2020.

Feature extraction

Vector features can be used as significant parameters for remote sensing image classification,

including the vector angle [56, 57], vector distance [58], and extreme value [59–61]. Therefore,

we established five parameters: the cosine, distance, maximum, minimum, and range based on

the vector Vp
!

.

Table 4. Selected vegetation indices.

Vegetation index Reference Vegetation index Reference

Soil Adjusted Vegetation Index (SAVI) [34] Atmospherically Resistant Vegetation Index (ARVI) [45]

Transformed Soil Adjusted Vegetation Index (TSAVI) [35, 36] Normalized Difference Index (NDI 45) [46]

Modified Soil Adjusted Vegetation Index (MSAVI) [37] Meris Terrestrial Chlorophyll Index (MTCI) [47]

Second Modified Soil Adjusted Vegetation Index (MSAVI 2) [37] Modified Chlorophyll Absorption Ratio Index (MCARI) [48]

Difference Vegetation Index (DVI) [38] Sentinel-2 Red-Edge Position Index (S2REP) [49]

Ratio Vegetation Index (RVI) [39] Inverted Red-Edge Chlorophyll Index (IECI) [50]

Perpendicular Vegetation Index (PVI) [40] Pigment Specific Simple Ratio (PSSR) [51]

Infrared Percentage Vegetation Index (IPVI) [41] Normalized Difference Vegetation Index (NDVI) [52]

Weighted Difference Vegetation Index (WDVI) [42] Modified Red Edge Normalized Difference Vegetation Index (NDVI705) [53]

Transformed Normalized Difference Vegetation Index (TNDVI) [38] Enhanced Vegetation Index (EVI) [54]

Green Normalized Difference Vegetation Index (GNDVI) [43] 2-Band Enhanced Vegetation Index (EVI2) [55]

Global Environmental Monitoring Index (GEMI) [44]

https://doi.org/10.1371/journal.pone.0272300.t004
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By analyzing each time series vector, three features were established:

Maxp ¼ max pOct; pNov; . . . ; pSpet
� �

; ð2Þ

Minp ¼ min pOct; pNov; . . . ; pSpet
� �

; ð3Þ

Ranp ¼ Maxp � Minp; ð4Þ

where Maxp, Minp, and Ranp are the maximum, minimum, and range of time series vector Vp
!

,

respectively. To extract the characteristics of each time series vector, a unit vector was estab-

lished as a reference:

V0

!
¼

1

1

1

..

.

1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð5Þ

Then, two features were established:

Cosp ¼
P

V0

!
Vp
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðV0

!
Þ

2P
ðVp
!
Þ

2

q ; ð6Þ

Disp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðV0

!
� Vp
!
Þ

2

q

; ð7Þ

where Cosp and Disp are the cosine and distance of the angle between the timing vector Vp
!

and

the reference vector V0

!
, respectively.

Random forest model

The random forest (RF) model is a machine learning classifier that combines multiple decision

trees [62]. The random forest classification process can be described as follows:

Step 1. The bootstrap sampling method is used to randomly select training samples with

replacement.

Step 2. Step 2. Set the corresponding decision tree model for each training sample and con-

tinue to split until all the training samples of the node are of the same type.

Step 3. The generated multiple decision trees are formed into a random forest, and the optimal

classification is determined according to the voting probability.

In this study, the importance score, out-of-bag error, prediction accuracy, and classification

calculations were performed using the random forest model. The importance score was used

to determine the contribution of each feature to the cultivated land mapping. The out-of-bag

error and prediction accuracy were used to select the feature set and to determine the number

of trees in the random forest. All of the calculations were based on the Scikit-learn [63]

machine learning algorithm library built in the Python language.
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Importance score. The Gini coefficient generated by the random forest algorithm was

used to compare the contributions of the individual features to the cultivated land mapping.

The classification and regression tree method was integrated with the RF to provide the Gini

coefficient for the next split. Thus, the importance of each feature was expressed as follows:

If ¼
Xn

i¼1

Xk

j¼1

DG; ð8Þ

DG ¼ G � GL þ GRð Þ; ð9Þ

Sf ¼
If
I
; ð10Þ

where G is the Gini coefficient before the split, and GL and GR are the Gini coefficients of the

left and right branches after the split. It is assumed that there are a total of n trees in the forest

that use feature f, and the number of splits of each tree is k. If is the importance, and I is the

sum of the importance of all of the features. Sf is the importance score of feature f, which is the

normalized value of If.
Out-of-bag error. A significant advantage of the random forest model is that it can build

an unbiased estimate of the error internally, which is called the out-of-bag error (oob). For

each tree, the randomly selected samples were approximately 63.2% of the total number of

samples, and the remaining approximately 36.8% of the samples were designated as the oob

samples of this tree. The oob of a random forest is the mean value of the oob of all of the trees

in the model.

Feature selection

An excessive number of features leads to higher computational costs and redundancy, so it is

necessary to select appropriate features to participate in the next step of the calculation. In this

study, the feature selection mainly included three steps. First, all of the parameters were sorted

according to their importance scores to obtain their distribution characteristics. Then, all of

the parameters were grouped according to their distribution characteristics to obtain several

feature groups. Finally, all of the feature groups were input into the random forest model, the

performances of the prediction accuracy and oob were calculated for different numbers of

trees, and the group with the highest prediction accuracy and the smallest out-of-band error

was selected as the feature group.

Other classification models

To evaluate the cultivated land mapping model developed in this study, the maximum likeli-

hood model, support vector machine model, and artificial neural network model were intro-

duced for comparison. The same training and validation samples used in the MTVF were used

in all of the traditional models to ensure the objectivity of the cultivated land mapping results

of the comparison of the different models. The values of the parameters of each model were set

within the range recommended by the developer because this is generally considered to be a

safe practice [64].

Maximum likelihood model. The maximum likelihood model is one of the most widely

used supervised classification models. It is a theoretical point estimation algorithm. The maxi-

mum likelihood model assumes that the distributions of the various types of data in each band

are Gaussian, and each peak represents a unique feature category. Based on the training
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samples, the statistics of the normal distribution are obtained, and then, the probability of each

pixel belonging to a different normal distribution is calculated. Finally, the pixel is classified

into the category with the largest probability. The classification results of the maximum likeli-

hood model have the advantages of stability, reliability, algorithm simplicity, high accuracy,

and fast calculation times [15].

Support vector machine model. The concept of the support vector machine (SVM) was

first proposed by Cortes and Vapnik [16]. It maps the vector to a higher dimension and imple-

ments classification by introducing a kernel function to map the sample data in the low-

dimensional feature space to the high-dimensional feature space. In recent years, support vec-

tor machine models have been widely used for the segmentation, fusion, and classification of

high-spatial-resolution images [65].

Artificial neural network model. The artificial neural network model is a non-parametric

classification method with a good adaptability and a complex mapping capability. By mimick-

ing the brain’s structure and functions, it realizes non-linear data pattern recognition and can

effectively combine the spectral and textural features of images to improve the classification

accuracy [17, 66, 67].

Accuracy assessment

A confusion matrix was used to assess the accuracy of the cultivated land mapping. In this

study, the accuracy of the producer (PA), the accuracy of the user (UA), the overall accuracy

(OA), the kappa coefficient of variation (kappa), and the ground truth (by pixel) were chosen

as the indices to measure the cultivated land mapping ability of each algorithm.

Results

Importance score of features

By calculating a total of 180 features, the 50 most important features are listed in Table 5.

Among all of the features, Band 12 and Band 8A exhibited advantages in cultivated land map-

ping, with importance scores of 0.1723 and 0.1368, respectively. Among the top 10 parameters

(importance scores of> 0.02), five of the parameters were based on the band value of the

image, and the other five parameters were based on the vegetation indexes. The parameters

characterized by the vector angle and the vector distance occupied dominant positions in the

top 10 ranking of the importance. For the vegetation indexes, the normalized difference vege-

tation index (NDVI705, importance score of 0.0526) made the largest contribution to the culti-

vated land mapping, followed by the atmospherically resistant vegetation index (ARVI,

importance score of 0.0516) and green normalized difference vegetation index (GNDVI,

importance score of 0.0440). There were 26 features with importance scores greater than the

average score (1/180� 0.0056).

Feature selection results

The visualization of the importance score from high to low (Fig 4) shows that the importance

scores exhibited three nodes: 0.1, 0.04, and 0.02. Based on this, four feature groups were estab-

lished in this study: Group A (importance scores of> 0.1), Group B (importance scores

of> 0.04), Group C (importance scores of> 0.02), and Group D (importance scores of> 0).

The four feature groups were input into the random forest model to obtain the prediction

accuracy and to determine the changes in the oob (Fig 5). The results revealed that Group C

had the highest prediction accuracy and the lowest oob. Therefore, the features with impor-

tance scores of> 0.02 were selected, and the number of trees was set to 400.
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Accuracy assessment of cultivated land mapping

Entire study area. The MTVF exhibited a strong ability to map cultivated land in the

study area, and its OA, PA, UA, and kappa coefficient performance reached higher levels

(accuracy > 90%, kappa coefficient > 0.85) (Table 6). Compared with other land types, the

mapping accuracies (PA and UA) of the cultivated land were both the highest. The classifica-

tion accuracies (PA and UA) of the grassland, woodland, and water bodies were also relatively

high. The classification accuracies (PA and UA) of the artificial construction land and bare

land were worse than those of the other land cover types. In particular, the UA of the artificial

construction land was 73.95%, and the PA of the bare land was 61.67%. Thus, the classification

of these land cover types was considered to have a poor accuracy (accuracy<75%). These land

cover types may have been affected by the input features because the input features were

selected specifically for cultivated land mapping.

Sub-study areas. In the four sub-study areas, the MTVF also yielded a strong cultivated

land mapping accuracy (Table 7). The mapping accuracies of the cultivated land in the LZ and

HB areas were the highest of the four sub-study areas, indicating the robustness of the method

in distinguishing cultivated land from grassland and woodland. The UA and PA values of area

XX were the lowest of the four sub-study areas, indicating that some of the cultivated land was

incorrectly classified into other ground feature categories. The reason for the lower accuracy

in area XX was that this area was also affected by dense and fragmented patterns and mixed

Table 5. Top 50 features (from high to low) in terms of the importance score.

Rank Feature Importance score Rank Feature Importance score

1 B12_Cos 0.1723 26 NDI 45_Dis 0.0058

2 B8A_Dis 0.1368 27 ARVI_Dis 0.0053

3 NDVI705_Min 0.0526 28 IRECI_Cos 0.0052

4 ARVI_Cos 0.0516 29 REIP_Cos 0.0051

5 B7_Dis 0.0462 30 TNDVI_Ran 0.0051

6 GNDVI_Cos 0.0440 31 NDI 45_Ran 0.0050

7 PVI_Dis 0.0440 32 MCARI_Dis 0.0048

8 GEMI_Dis 0.0399 33 RVI_Cos 0.0048

9 B6_Ran 0.0347 34 B8_Max 0.0045

10 B11_Dis 0.0298 35 B11_Cos 0.0045

11 B9_Dis 0.0146 36 TSAVI_Ran 0.0042

12 B1_Min 0.0138 37 NDVI705_Ran 0.0040

13 NDI 45_Cos 0.0135 38 MTCI_Max 0.0039

14 B1_Ran 0.0128 39 B8A_Max 0.0039

15 TSAVI_Dis 0.0126 40 B7_Cos 0.0038

16 B1_Dis 0.0124 41 B2_Min 0.0038

17 B4_Min 0.0116 42 MSAVI_Max 0.0038

18 B8_Dis 0.0114 43 B12_Ran 0.0036

19 TSAVI_Min 0.0111 44 MCARI_Min 0.0034

20 WDVI_Ran 0.0100 45 PVI_Ran 0.0032

21 B11_Min 0.0092 46 GNDVI_Dis 0.0030

22 B5_Dis 0.0070 47 B3_Max 0.0029

23 B1_Cos 0.0069 48 B1_Max 0.0029

24 MCARI_Ran 0.0067 49 PSSRA_Ran 0.0029

25 B12_Max 0.0064 50 B6_Cos 0.0028

https://doi.org/10.1371/journal.pone.0272300.t005
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Fig 4. Bar graph of the top 50 features in terms of the importance score.

https://doi.org/10.1371/journal.pone.0272300.g004

Fig 5. Influences of the different feature group inputs on the classification results of the random forest model: a) relationship between the model

prediction accuracy and the number of trees; and b) relationship between the out-of-bag error and the number of trees.

https://doi.org/10.1371/journal.pone.0272300.g005
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pixels. The results for area WH show that the method proposed in this paper is affected by arti-

ficial orchard features to a certain extent.

Comparison with other classification models

Fig 6 shows the difference between the cultivated land mapping results of the MTVF and the

other models (i.e., the maximum likelihood (ML), support vector machine, and artificial neu-

ral network (ANN) models). From the perspective of the entire study area, the MTVF and ML

had the best cultivated land mapping effects, and the large area of cultivated land located in a

flat area could be distinguished with distinct boundaries. The difference between the cultivated

land mapping capabilities of the MTVF and ML was mainly reflected in the mountainous

areas (northwestern part of the entire study area), in which the ML contained more speckle

noise, and much of the grassland was misclassified as cultivated land. In contrast, the ANN

and SVM could not effectively filter out the cultivated land pixels in the study area, and the

SVM had the worst cultivated land mapping ability. In the four sub-study areas, the SVM had

the worst cultivated land mapping ability of all of the models and was not included in the sub-

sequent comparison. In area LZ, the MTVF effectively distinguished several regular artificial

forest land areas connected to cultivated land. Although the ANN and ML also exhibited this

ability, some of the plantation pixels were still mistakenly classified as cultivated land. In area

XX, broken patches and mixed pixels were the main factors that affected the accuracy of the

cultivated land mapping. The ANN and ML had a limited ability to overcome these influenc-

ing factors. Therefore, the ANN and ML misclassified woodland and grassland in this sub-

study area and generated more speckle noise. In area HB, the MTVF, ML, and ANN effectively

avoided the influence of the grassland, but only the MTVF distinguished between the wood-

land pixels and cultivated land pixels. In the WH, the MTVF effectively avoided the impact of

the roads between the cultivated land and retained wider country roads. However, the MTVF

failed to completely avoid the impact of the orchards and the orchards were mistakenly classi-

fied as cultivated land.

Table 6. Accuracy assessment of the cultivated land mapping conducted using the method based on time series

vector features (MTVF) for the entire study area.

Class PA (%) UA (%)

Cultivated land 99.41 97.66

Woodland 96.04 96.92

Grassland 84.37 92.46

Water 86.98 96.55

Artificial construction land 93.35 73.95

Bare land 61.67 91.70

OA (%) 90.22

Kappa coefficient 0.8792

https://doi.org/10.1371/journal.pone.0272300.t006

Table 7. Accuracy assessment of cultivated land mapping using the MTVF in the sub-study areas.

Sub-study area OA (%) UA (%) PA (%) Kappa coefficient

LZ 99.95 99.9 99.89 0.9989

XX 98.83 89.54 98.7 0.9382

HB 99.72 99.27 99.89 0.9938

WH 97.64 96.54 99.66 0.9501

https://doi.org/10.1371/journal.pone.0272300.t007
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The MTVF was compared with other classification models. From the perspective of the

classification accuracy (Table 8), the MTVF, ANN, and ML all produced cultivated land maps

with good accuracies. Their accuracies were greater than 75%, and their kappa coefficients

were greater than 0.75. The cultivated land map generated by the SVM model had the worst

accuracy. The SVM’s accuracy was not only the worst for the entire study area, but its accuracy

performances in the four sub-study areas were also inferior to those of the other methods. In

sub-study area XX, although the ANN achieved the highest OA and kappa coefficients, the

MTVF achieved better UA and PA values. In general, the MTVF exhibited a better perfor-

mance in cultivated land mapping than the other models.

In this study, the statistics of the ground truth (pixels) in the confusion matrices of the culti-

vated land maps produced using the various methods were computed (Table 9). The cultivated

land maps produced using the MTVF were the least affected by the other types of ground fea-

tures. The impact of the woodland was dominant, but the artificial construction land and

grassland also had impacts. Factors such as artificially planted forests in cultivated land, field

ravines, and rural residential land boundaries were the reasons for the loss of accuracy of the

MTVF. The ANN and SVM exhibited a weak ability to avoid the influence of the woodland,

Fig 6. Comparison of cultivated land mapping for 2020. Note: the remote sensing image shown in this figure is a pseudo-color (R: NIR, G: Red, B:

Green) Landsat 8 image acquired on March 19, 2020, and the cultivated land pixels are displayed in green. The image in Fig 6 is similar but not identical

to the original figure used in the study, and therefore, it is presented for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0272300.g006
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and the ANN model was also more susceptible to the influence of the grassland. In general, the

forest land, grassland, and artificial construction land were the factors that affected the map-

ping of the cultivated land because there were often a large number of mixed pixels between

the cultivated land in northern Henan and the above surface cover types, which led to misclas-

sification. By limiting the impacts of these types of land, the MTVF achieved better results.

Discussion

In this study, vector thinking was a core concept, and an MTVF that uses time series multi-

spectral data for annual cultivated land mapping was developed. The feature extraction of the

time series vectors was the core of this research. In this study, by introducing unit vectors, we

extracted five features of each time series vector: Maxp (the maximum value inside vector p),

Minp (the minimum value inside vector p), Ranp (the difference between Maxp and Minp),
Cosp (the cosine of the angle between time series vector p and the unit vector), and Disp (the

Table 8. Comparison of the accuracies of the MTVF and the other classification models.

Sub-study area Model OA (%) UA (%) PA (%) Kappa coefficient

Entire study area MTVF 90.22 99.41 97.66 0.8792

ANN 82.77 93.38 72.04 0.7888

ML 79.82 98.62 95.36 0.7555

SVM 73.01 64.2 52.91 0.6674

LZ MTVF 99.95 99.9 99.89 0.9989

ANN 98.25 98.57 97.51 0.9645

ML 99.2 98.45 99.76 0.9838

SVM 81.87 59.38 75.42 0.6176

XX MTVF 97.43 98.04 99.75 0.8811

ANN 98.83 89.54 98.7 0.9382

ML 97.88 81.05 97.67 0.8836

SVM 69.39 5.23 8.32 0.0892

HB MTVF 99.72 99.27 99.89 0.9938

ANN 98.21 95.36 99.37 0.9599

ML 98.39 96.85 98.19 0.9633

SVM 89.11 77.61 93.59 0.7647

WH MTVF 97.64 96.54 99.66 0.9501

ANN 93.64 90.53 83.96 0.8632

ML 93.01 89.65 82.28 0.849

SVM 90.13 86.81 98.7 0.7857

https://doi.org/10.1371/journal.pone.0272300.t008

Table 9. Statistical comparison of the ground truth (pixels) of the MTVF and the other classification models.

Model Cultivated land Grassland Woodland Artificial construction land Water Bare land

MTVF 2674 5 63 12 0 0

ANN 2512 50 1084 16 3 0

ML 2653 14 128 24 0 0

SVM 1727 15 2469 15 1 0

Note: Cultivated land denotes the number of pixels that were correctly classified as cultivated land; and Grassland, Woodland, Artificial construction land, Water, and

Bare land denote the sums of the number of pixels that were incorrectly classified as cultivated land and the cultivated land that was incorrectly classified as each

category.

https://doi.org/10.1371/journal.pone.0272300.t009
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distance between time series vector p and the unit vector). The features extracted from the dif-

ferent time series vectors effectively reduced the misclassification of land cover types caused by

similar spectra and enlarged the differences between the land cover types and cultivated land.

In the MTVF, the selection of the features is very important. Selecting too few features can-

not provide a sufficient classification basis for the classification model, and selecting too many

features will lead to redundancy. In this study, the Gini coefficient was introduced to measure

the importance of the different characteristics to the cultivated land mapping. Statistical analy-

sis of the importance of each feature revealed that B12_Cos (importance score of 0.1723) and

B8A_Dis (importance score of 0.1368) had the most significant Gini importance scores, indi-

cating that the shortwave infrared band (Band 12) and the red edge band (Band 8A) made rela-

tively large contributions to the cultivated land mapping. Among the vegetation index

parameters, the NDVI705_Min (importance score of 0.0526, ranked third) and ARVI_Cos

(importance score of 0.0516, ranked fourth) had the highest importance scores. Traditional

vegetation indices such as the normalized vegetation index (NDVI) and the enhanced vegeta-

tion index (EVI) did not have high importance scores in this study. This phenomenon revealed

that non-traditional vegetation indices can also be valuable in cultivated land mapping, which

is similar to the results of several previous studies [68, 69]. The parameters characterized by

the vector angle and vector distance dominated the 10 most important parameters, indicating

that spatial features based on time series vectors can reflect the differences between cultivated

land and other land use types better than vector extreme value features. It should be noted that

for different research areas, changes in the types of land cover will also lead to changes in the

importance of the features. When conducting cultivated land mapping in different research

areas, it is necessary to reassess the importance of these features [70].

In this study, the accuracy of the cultivated land mapping conducted using the MTVF was

evaluated in the entire study area and in four sub-study areas. It was found that the cultivated

land map obtained using the MTVF had the highest accuracy compared to the traditional clas-

sification models (i.e., the maximum likelihood, artificial neural network, and support vector

machine models). The cultivated land map obtained using the MTVF had the lowest error and

limited the effects of mixed pixels to a certain extent (Fig 6). However, the MTVF was still sub-

ject to interference from mixed pixels, resulting in some uncertainty in its ability to perform

cultivate land mapping. In the study area, affected by the traditional farming practices in

northern China, the distribution of cultivated land in some areas was irregular. There was cul-

tivated land within villages and near mountain ravines, and trees were also planted in the culti-

vated land. The aforementioned areas with heterogeneous landscapes led to a large number of

mixed pixels, resulting in errors in the mapping of the cultivated land [19, 71]. The spectral

confusion between the woodland and cultivated land also contributed to the uncertainty of the

cultivated land map obtained using the MTVF. In sub-study area WH, the spectral confusion

between the cultivated land and orchards contributed to the misclassification of the MTVF to

some extent (Fig 6).

Conclusions

In this study, a simple and effective method for cultivated land mapping was developed. The

MTVF has a stronger ability to eliminate the influences of other vegetation. By introducing

vector thinking, an MTVF was developed. The cultivated land mapping performance of the

MTVF was evaluated in the entire study area and in four sub-study areas, The main conclu-

sions of this study are as follows.

1. The MTVF has a high potential for cultivated land mapping and achieved a high accuracy

(greater than 90%) in the study area. The MTVF mainly mixed the effects of the pixels in

PLOS ONE Using time-series vector features for annual cultivated land mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0272300 August 9, 2022 18 / 22

https://doi.org/10.1371/journal.pone.0272300


the mapping of the cultivated land, especially where the land cover was complicated. How-

ever, in some cases, the MTVF also had the ability to limit the influence of the mixed pixels.

2. In terms of the importance scores, the shortwave infrared and red-edge bands of the Senti-

nel-2 satellite have a high potential for cultivated land mapping. The non-traditional vegeta-

tion indices were superior to the traditional vegetation indices in terms of cultivated land

mapping. The spatial features based on time series vectors reflected the differences between

cultivated land and other land use types better than the vector extreme features.

3. Compared with other models (i.e., the maximum likelihood, support vector machine, and

artificial neural network models), the MTVF achieved the best results in the study area, but

it still suffers interference from artificial woodland, field gullies, and rural settlement

boundaries, which decrease the accuracy of the cultivated land map.

The MTVF provides a new method for cultivated land mapping. Future research should

focus on combining this method with the mixed pixel decomposition algorithm. Combining

multi-source sensor data (e.g., synthetic aperture radar) for use in cultivated land mapping

should also be a future research focus because the mapping accuracy of the MTVF can still be

affected by other ground cover types.
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