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Abstract

Abdominal hernias are common and characterised by the abnormal protrusion of a viscus
through the wall of the abdominal cavity. The global incidence is 18.5 million annually and
there are limited non-surgical treatments. To improve understanding of common hernia
aetiopathology, we performed a six-stage genome-wide association study (GWAS) of
62,637 UK Biobank participants with either single or multiple hernia phenotypes including
inguinal, femoral, umbilical and hiatus hernia. Additionally, we performed multivariable
meta-analysis with metaUSAT, to allow integration of summary data across traits to gener-
ate combined effect estimates. On individual hernia analysis, we identified 3404 variants
across 38 genome-wide significant (p < 5x1078) loci of which 11 are previously unreported.
Robust evidence for five shared susceptibility loci was discovered: ZC3H11B, EFEMP1,
MHC region, WT1and CALD1. Combined hernia phenotype analyses with additional mul-
tivariable meta-analysis of summary statistics in metaUSAT revealed 28 independent
(seven previously unreported) shared susceptibility loci. These clustered in functional cat-
egories related to connective tissue and elastic fibre homeostasis. Weighted genetic risk
scores also correlated with disease severity suggesting a phenotypic-genotypic severity
correlation, an important finding to inform future personalised therapeutic approaches to
hernia.

Introduction

A hernia is the abnormal protrusion of a viscus through the wall of the anatomic cavity in
which it is normally enclosed. Abdominal wall hernia (AWH) represent the majority of hernia
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phenotypes, with the lifetime risk for abdominal hernia being 27% in men and 3% in women
[1]. Globally, at least 20 million AWHs are repaired every year, and there is an associated
annual mortality of 59,800 deaths [2, 3].

Surgery is the definitive treatment for symptomatic AWH. However, management is often
challenging with significant risk of complications including chronic pain, seroma, haematoma,
infection and failure of surgical repair [4, 5]. In the case of femoral hernia, diagnostic difficul-
ties lead to up to 40% of cases presenting as bowel strangulation or obstruction requiring
emergency repair, which is associated with high mortality [6, 7]. Therefore, there is a need to
improve understanding of hernia aetiopathology, to guide new therapeutic avenues and
improve patient outcomes. Indeed, patients with a family history carry an eight-fold risk of
groin hernia and are more likely to suffer from contralateral or recurrent inguinal hernia as
well as other hernia pathology including femoral, umbilical, incisional and epigastric hernia
[8].

There is evidence for a genetic predisposition to AWH. Groin hernias have previously been
shown to cluster in families [9], while the characteristic presence of hernia in several connec-
tive tissue disorders including Marfan’s, Ehlers Danlos and Cutis laxa suggests an underlying
genetic basis relating to impaired homeostasis of the extracellular matrix (ECM) [10-12]. Pre-
viously, Jorgenson et al. have identified four susceptibility loci for inguinal hernia alone (WT1,
EFEMPI, EBF2 and ADAMTS6), each of which may result in aberrant elastic tissue homeosta-
sis mediated via disordered expression of matrix metalloproteinases (MMPs) [13]. A further
trans-ethnic GWAS meta-analysis of inguinal hernia identified five further loci including
TGFB2, HMCN2 and CDKN3 [14]. Wei et al. attempted to characterise the polygenetic archi-
tecture of hernia using individual GWAS analysis of patients with either inguinal, femoral,
umbilical or ventral hernia, identifying 57 loci, highlighting AIGI and CALD]1 as candidate
genes for shared hernia susceptibility [15]. Interestingly, to our knowledge, GWAS of hiatus
hernia has previously not been reported.

Here, we perform a comprehensive analysis to further characterise the shared genetic archi-
tecture between four hernia phenotypes including inguinal, femoral, umbilical and hiatus her-
nia, utilising both individual and combined genome-wide association studies. We further
utilised multivariable meta-analysis in metaUSAT [16] a data-adaptive method, robust to the
association structure of correlated traits, to perform a unified association test for each SNP
across several trait summary statistics.

Results

Following quality control, a total of 62,637 individuals in the UK Biobank possessed a diagnos-
tic and/or operative code for at least one of the hernia subtypes studied. Participants were
divided into three hernia cohorts (individual hernia cohorts, overlap hernia cohort, and
umbrella hernia cohort) as shown in Fig 1. Each was matched 1:5 to non-hernia controls in
UK Biobank based on age (+/- 5 years), sex and genotyping platform, while ensuring that con-
trol cohorts for the four individual hernia analyses contained completely distinct individuals.
Sex distributions for all hernia cohorts are shown in S1 Table.

Individual hernia cohorts

These were four cohorts of participants who had diagnostic and/or operative coding for only
one of the four hernia phenotypes. In these analyses, 23,007 individuals had diagnostic or
operative codes for inguinal hernia, 1,578 for femoral hernia, 7,432 for umbilical hernia and
36,138 for hiatus hernia. The final individual hernia cohorts were then defined by removing
participants with multiple hernia phenotypes (4,216 from the inguinal hernia cohort, 605 from
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Fig 1. Individual, overlap and umbrella case-control cohorts in the UK Biobank. A: Individual hernia cohort: 57,418 individual hernia cases were matched to
287,090 controls. Participants with more than one hernia phenotype coding were excluded (dark shading). B: Overlap hernia cohort: 5,219 participants possessed
coding for at least 2 hernia phenotypes and were included in the overlap hernia cohort and matched with 26,095 non-hernia controls. All cases with single
phenotype coding were excluded (dark shading). C: Umbrella hernia cohort, 62,637 participants had diagnostic or operative coding for any hernia type including
those with single or multiple hernia and were matched to 313,185 non-hernia controls.

https://doi.org/10.1371/journal.pone.0272261.9001

the femoral hernia cohort, 2,076 from the umbilical hernia cohort and 3,841 from the hiatus
hernia cohort), to create a phenotypically ‘clean’ cohort for each hernia subtype.
The final Individual hernia cohorts therefore consisted of the following individuals.

o Inguinal hernia: 18,791 cases and 93,955 controls (Nefrective = 62,637)
o Femoral hernia: 973 cases and 4,865 controls (Ngrective = 3,243)

o Umbilical hernia: 5,356 cases and 26,780 controls (Negective = 17,853)
« Hiatus hernia: 32,298 cases and 161,490 controls (Negective = 107,660)

Overlap hernia cohort

The overlap hernia cohort consisted of participants with diagnostic or operative codes for two
or more hernia subtypes. There were 5,219 cases which were matched to 26,095 non-hernia
controls (total cohort 31,314 individuals).

Umbrella hernia cohort

The umbrella hernia cohort involved all participants who had diagnostic and/or operative
codes for any hernia subtype, including those with single or multiple hernia subtypes. The
umbrella hernia cohort consisted of 62,637 cases who were matched 313,185 non-hernia con-
trols (total cohort 375,822 individuals).

The analytic workflow representing the three analyses implemented to characterise shared
genetic underpinnings of AWH are depicted in Fig 2.

Individual hernia cohort analyses

Initially, four separate GWAS analyses were undertaken in order to identify genetic risk
loci for inguinal, femoral, umbilical or hiatus hernia in participants affected only by a single
hernia subtype (termed ‘Individual hernia cohorts’). We cumulatively discovered genome-
wide significant associations at 3,404 variants across 38 loci (52 independent signals), with
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Fig 2. Study design and shared genetics analysis workflow. The three analysis approaches to characterise the shared genetic underpinnings of

the ‘hernia phenotype’ are depicted.

https://doi.org/10.1371/journal.pone.0272261.9002

24 susceptibility loci for inguinal hernia, one locus for femoral hernia, five loci for umbilical
hernia, and eight loci for hiatus hernia (S2-S5 Tables and S1 Fig). Results relating to in silico
annotation and candidate gene mapping of individual hernia loci are given in S6-S13

Tables).

We discovered evidence for five shared susceptibility loci (1q41 (ZC3H11B); 2p16.1
(EFEMP1); 6p22.2 (MHC region); 11p13 (WT1I); 7q33 (CALD1)) amongst the individual her-
nia cohorts, of which four demonstrated concordance in allelic effect directions, as depicted in
Table 1 and Fig 3. Q-Q plots for individual hernia GWAS analyses are shown in S2 Fig.
Regional Locus Zoom plots for all individual hernia associations are provided in S3 Fig).
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Fig 3. Shared susceptibility loci from individual, overlap and umbrella GWAS analyses as well as multivariable meta-analysis
in metaUSAT. A: Individual hernia cohort: Evidence of shared susceptibility was demonstrated at five loci. B: Overlap hernia
cohort: Evidence of shared susceptibility demonstrated at four loci. C: Umbrella hernia cohort: 19 loci became significant under
umbrella hernia analysis. D: Multivariable meta-analysis in metaUSAT 24 loci were significant under meta-analysis (two loci at
5p15.32).

https://doi.org/10.1371/journal.pone.0272261.9003

Overlap hernia cohort analysis

We performed a further GWAS across participants with diagnostic or operative codes for at
least two hernia subtypes (overlap hernia cohort; Fig 1). Significant associations at four loci
(six independent signals) were revealed to confer shared susceptibility to multiple individual
hernia phenotypes (Table 2 and Figs 3 and 4). The strongest association was observed at
2pl16.1 (EFEMPI), closely followed by 1q41 (ZC3H11B) and 11p13 (WT1) which were all iden-
tified as shared susceptibility loci on analysis of the individual hernia cohorts. The fourth locus
identified was 6q24.2 (AIG1) (rs4896643, p = 3.6x10™%, OR = 1.12) also identified in the ingui-
nal individual hernia cohort (p = 7.8x107"%, OR = 1.08).

Umbrella hernia cohort analysis

A sixth GWAS of all UK Biobank participants affected by hernia, single or multiple (‘umbrella
hernia cohort’) demonstrated 19 genome-wide significant loci representing 25 independent
signals. Eleven loci were previously identified in the individual or overlap cohorts (Table 3,
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Table 2. Four loci significantly associated with overlap hernia in 5,219 cases and 26,095 controls in UK Biobank.

Chromosome | Position® rsID EA® | NEA | EAF? | Info° | OR (95% CI) | P-value | Mapped genes'
1q41 219742537 | rs1415287 | T C 0.31 | 0.998 1.21 (1.16- 1.2x107%6 -

1.26)

2p16.1# 56040099 | rs10199082 | C T 0.14 G 1.29 (1.22- 1.9x1071° EFEMP1
1.37)

2pl6.1 56108333 | rs1346786 | C T 0.71 |0.994 1.24 (1.18- 7.6x107%° EFEMP1
1.29)

2p16.1# 56194773 | rs981037 T C 0.58 | 0.993 1.21 (1.16- 1.0x107° -
1.27)

6q24.2 143670001 | rs4896643 | C G 0.45 | 0.993 1.12 (1.08- 3.6x10°® AIGI
1.17)

11p13 32484594 | rs3858458 | C T 0.63 | 0.981 1.17 (1.12- 8.4x107" WT1
1.22)

“Based on NCBI Genome Build 37 (hg19).

PThe effect allele.

“The non-effect allele.

9The effect allele frequency.

“The SNP INFO score for imputed SNPs; G = genotyped SNP.

“The four genes prioritised at these loci based on positional mapping, eQTL mapping and MAGMA gene mapping
(see Methods).

"Denotes the two residual significant signals following conditional regression analysis at the lead SNP at the locus.

https://doi.org/10.1371/journal.pone.0272261.t1002

Figs 3 and 5) of which five were strongly associated in the umbrella analysis: 11p13 (WT1I;
1566798575, Pumbreila = 1.6x107%°), 2p16.1 (EFEMPI; rs75439645, Pumbrella = 2.4x107°%), 1q41
(ZC3H11B; 152820441 Pymbrela = 2.7%107>), 6p22.2 (MHC region) (rs28360634, Pumpreita =
1.7x107"), and 6q24.2 (AIGI; rs6917403, Pumbrela = 2.9x10~"2). Eight loci, previously

- oemm W1

3 4 5 6 7 8 9 10 11 12 13 14 15
Chromosome

16 17 18 19202122

Fig 4. Manhattan plot of the overlap hernia cohort GWAS analyses. Manhattan plot is annotated with the gene names of loci that demonstrated
shared susceptibility across two or more individual analyses.

https://doi.org/10.1371/journal.pone.0272261.9004
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Table 3. Nineteen loci (twenty-five signals) significantly associated in the umbrella hernia analysis.

Chr Position® rsID EA® | NEA® | EAF?! | Info® | OR (95% CI) P-value Mapped genes' Significant in
individual or
overlap GWAS®
1p32.2 51477643 | rs13376700 | A T 0.43 | 0.992 | 1.04 (1.02-1.05) | 1.3x107® CDKN2C, EPS15, FAF1, NRD1 -
1q41 218521609 | rs2799098 A G 0.82 G 1.06 (1.05-1.08) | 9.3x107"° RRP15, TGFB2 -
1g41 219734960 | rs2820441 C A 0.32 G 1.07 (1.05-1.08) 2.7x107% - IH,FH,UH,OH
2p24.1 20878406 rs3072 C T 0.36 | 0.994 | 1.04 (1.02-1.05) | 1.8x10°® C2o0rf43, GDF7 -
2p24.1 21239884 | rs76622701 | A T 0.56 | 0.979 | 1.04 (1.02-1.05) | 3.5x10°° APOB -
2pl6.1 56048944 | rs75439645 A G 0.13 | 0.999 | 1.12 (1.10-1.14) | 2.4x107*® CCDC104, EFEMPI1, PNPT1, SMEK2 IH,HH,OH
2p16.1# 56106928 | rs59985551 C T 0.78 | 0.998 | 1.09 (1.08-1.11) | 5.1x107° CCDC104, CLHCI, EFEMPI, PNPT1, RTN4, SMEK2 IH,HH,OH
2p16.l# 56193665 | rs13431149 C A 0.60 | 0.991 | 1.07 (1.05-1.08) | 2.5x10°% CCDC104, PNPT1, SMEK2 IH,HH,OH
3q22.2 | 134372486 | rs9883955 G T 0.63 G 1.04 (1.02-1.05) | 1.2x107° AMOTL2, ANAPC13, CEP63, EPHBI1, KY -
5p15.32° | 4881885 rs570260 G A 0.34 G 1.03 (1.02-1.05) | 6.2x107*° - HH
5p15.32° | 4977446 rs42202 A G 0.08 | 0.986 | 1.08 (1.06-1.11) | 1.7x107"" - HH
5p15.32° | 5145100 rs1834922 G A 0.35 | 0.999 | 1.04 (1.02-1.05) | 9.0x107*° ADAMTSI16 -
5p15.32 5350637 rs7715383 C G 0.10 | 0.970 | 1.08 (1.06-1.10) | 1.2x10™"? - -
5q12.3 64355060 rs370763 A T 0.67 | 0.998 | 1.05(1.03-1.06) | 8.3x107* ADAMTS6 IH
6p22.1 27332891 | rs28360634 T C 0.89 | 1.000 | 1.09 (1.07-1.11) | 1.7x10""7 | ABT1, APOM, APOM, BTN1A1, BIN2A1, BTN2A2, BTN3Al, IH,HH
BTN3A2, BTN3A3, C44, C4B, C6orf15, C60rf48, CCHCRI,
CLICI, DDR1, DPCRI, HCG27, HFE, HISTIHIA, HISTIHIB,
HIST1H2AG, HISTIH2AI, HISTIH2A], HISTIH2AK,
HIST1H2AL, HISTIH2AM, HIST1H2BC, HISTIH2BF,
HIST1H2BJ, HISTIH2BL, HISTIH2BM, HISTIH2BN,
HIST1H2BO, HIST1H3C, HISTIH3H, HIST1H3I, HISTIH3]J,
HIST1H4A, HIST1H4J, HIST1H4K, HISTIH4L, HLA-A, HLA-B,
HLA-C, HLA-DMA, HLA-DMB, HLA-DRA, HMGN4, LRRCI6A,
LSM2, MSH5, MSH5-SAPCD1, NKAPL, OR12D3, OR2B2,
OR2B6, PBX2, PGBDI1, POM121L2, POU5F1, PRRC2A, PRSS16,
PSORSICI, RNF5, SCAND3, SFTA2, SLC17A1, SLC17A2,
SLC17A3, SLC17A4, TRIM26, TRIM27, TRIM31, TRIM38,
TRIM39, TRIM39-RPP21, TUBB, VARS, VWA7, ZFP57,
ZKSCAN3, ZKSCAN4, ZKSCANS, ZNF165, ZNF184, ZNF192P1,
ZNF322, ZNF391, ZSCAN12, ZSCAN16, ZSCAN23, ZSCAN31,
ZSCAN9
6q22.1 117507982 | rs200889152 | C A 0.38 | 0.991 | 1.04(1.03-1.05) | 3.4x107° - -
6q24.2 143653287 | 1s6917403 A G 0.42 | 0.987 | 1.04(1.03-1.06) | 2.9x107*? AIGI IH,OH
7q11.23# 73445942 rs2356532 G A 0.06 | 0.996 | 1.09 (1.06-1.11) | 1.1x107® ELN IH
7q11.23 | 73474825 | rs17855988 G C 0.90 | 0.963 | 1.08(1.05-1.10) | 3.8x107*? ELN, LIMK1 IH
8p21.2 25693744 rs4368985 T A 0.40 | 0.997 | 1.06 (1.05-1.07) | 2.1x107*° EBF2 IH
9q34.11 | 133038387 | 1rs9299329 G A 0.50 | 0.979 | 1.04 (1.02-1.05) | 1.7x107® HMCN2 -
11p13 32451920 | rs66798575 T G 0.64 | 0.973 | 1.09 (1.08-1.10) | 1.6x10~*° CCDC73, EIF3M, WT1 IH, HH,OH
12q21.33 | 89767237 1s797267 G A 0.19 | 0.996 | 1.05 (1.03-1.06) | 2.6x107° DUSP6 -
16q24.1 84855477 rs1874013 G T 0.38 | 0.994 | 1.04 (1.03-1.05) | 1.1x107° CRISPLD2 IH
19p13.11 | 18824038 | rs34482977 | C G 0.81 | 0.992 | 1.05 (1.03-1.06) | 5.3x107° CRLFI1, CRTC1, KLHL26, SSBP4 HH

*Based on NCBI Genome Build 37 (hgl9).

"The effect allele.

“The non-effect allele.

IThe effect allele frequency.

“The SNP INFO score for imputed SNPs; G = genotyped SNP.

"The 138 genes prioritised at these loci based on positional mapping, eQTL mapping, MAGMA gene mapping and summary-based mendelian randomisation.
Swhere IH = Inguinal Hernia Individual, FH = Femoral Hernia Individual, UH = Umbilical Hernia Individual, HH = Hiatus Hernia Individual, OH = overlapping
hernia analysis.

*Denotes the six residual significant signals following conditional regression analysis at the lead SNP at the locus

Bold font depicts loci which are previously unreported.

https://doi.org/10.1371/journal.pone.0272261.t003
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Fig 5. Manhattan plot of the umbrella hernia cohort GWAS analyses. Annotations show the gene names of loci that demonstrated shared
susceptibility across two or more individual analyses. The nine loci that were not discovered in the individual or overlap analyses are highlighted with
green font or with ** where no gene was prioritised at this locus.

https://doi.org/10.1371/journal.pone.0272261.g005

undiscovered on analysis of individual and overlap cohorts, were also discovered, with the
strongest association amongst these observed at 1q41 (TGFB2; rs2799098, Pumbrella =
9.3x107'°, OR = 1.06). Q-Q plots for overlap and umbrella hernia cohorts are shown in S4 Fig.
Regional Locus Zoom Plots for all for all associations are provided in S5 and S6 Figs).

In silico annotation of overlap and umbrella cohort analyses

We used FUMA SNP2GENE [17] to annotate the overlap and umbrella hernia cohorts. In the
overlap hernia cohort, 187 genome-wide significant candidate SNPs were identified by FUMA
to be in LD (r* > 0.6) with the lead variant at each of the four loci. No exonic variants were
identified, however, six intronic / intergenic variants had predicted deleterious effects and
were in high LD with the index variant at each overlap hernia loci, including three at locus
1q41 (ZC3H11B) and two at locus 2p16.1 (EFEMPI) (S14 Table).

Analysis of the umbrella hernia cohort yielded 877 genome-wide significant candidate
SNPs in LD with the lead SNP at the 19 loci. Thirty-eight intergenic or intronic variants were
predicted to be functional (S15 Table), and 18 high LD exonic variants were discovered (S16
Table), 15 of which were at the MHC locus (6p22.2). Of these, four variants resulted in substi-
tutions predicted to have damaging (PolyPhen) and deleterious (SIFT) consequences on
BTN2A1. Of the non-MHC exonic variants, rs17855988 results in a pGly581Arg substitution
in ELN that is predicted by SIFT [18] with low confidence to have a deleterious consequence
on elastin function (S16 Table).

Multivariable meta-analysis of individual hernia phenotypes

We additionally performed multivariable meta-analysis of the four individual hernia traits in
metaUSAT [16] across a total of 57, 418 individual hernia cases and 287,090 matched controls
in UK Biobank. metaUSAT enables joint analysis of summary statistics from existing GWAS
such that statistical power is augmented more so than for multiple univariable analyses alone.
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Designed to be robust to the association structure of correlated traits, metaUSAT may provide
further insight into a shared genetic architecture for multiple hernia phenotypes.

Twenty-four genome-wide significant susceptibility loci were discovered (3,645 variants)
(Table 4) with one-third of loci becoming more significant in metaUSAT than in any of the
previous GWAS analyses. Concordance was demonstrated with the umbrella hernia analy-
ses, as of the 19 loci which were significant under umbrella cohort analysis, 15 loci were also
discovered under metaUSAT (Fig 6). Evidence for shared susceptibility was further provided
at nine loci including 2p21 (THADA), 3p14.3 (ERC2), 3p13 FOXP1, 4q34.1 (HAND-AS1I),
5p15.33 (CEP72), 7p15.2 (LOC646588), 7q33 (CALD1) and 9q22.31 (BARX1) of which eight
were previously discovered on individual hernia GWAS analyses. Interestingly, 5p15.33
(rs72703080, pretaUsaT = 3.68x1078, (~20kb upstream from CEP72) was an entirely new
putative locus which was sub-threshold across all six individual or combined GWAS
analyses.

Gene set, pathway and tissue enrichment analysis of combined hernia
susceptibility loci

Gene set analysis of overlap hernia susceptibility loci, performed in MAGMA [19], revealed
enrichment for gene ontologies for cellular components associated with ‘Blastoderm segmenta-
tion’ (p = 9.93x107%, n = 19 genes) whilst the top curated gene set was ‘Reactome elastic fibre
formation’ (p = 1.74x10~7, n = 46 genes) (S17 Table). Upon XGR (eXploring Genomic Rela-
tions) [20] analysis, two canonical pathways were found to be enriched—‘Regulation of Telome-
rase’ (p = 3.80x10~%, Z = 4.88, FDR = 1.0x10°, WT1) and ‘Genes encoding structural ECM
glycoproteins’ (p = 3.2x107°, Z = 2.7, FDR = 5.4x10~>, EFEMPI (S18 Table).

Enrichment for gene ontologies related to the ECM was further substantiated on gene-set
analysis of umbrella cohort susceptibility loci, whereby MAGMA gene-set analysis enriched 29
gene sets from MSigDB [21] (S19 Table). Two enriched gene sets were ‘Negative regulation of
cell proliferation in kidney development (p = 5.76x107") and ‘Diaphragm development’

(p= 3.00x10°%,n=9 genes).

Strong enrichment for gene ontologies for ‘Connective tissue development’ was discovered
(p = 3.29x107%, n = 46 genes) whilst the top curated gene set was ‘Elastic fibre formation’

(p = 3.29x107%, n = 46 genes) and the top molecular functions gene ontology was ‘BMP recep-
tor binding’ (3.36x10™%, n = 8 genes). Furthermore, other enriched biological process gene sets
included ‘Skeletal system development (p = 3.28x10~/, n = 498 genes) and ‘Thorax and anterior
abdomen determination’ (p = 1.42x10 %, n =5 genes).

Of note, tissue expression analysis in MAGMA [19] revealed Adipose Visceral Omentum to
be most enriched whilst Adipose Subcutaneous tissue to be fourth most enriched
(p = 1.11x107°). GTEx v8.0 30 general tissue types analysis confirmed this strong enrichment
for Adipose tissue (p = 6.31x10™*, most enriched) (S7 Fig).

Genetic risk score. We also implemented genetic risk score methodology in order to
explore a hypothetical correlation between phenotypic severity and genotypic burden. A
weighted genetic risk score for surgically managed cases versus non-surgically managed cases
for both individual and combined hernia analyses was constructed from the lead independent
variants from association analyses. All hernia patients who had undergone surgery had a
higher wGRS compared to non-surgically managed hernia patients (Table 5).

Genetic correlations of individual hernia phenotypes

Estimated genetic correlation between individual hernia subtypes was evaluated with LDSC
[22] using GWAS summary statistics from individual hernia GWAS analyses. Genetic
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Fig 6. 24 loci discovered to confer shared hernia susceptibility after multivariate meta-analysis in 57,418 cases and
287,090 controls in metaUSAT. Each metaUSAT locus is annotated according to whether it was genome-wide
significant in the individual, overlap or umbrella analyses.
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correlation was greatest between inguinal and femoral hernia subtypes with r, 0.60, p = 0.011,
followed by umbilical and hiatus hernia which yielded r, of 0.21 with p = 0.0041 (Table 6).
Umbilical-inguinal hernia also showed positive correlation with 7, 0.19, p = 0.029. Evidence of
genetic correlations was not observed between inguinal-hiatus or femoral-umbilical hernia
phenotypes.

Discussion

We performed a six-stage genome-wide association study (GWAS) of multiple hernia pheno-
types with additional multivariable meta-analysis using metaUSAT in order to characterise the
shared genetic underpinnings of common hernia phenotypes. We identified 38 susceptibility
loci (11 previously unreported) associated with inguinal, femoral, umbilical or hiatus hernia
among an umbrella cohort of 62,637 individuals derived from UK Biobank. Five biologically
relevant loci were discovered on individual hernia analyses to confer shared susceptibility to
multiple hernia phenotypes including 1q41 (ZC3H11B), 2p16.1 (EFEMPI), 6p22.1 (MHC
region), 7q33 (CALDI) and 11p13 (WT1I). These loci were also prioritised on combined hernia
cohort GWAS analyses with the umbrella hernia cohort analysis resulting in discovery of 14
further shared susceptibility loci including 1q41 (TGFB2), 2p24.1 (GDF7), 3q22.2 (AMOTL2),
5p15.32 (ADAMTS16), 7q11.23 (ELN), 8p21.2 (EBF2) and 12q21.33 (DUSP6). Multivariable
meta-analysis in metaUSAT enabled joint analysis of traits, enabling augmentation of study
power and demonstrated strong concordance with that of all previous GWAS analyses with 24
genome-wide significant loci prioritised. metaUSAT highlighted nine additional shared sus-
ceptibility loci, of which eight were discovered on individual hernia GWAS analyses, repre-
senting potentially important genetic elements of shared hernia biology. These included 2p21
(THADA), 3p14.3 (ERC2), 3p13 (FOXP1), 4q34.1 (HAND-AS1),9q22.31 (BARX1) and 17p12.
To our knowledge, this study also represents the first GWAS of hiatus hernia in which we
identified eight susceptibility loci of which four loci (2p16.1 (EFEMPI), 6p22.2 (BTN2A1I),
7933 (CALDI), 11p13 (WT1I) are known to correlate with abdominal hernia. This provides
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Table 5. Weighted genetic risk scores in surgically-managed hernia patients versus non-surgically managed her-
nia patients.

Group Surgically-managed hernia cases | Non-surgically managed hernia cases | p-value®

Inguinal hernia, N 18,082 709

Mean wGRS (S.D.) 3.072 (0.332) 3.013(0.337) 5.46x10°
Femoral hernia, N 774 199

Mean GRS (S.D.) 0.739 (0.688) 0.597 (0.642) 0.015
Umbilical hernia, N 4,749 607

Mean wGRS (S.D.) 0.653 (0.228) 0.630 (0.229) 2.13x1072

Hiatus hernia, N 1,311 30,987

Mean wGRS (S.D.) 0.464 (0.115) 0.454 (0.115) 4.77%10-3
Overlap hernia, N 4,941 278
Mean wGRS* (S.D.) 1.096 (0.336) 1.036 (0.338) 3.98x107°
Umbrella hernia, N 29,857 32,780
Mean wGRS” (S.D.) 1.366 (0.180) 1.343 (0.180) 4.87x107>°

*wGRS: weighted genetic risk score.
SUnpaired t-tests were performed for the surgical vs non-surgical wGRS comparisons for all hernia analyses with the
exception of femoral hernia. The femoral hernia GRS was not normally distributed as it was based only on one SNP,

so a Mann-Whitney U-test was performed.

https://doi.org/10.1371/journal.pone.0272261.t005

further proof of principle with regards to the shared genetic underpinnings of a common her-
nia phenotype. The four remaining susceptibility loci for hiatus hernia have previously not
been reported.

It has been postulated that dysregulation of elastic tissue biology mediated via matrix metal-
loproteinases (MMPs) is central to the pathophysiology of hernia development. Jorgenson and
colleagues previously identified 4 inguinal hernia susceptibility loci purported to result in
reduced MMP activity: WT'1, EFEMPI1, EBF2 and ADAMTS6 [13]. Recently, Wei et al. repli-
cated these associations and further implicated AIGI and CALDI, which were identified as
biologically relevant genes in their individual GWAS’s of hernia phenotypes [15]. We have
extended these results to focus on the shared biology of abdominal wall hernias. Our study
provides further evidence that these loci each impart susceptibility to multiple hernia pheno-
types, supported by the observation that these demonstrated some of the strongest associations
in the combined cohorts, while also being prioritised in the multivariable meta-analysis.

Genes of interest

The 1q41 locus (ZC3H11B) was strongly associated across three individual hernia phenotypes,
the combined hernia cohorts, and importantly was also prioritised in metaUSAT meta-analy-
sis. ZC3H11B, a zinc finger CCH domain-containing protein, was previously identified by Wei
et al. [15] in association with inguinal, femoral, umbilical and ventral hernia. ZC3H11B has
also been associated with myopia endophenotypes, including axial length, refractive error, and
corneal astigmatism [23]. It is thought that accelerated connective tissue remodelling of the
posterior sclera leads to axial elongation, a key feature of myopia [24], thereby implicating
ZC3H11B in a number of suspected connective tissue diseases. Intriguingly, at least two Mar-
fan-like syndromes have been described with co-existing myopia and hernia [25, 26].

Locus 2p16.1 (EFEMPI) imparted susceptibility to inguinal and hiatus hernia phenotypes,
was significantly associated in both overlap and umbrella cohort analyses, and was also identi-
fied in metaUSAT meta-analysis. EFEMP] encodes fibulin-3, a secreted extracellular matrix
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Table 6. Genetic correlations of individual hernia phenotypes with LDSC.

Umbilical Femoral Inguinal Hiatus
Umbilical
- -0.01 0.19 0.21 Genetic Correlation®
- 0.2696 0.0871 0.0722 SE®
- -0.04 2.1901 2.8706 VA
- 0.97 0.029 0.0041 P-value!
Femoral
0.60 0.051 Genetic Correlation®
- 0.236 0.1425 SE
- 2.5438 0.3609 VA
- 0.011 0.72 P-value’
Inguinal
- 0.048 Genetic Correlation®
- 0.0511 SE°
- 0.9294 VA
- 0.35 P-value?

“The genetic correlation estimate (rg).
PThe standard error given by LDSC [22].
“Obtained z-score.

9The p value given by LDSC [22].

https://doi.org/10.1371/journal.pone.0272261.t1006

glycoprotein, which has been shown to downregulate matrix metalloproteinases (MMPs) 2
and 3, whilst simultaneously upregulating tissue inhibitor of metalloproteinase-3 [27]. As well
as collagen, fibulin-3 binds tropoelastin [28], the monomeric unit of elastin fibres. EFEMP]
knockout mice show depleted elastic fibres within fascia and invariably develop inguinal her-
nia, adding further strength to the evidence for its importance in AWH pathophysiology [29].

True pleiotropy is further substantiated by the finding that EFEMPI has previously been
identified by our group as a candidate gene conferring susceptibility to carpal tunnel syndrome
[30] and varicose veins [31], disorders also thought to be underpinned by opposing impair-
ments in extracellular matrix homeostasis. Additionally, EFEMPI has recently been implicated
in conferring susceptibility to pelvic organ prolapse [32] and intriguingly is also associated
with anthropometric measures of height [33] and abdominal circumference [27], which have
also been associated with ZC3H11B [34].

Additionally, two signals in proximity to ADAMTS16 were discovered as genome-wide sig-
nificant in metaUSAT analysis and in the umbrella cohort GWAS analysis. The ADAMTS
family are a group of metalloendopeptidases, related to MMPs, serving to synthesise collagen
from procollagen [27]. Variants in ADAMTS16 have been associated with urinary inconti-
nence [35], a manifestation of pelvic floor dysfunction, which have been shown independently
to lead to a higher prevalence of hiatus and inguinal hernia [36]. Several mutations have been
described in the other 18 ADAMTS superfamily genes, which result in distinct human genetic
disorders [37]. For example, mutations in ADAMTS2 are responsible for dermatosparactic
type Ehlers-Danlos Syndrome (type VIIC) [38], typified by extreme skin fragility, joint laxity,
and umbilical hernia. ADAMTS4 shows significant aggrecanase activity and is implicated in
articular cartilage degradation and arthritis [39], and ADAMTS4 mRNA and protein have
been found to be highly expressed in herniated lumbar intervertebral discs [40].
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metaUSAT met-analysis yielded a further candidate gene at 1q41 (TGFB2) which was also
the most statistically significant locus in the umbrella hernia analysis. TGFB2 encodes the pro-
tein Transforming Growth Factor B2 (TGF B2) which is observed to be upregulated in Marfan
syndrome, Loeys-Dietz syndrome, and cutis laxa, which are associated with aneurysmal
changes with histological features including smooth muscle cell apoptosis [41]. Furthermore,
TGFB2 haploinsufficiency pathologically activates the TGF-f signalling pathway [41], leading
to Loeys-Dietz syndrome type 4 [42], which is characterised by arterial vasculopathy (arterial
aneurysms, dissection and tortuosity), and other widespread connective tissue pathology,
including hernia [43]. Like ZC3H11B, TGFB2 has previously been implicated in ophthalmic
pathology including glaucoma endophenotypes, with roles in intraocular pressure [44],
central corneal thickness [45], as well as FEV1/FVC ratio [46] and severe chronic obstructive
pulmonary diseaseO [47], of which the latter has also been suggested as an independent risk
factor for hernia pathology and severity [48, 49].

Among the further candidates discovered on multivariable meta-analysis, CEP72 at 5p15.33
encodes a centriolar satellite protein necessary for regulating microtubule-organising activity
and centrosome integrity [50]. Using comparative genomic hybridisation, Choi et al. discov-
ered copy number increases at 5p15.33 in patients with ruptured intracranial aneurysms [51].
The CEP72 region has also been implicated in a genome-wide meta-analysis of Barrett’s
oesophagus and oesophageal adenocarcinoma [52], for which hiatus hernia is a major risk fac-
tor [53]. Indeed, the size of a hiatus hernia is significantly associated with progression of Bar-
rett’s oesophagus to high-grade dysplasia or malignancy [54]. To this end, a tangible and
biologically plausible contributor to shared hernia risk has been identified through multivari-
ate meta-analysis.

GDF7 was discovered to associate with hernia in the umbrella and metaUSAT analyses,
with the lead variant rs3072 demonstrating strong functionality as a robust eQTL for GDF7 in
GTEx aorta tissue (Peqry, = 5.4 10~%). GDF7 encodes BMP12, part of the bone morphogenetic
protein pathway, and is heavily implicated in Barrett’s oesophagus [55] with several studies
identifying polymorphisms in the TBX-GDF7 genomic region [56, 57]. GDF7 has been identi-
fied through GWAS to associate with eight traits, three of which are characterised by connec-
tive and elastic tissue dysfunction: pelvic organ prolapse [32], abdominal aortic aneurysm [58],
and diverticular disease [59]. The T allele of rs7255 (which is in high LD with lead SNP rs3072)
was also found to confer risk of Barrett’s oesophagus in the GWAS by Gharahkhani et al. [52].

The umbrella analysis further revealed association at 3q22.2 locus which was not identified in
any other analyses presented. Interestingly, de novo deletions at 3q22.1 result in a syndromic pre-
sentation of bilateral inguinal hernia [60] and an interstitial deletion of 323 has been described
to result in BPES syndrome, characterised by diaphragmatic hernia [61]. This region on the long
arm of chromosome 3 may therefore be of considerable interest in multiple hernia pathobiology.

Genetic risk scoring

Our simple weighted genetic risk score correlated with disease severity, with patients undergo-
ing surgery having a higher genetic burden than those managed non-surgically across all indi-
vidual hernia subtypes and overlap analyses. These data provide an important proof-of-
principle of genetic risk scoring in personalising risk in this highly prevalent disease. Further
work to validate the risk score in an independent cohort is required.

Genetic correlations of individual hernia phenotypes

We found strong positive genetic correlations between femoral and inguinal hernia, with r,
0.60, further supporting the notion of shared genetic architecture. It is possible however, that
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due to the small femoral hernia sample size, these findings may have been spurious. However,
robust correlations were also observed between umbilical-hiatus and umbilical-inguinal her-
nia, of which the former was most statistically significant (r, 0.21, P = 0.0041). Given the large
sample sizes of the inguinal and hiatus hernia cohorts, it is interesting that a correlation was
not observed between these phenotypes. This may reflect the fact that hiatus hernia occurs
through the diaphragm, which is derived embryologically from the septum transversum and
not somitic and lateral plate mesoderm [62].

Limitations

Our primary aim was to identify shared susceptibility across multiple hernia phenotypes
which is made possible in a large Biobank-scaled cohort. The lack of a replication cohort for
these results is a clear limitation, however, this was somewhat mitigated by the use of stringent
quality control and case definitions as well as the implementation of four distinct analytic strat-
egies. Secondly, the use of unselected biobank data inevitably results in imbalance between the
phenotypes. This means that hiatus and inguinal hernia, which are substantially more com-
mon in the UK population, were overrepresented in our dataset as they accounted for approxi-
mately 90% of the total cohort and were therefore more powered in the joint analyses. A larger
cohort with greater balance across all four hernia phenotypes may prove useful in further
defining shared genetic susceptibility loci as well as uncovering new associations. Finally, we
acknowledge the limitations of restricting the GWAS analyses to a cohort of white British
ancestry, and that the genetic loci for hernia susceptibility identified in this study may not be
applicable to individuals of other ancestries.

Conclusions

In conclusion, the distinct analytic approaches to examine the shared genetic architecture of
the four hernia subtypes allowed us to discover new insights into the biology of abdominal
wall hernias. We discovered new genetic associations that were not found on traditional sin-
gle-trait association analyses. By segregating the four hernia cohorts in UK Biobank to avoid
overlap, we can have confidence in the validity of several loci that were discovered across mul-
tiple hernia phenotypes. This is the case for the twelve loci that demonstrated the greatest
degree of overlap across the different analyses, and the resulting clustering of many of these
loci across functionally related ontologies. Furthermore, the enrichment of biological pathways
previously implicated in hernia pathobiology provides further compelling evidence to support
the veracity of these loci, and for a shared genetic susceptibility to hernia.

Methods
Overview

We performed four individual genome-wide association studies (GWAS) of hernia subtypes
(inguinal, femoral, umbilical and hiatus hernia) of 488,377 UK participants, aged 40-69 years
at the time of recruitment, who provided written consent to be prospectively enrolled into the
UK Biobank multicentre cohort from 2006-2010. The full characteristics of the UK Biobank
cohort are described in full elsewhere [63, 64].

Ethics statement

UK Biobank obtained ethical approval from the North West Multi-Centre Research Ethics
Committee (MREC) (11/NW/0382). This study was conducted under UK Biobank project ID
22572.
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We looked for evidence of shared genetic underpinnings between the four distinct hernia
phenotypes with a further GWAS analyses of participants with multiple hernia phenotypes, as
well as a sixth combined cohort of participants with individual or multiple hernia phenotypes.
Additionally, we undertook multivariable meta-analysis to characterise shared susceptibility
loci, by aggregating information across the four correlated traits.

Cohort definitions

The UK Biobank population was divided into three hernia cohorts as described below. Each
was matched 1:5 to non-hernia controls.

i. Individual hernia cohort. This comprised of participants who had diagnostic and/or
operative codes for just one of four hernia phenotypes studied. That is, either inguinal,
femoral, umbilical or hiatus hernia. Participants having more than one hernia type were
excluded.

ii. Overlap hernia cohort. This cohort consisted of participants with at least two of the four
hernia phenotypes studied. Participants affected by a single hernia phenotype were
excluded.

iii. Umbrella hernia cohort. This encompassed all participants with any of the hernia phe-
notypes studied. As such, this cohort was comprised of cohorts (i) plus (ii).

The full list of diagnostic and operative codes used are shown in S20 Table.

Genotyping

UK Biobank participants were genotyped sequentially, initially with the Affymetrix BiLeve
Axiom array (805,426 directly genotyped variants) and Affymetrix UK Biobank Axiom arrays
(825,927 genotyped variants), which share 95% marker content. The present study is based on
the third release of the UK Biobank cohort (July 2017), which contained the complete set of
genotypes for the 488,377 participants.

Quality control

Quality control (QC) was performed using PLINK v1.919 and R v3.3.1. The full details of qual-
ity control (QC) has been previously described [30]. Briefly, SNPs with low call rates (<98%)
were initially excluded. Samples with heterozygosity >3.5 SD from the mean, discordant sex
information, or who were not of white British ancestry (ethnic outliers) were excluded. A lin-
ear mixed model implemented in BOLT-LMM enabled the inclusion of related participants.
SNP-level QC was further performed based on deviations from Hardy-Weinberg equilibrium
p< 10™%), minor allele frequency (MAF) <0.01, as well as on visual inspection of autosomal
heterozygosity against call rate.

Imputation

Phasing and imputation of UK Biobank was performed centrally using a 1000 Genomes Con-
sortium Phase 3 reference panel in SHAPEIT3, and has been detailed elsewhere [65].

Association analyses in BOLT-LMM

In the UK Biobank, GWAS was performed across 8,944,547 imputed SNPs (547,011 directly
genotyped (MAF > 0.01) and 8,397,536 imputed SNPs (MAF > 0.01, INFO score > 0.90)
using a linear mixed non-infinitesimal model implemented in BOLT-LMM v2.323 [66]. The
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reference human genome assembly used was GRCh37 (hg19) and linkage disequilibrium
scores were obtained from participants of European-ancestry extracted from the BOLT-LMM
package. Covariates included in the model were genetic sex and genotyping platform. Associa-
tion testing was implemented by linear regression assuming an additive allelic effect using
imputed allelic dosages. Conditional regression analysis was performed in BOLT-LMM for
the top signal at each significant locus (except the MHC region), and repeated until no further
residual significant signals remained.

Functional annotation of SNPs

Annotation of associated SNPs was performed in FUMA SNP2GENE v1.3.6 [17], using sum-
mary statistics from the UK Biobank discovery cohort and default settings. As such, genomic
location and effect/non-effect allele were used to collate functional annotation data from estab-
lished genetic annotation databases, including ANNOVAR [67], RegulomeDB [68], CADD
[69], and 15-core chromatin state categories [70]. Exonic SNPs were investigated further using
gnomAD and Ensembl genome browsers to uncover putative functionality [71].

Candidate gene mapping

Four gene mapping approaches were implemented: FUMA positional mapping [17], eQTL
mapping [17], summary-based mendelian randomisation [72] (SMR), and MAGMA genome-
wide gene association analysis [19] (GWGAS), with strict Bonferroni correction to account for
multiple testing (p < 2.67x10°).

Multivariable meta-analysis in metaUSAT

The metaUSAT [16] multivariable method was used as an auxiliary meta-analysis method

to further characterise potential regions of shared hernia susceptibility between the four
individual hernia traits. metaUSAT performs a unified association test for each SNP, using
the estimated correlation matrix to test association, across several trait summary statistics.
metaUSAT is data-adaptive and was established to be robust to the association structure of
correlated traits (less affected by the true (unknown) association structure) and is not depen-
dent on individual-level data [16] Unlike other multi-trait meta-analysis approaches, metaU-
SAT does not assume homogeneity of effects across traits. metaUSAT outputs an
approximate asymptomatic P-value for the meta-analysis association and has been shown to
maintain a low type I error in simulation experiments [16]. The metaUSAT meta-analysis
was performed across the four individual hernia cohorts (total 57,418 cases and 287,090 con-
trols) and 8,896,286 SNPs. The genome-wide significant threshold for the metaUSAT associ-
ation was setap < 5x107°.

Gene set, tissue-specific, and pathway enrichment analysis

Gene-set analysis were performed in MAGMA v1.07 [19] across 15,496 gene sets obtained
from MSigDB v8.0 [21] with p < 3.23x10~° deemed significant. Enrichment of the overlap
between GWAS variants and those reported in previous GWAS within the NIH GWAS Cata-
log were also examined [73], with enrichment P-values for the proportion of overlap in the
genes determined. Tissue-specific analysis was also performed in MAGMA v1.07 to assess
gene expression from 30 tissue types in GTEx v8 [17].

The gene set and tissue expression analyses described above were then repeated within
FUMA GENE2FUNC v1.3.5d [17], to specifically examine the functionality of genes prioritised
directly from the four candidate gene mapping approaches. Gene set enrichment analyses of
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the gene sets within MSigDB v8.0 [21] were tested, and gene property and tissue enrichment
analyses within GTEx [17] consortium tissue was also performed distinctly for the prioritised
hernia associated genes.

Using eXploring Genomic Relations [20] (XGR) software, pathway enrichment analysis of
the prioritised genes was performed to highlight canonical pathways that were enriched. A
hypergeometric distribution test was performed and adjusted FDR < 0.05 used to highlight
prioritised gene sets.

Genetic risk score

Weighted genetic risk scores (WGRS), based on the lead independent variants at each genome-
wide significant locus, were constructed for each of the six GWAS. For each of the Individual
cohorts, overlap and umbrella cohort summary statistics, WGRS were compared between all
cases managed surgically and those that were not surgically managed. Surgical cases were
defined as those with OPCS (Office of Population Censuses and Surveys Classification of Inter-
ventions and Procedures) or self-reported operative codes.

The following formula was implemented:

WGRS = Z WX,

i=1

where i is the lead SNP at each genomic risk locus, n is the total number of lead SNPs in the
GWAS, Wi is the weighting for each of the SNPs (the natural logarithm of the odds ratio for
each effect allele), and Xi is the number of effect alleles each individual possesses for each SNP.
Each individual’s risk allele was used to compute a SNP dosage (QCTOOL v2). wGRS calcula-
tions and statistical tests between the different subgroups was performed in R v3.3.

Genetic correlations of individual hernia phenotypes

To investigate potential genetic correlation between the four individual hernia subtypes, link-
age disequilibrium score regression (LDSC) was performed between the four individual hernia
GWAS analyses. This method evaluates genetic correlation between traits based on a fitted lin-
ear model of Z-scores calculated using GWAS summary statistics [22]. For polygenic traits
with shared genetic architecture, SNPs with high LD would, on average, be expected to have
higher Z-scores than those with low LD. As this was an exploratory analysis, P-values were not
corrected for multiple testing.

Supporting information

S1 Table. Sex distribution across all four individual hernia cohorts, overlap and umbrella
hernia cohorts. Numbers of total and sex-specific cases and controls are detailed for each of
the six cohorts analysed.

(PDF)

S2 Table. Twenty-eight signals at 24 loci associated with inguinal hernia in 18,791 cases
and 93,955 controls in UK Biobank. *Based on NCBI Genome Build 37 (hg19).bThe effect
allele. “The non-effect allele. “The effect allele frequency. “The SNP INFO score for imputed
SNPs; G = genotyped SNP. ‘The genes prioritised at these loci based on positional mapping,
eQTL mapping, MAGMA gene mapping and summary-based mendelian randomisation (see
Methods). “Denotes the four residual significant signals following conditional regression anal-
ysis at the lead SNP at the locus. Bold loci are those that have not been previously reported.
(PDF)
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$3 Table. One locus significantly associated with femoral hernia in 973 cases and 4,865
controls in UK Biobank. “Based on NCBI Genome Build 37 (hgl9). The effect allele. “The
non-effect allele. “The effect allele frequency. “The SNP INFO score for imputed SNPs;

G = genotyped SNP. " No genes were prioritised at this locus based on positional mapping,
eQTL mapping, MAGMA gene mapping and summary-based mendelian randomisation (see
Methods).

(PDF)

$4 Table. Five loci significantly associated with umbilical hernia in 5,356 cases and 26,780
controls in UK Biobank. “Based on NCBI Genome Build 37 (hgl9). The effect allele. “The
non-effect allele. “The effect allele frequency. “The SNP INFO score for imputed SNPs;

G = genotyped SNP. 'One gene was prioritised at these loci based on positional mapping and
MAGMA gene mapping (see Methods). Bold loci are those that have not been previously
reported.

(PDF)

S5 Table. Eight loci significantly associated with hiatus hernia in 32,298 cases and 161,490
controls in UK Biobank. *Based on NCBI Genome Build 37 (hg19). The effect allele. “The
non-effect allele. “The effect allele frequency. “The SNP INFO score for imputed SNPs;

G = genotyped SNP. ‘The 15 genes prioritised at these loci based on positional mapping, eQTL
mapping and MAGMA gene mapping (see Methods). Bold loci are those that have not been
previously reported.

(PDF)

$6 Table. Individual hernia associated exonic variants. 14 genome-wide significant exonic
SNPs associated with inguinal, umbilical and hiatus hernia that were identified by FUMA
SNP2GENE. All exonic SNPs are in high linkage with the index SNP at each locus (12 > 0.6).
Non-synonymous missense SNPs predicted to be damaging and deleterious by PolyPhen and
SIFT are highlighted in blue.

(PDF)

S$7 Table. Predicted functional intronic and intergenic variants associated with the four
individual hernia phenotypes. 138 genome-wide significant intronic and intergenic variants
predicted to be deleterious according to a CADD > 12.37, and associated with inguinal, femo-
ral, umbilical and hiatus hernia as identified by FUMA SNP2GENE. Functional variants with a
RegulomeDB score of 2b or less are highlighted in blue.

(PDF)

S8 Table. Genome-wide gene-based association analysis for inguinal hernia in MAGMA.
67 protein-coding genes met the threshold for genome-wide significance (P < 2.64x10-6, 0.05/
18,917) in this analysis. 59 of the 67 genes lay within the FUMA-defined loci borders and are
highlighted in red; genes are arranged in descending order according to the P-value of the
MAGMA association.

(PDF)

$9 Table. Summary-based Mendelian Randomisation (SMR) for inguinal hernia using
eQTL data from GTEx v7. The three probes (genes) that met the Bonferroni-corrected sig-
nificance threshold Psyr < 1.12x107* (0.05/4,455) and passed the HEIDI test (Pygpr >
8.33x107) (0.05/6)) are shown. eQTL tissues tested were for both GTEx v7 Skeletal muscle
and Cells Transformed Fibroblast, however only three probes from skeletal muscle tissue
met the HEIDI enrichment threshold. All three were mapped to within the realms of the
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FUMA -defined susceptibility loci. “Probe ID. "Probe chromosome. ‘Gene name. ‘SNP
name. “Allele 1. ‘Allele 2. 8Frequency of Allele 1 in the study population. "Effect size of the
allele 'Standard error of the effect size GWAS P-value. “eQTL P-value. 'SMR P-value.
"HEIDI P-value. Probes mapped to within the realms of the FUMA-defined susceptibility
loci are highlighted in red.

(PDF)

$10 Table. Genes mapped to the inguinal hernia-associated loci using the four mapping
strategies. 101 unique genes (169 total) were mapped to 21 of 24 inguinal hernia susceptibility
loci by one or more gene mapping strategies. 53 genes were mapped via positional mapping,
42 genes were mapped via eQTL mapping, 64 genes were mapped using MAGMA and 3 genes
were mapped using summary-based mendelian randomisation. Overlap between the four dif-
ferent mapping strategies is shown (and highlighted in pink).

(PDF)

S11 Table. Genome-wide gene-based association analysis for umbilical hernia in MAGMA.
Three protein-coding genes met the threshold for genome-wide significance (p<2.64x10-6,
0.05/18,916) in this analysis. The one gene that lays within the realms of the genome-wide sig-
nificant susceptibility loci and are highlighted in red.

(PDF)

$12 Table. Genome-wide gene-based association analysis for hiatus hernia in MAGMA. 26
protein-coding genes met the threshold for genome-wide significance (p<2.64x10-6, 0.05/
18,918) in this analysis. 11 of the 26 genes lay within the realms of the FUMA-defined
genome-wide significant susceptibility loci and are highlighted in red.

(PDF)

$13 Table. Genes mapped to the hiatus hernia-associated loci using the four mapping
strategies. 15 unique genes (20 total) were mapped to 5 of 8 hiatus hernia susceptibility loci by
one or more gene mapping strategies. 5 genes were mapped via positional mapping, 4 genes
were mapped via eQTL mapping, 11 genes were mapped using MAGMA and no genes were
mapped using summary-based mendelian randomisation. Overlap between the four different
mapping strategies is shown (and highlighted in pink).

(PDF)

S14 Table. Predicted functional intronic and intergenic variants associated with overlap
hernia. Six genome-wide significant intronic and intergenic variants predicted to be deleteri-
ous according to a CADD > 12.37 and associated with overlap hernia as identified by FUMA
SNP2GENE.

(PDF)

S$15 Table. Predicted functional intronic and intergenic variants associated with umbrella
hernia. 38 genome-wide significant intronic and intergenic variants predicted to be deleteri-
ous according to a CADD > 12.37, and associated with umbrella hernia as identified by
FUMA SNP2GENE. Functional variants with a RegulomeDB score of 2b or less are highlighted
in blue.

(PDF)

$16 Table. Umbrella hernia associated exonic variants. 18 genome-wide significant exonic
SNPs associated with umbrella hernia that were identified by FUMA SNP2GENE. All exonic
SNPs are in high linkage with the index SNP at each locus (r2 > 0.6). Non-synonymous missense
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SNPs predicted to be damaging and deleterious by PolyPhen and SIFT are highlighted in blue.
(PDF)

$17 Table. Enriched gene sets from the genome-wide gene-based enrichment analysis of
overlap hernia in MAGMA v1.07. The convergence of 15,496 gene sets (15,381from MSigDB
v7.0) were tested. A Bonferroni-corrected threshold of P < 3.23x10-6 (0.05/15,496) was set,
resulting in 21 significant Gene Ontology (GO) gene sets and three curated gene sets. This
analysis was performed using the SNP2GENE tool in FUMA.

(PDF)

S18 Table. Gene-based enrichment analysis for overlap hernia associated genes in eXplor-
ing Genomic Relations (XGR).
(PDF)

S19 Table. Enriched gene sets from the genome-wide gene-based enrichment analysis of
umbrella hernia in MAGMA v1.07. The convergence of 15,496 gene sets (15,381from
MSigDB v7.0) were tested. A Bonferroni-corrected threshold of P < 3.23x10-6 (0.05/15,496)
was set, resulting in two significant Gene Ontology (GO) gene sets. This analysis was per-
formed using the SNP2GENE tool in FUMA.

(PDF)

$20 Table. Phenotype codes used for four individual hernia case definitions. Hernia cases
were defined if they had a diagnostic (ICD-10 or self-report) and/or operative (OPCS4 or self-
report) code for either inguinal, femoral, umbilical or hiatus hernia. Overlapping hernia cases
were removed to construct four cohorts of individual hernia cases.

(PDF)

S1 Fig. Manhattan plots for the four individual hernia analyses in UK Biobank. Manhattan
plots are annotated with the gene names of loci that demonstrate shared susceptibility across
two or more individual analyses. The 6q24.2 (AIG1) locus is plotted for inguinal hernia
because it shows shared susceptibility with the overlap hernia analysis. ZC3H11B is shown as
a putative gene at 1g41 for femoral hernia as it was mapped in the joint analysis in metaU-
SAT.

(PDF)

$2 Fig. Quantile-quantile (Q-Q) plots for all four individual hernia analyses. A: Inguinal
hernia analysis. B: Femoral hernia analysis. C: Umbilical hernia analysis. D: Hiatus hernia
analysis. The Agc demonstrated nominal inflation levels across the four association analyses,
ranging from 1.00-1.20 (Agc-femoral: 1.00; Agc-umbilical: 1.05; Agc-inguinal: 1.15; Agc-hia-
tus: 1.20), however the LDSC intercept range of 1.00-1.03 (Femoral: 1.00; Umbilical: 1.01;
Inguinal: 1.02; Hiatus: 1.03) and an attenuation ratio of 0.08-0.19 (Umbilical: 0.08; Inguinal:
0.11; Hiatus: 0.13; Femoral: 0.19) is fully in keeping with the effects of polygenicity and large
sample size.

(PDF)

$3 Fig. Regional Locus Zoom plots for all four Individual hernia associated signals. Locus-
Zoom plots of the 28 inguinal, 1 femoral, 5 umbilical and 8 hiatus hernia independent
genome-wide significant associated signals. Plots are ordered by chromosome number and
genomic position. SNP position is shown on the x-axis, and strength of association on the y-
axis (-log10 P-value). The linkage disequilibrium (LD) relationship between the lead SNP and
the surrounding SNPs is indicated by the r2 legend. In the lower panel of each figure, genes
within 500kb of the index SNP are shown. The position on each chromosome is shown in
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relation to Human Genome build hg19.
(PDF)

$4 Fig. Quantile-quantile (Q-Q) plots of A) all overlap hernia associated signals and B) all
umbrella hernia associated signals. Across both overlap and umbrella hernia analyses, the Agc
was 1.05 and 1.20, respectively, with an LDSC intercept of 1.01 and 1.03 and an attenuation
ratio of 0.15 and 0.10.

(PDF)

S5 Fig. Regional Locus Zoom plots of all overlap hernia associated signals. LocusZoom
plots of the six independent genome-wide significant SNPs at the four overlap hernia associ-
ated susceptibility loci. Plots are ordered by chromosome number and genomic position. SNP
position is shown on the x-axis, and strength of association on the y-axis (-log10 P-value). The
linkage disequilibrium (LD) relationship between the lead SNP and the surrounding SNPs is
indicated by the r2 legend. In the lower panel of each figure, genes within 500kb of the index
SNP are shown. The position on each chromosome is shown in relation to Human Genome
build hg19.

(PDF)

S6 Fig. Regional Locus Zoom plots of all umbrella hernia associated signals. LocusZoom
plots of the 25 independent genome-wide significant SNPs at the 19 hernia-associated suscep-
tibility loci. Plots are ordered by chromosome number and genomic position. SNP position is
shown on the x-axis, and strength of association on the y-axis (-logl0 P-value). The linkage
disequilibrium (LD) relationship between the lead SNP and the surrounding SNPs is indicated
by the r2 legend. In the lower panel of each figure, genes within 500kb of the index SNP are
shown. The position on each chromosome is shown in relation to Human Genome build
hg19.

(PDF)

S7 Fig. MAGMA tissue expression analysis of umbrella hernia. MAGMA Tissue Expression
Analysis of the umbrella hernia GWAS-summary data, implemented in FUMA in A) 30 gen-
eral and B) 54 specific tissue types. This analysis tests the relationship between highly-expressed
genes in a specific tissue and the genetic associations from the GWAS. Gene-property analysis
is performed using average expression of genes per tissue type as a gene covariate. Gene expres-
sion values are log2-transformed average RPKM (Read Per Kilobase Per Million) per tissue
type after winsorization at 50, and are based on GTEx v8 RNA-Seq data across 54 specific tissue
types and 30 general tissue types. The dotted line indicates the Bonferroni-corrected o level,
and the tissues that meet this significance threshold are highlighted in red.

(PDF)
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