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Abstract

Background

Feasible estimations of perioperative changes in oxygen consumption (VO2) could enable

larger studies of its role in postoperative outcomes. Current methods, either by reverse Fick

calculations using pulmonary artery catheterisation or metabolic by breathing gas analysis,

are often deemed too invasive or technically requiring. In addition, reverse Fick calculations

report generally lower values of oxygen consumption.

Methods

We investigated the relationship between perioperative estimations of VO2 (EVO2), from

LiDCO™plus-derived (LiDCO Ltd, Cambridge, UK) cardiac output and arterial-central

venous oxygen content difference (Ca-cvO2), with indirect calorimetry (GVO2) by

QuarkRMR (COSMED srl. Italy), using data collected 2017–2018 during a prospective

observational study on perioperative oxygen transport in 20 patients >65 years during epidu-

ral and general anaesthesia for open pancreatic or liver resection surgery. Eighty-five simul-

taneous intra- and postoperative measurements at different perioperative stages were

analysed for prediction, parallelity and by traditional agreement assessment.
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Results

Unadjusted bias between GVO2 and EVO2 indexed for body surface area was 26 (95% CI

20 to 32) with limits of agreement (1.96SD) of -32 to 85 ml min−1m−2. Correlation adjusted

for the bias was moderate, intraclass coefficient(A,1) 0.51(95% CI 0.34 to 0.65) [F (84,84) =

3.07, P<0.001]. There was an overall association between GVO2 and EVO2, in a random

coefficient model [GVO2 = 73(95% CI 62 to 83) + 0.45(95% CI 0.29 to 0.61) EVO2 ml min−-

1m−2, P<0.0001]. GVO2 and EVO2 changed in parallel intra- and postoperatively when nor-

malised to their respective overall means.

Conclusion

Based on this data, estimations from LiDCO™plus-derived cardiac output and Ca-cvO2 are

not reliable as a surrogate for perioperative VO2. Results were in line with previous studies

comparing Fick-based and metabolic measurements but limited by variability of data and

possible underpowering. The parallelity at different perioperative stages and the prediction

model can provide useful guidance and methodological tools for future studies on similar

methods in larger samples.

Introduction

A postoperative imbalance between oxygen consumption and delivery, leading to increased

oxygen extraction, has been associated with increased morbidity and mortality after major sur-

gery [1]. The focus of goal-directed haemodynamic therapy (GDHT) has traditionally been on

oxygen delivery, which is often easier to assess and to develop measurable optimisation strate-

gies for [2]. Recently, interest is growing to reassess perioperative oxygen consumption in cur-

rent surgical populations using modern monitoring and analytic methodologies [3–6].

Feasible estimations could enable larger studies on the role of oxygen consumption in postop-

erative outcomes. Available techniques, by pulmonary artery catheterisation or indirect calo-

rimetry, are either deemed too invasive or difficult to manage in a clinical study setting during

non-cardiac surgery. Using oxygen uptake calculated from fractions of inspiratory and expira-

tory oxygen in the closed breathing circuit during low-flow anaesthesia [7] has not demon-

strated agreement when compared to standard methods [8]. Importantly, it can not be used in

awake patients in the postoperative period. Commonly used haemodynamic monitoring in

major surgery, such as minimal-invasive cardiac output with arterial and central venous

access, could offer a possibility not only to estimate intra- and postoperative oxygen consump-

tion but also to follow changes over time. By substituting mixed with central venous oxygen

content and using the cardiac output derived from a minimal-invasive monitor, an estimation

of oxygen consumption could theoretically be calculated by the reverse Fick principle [9]. The

lack of absolute agreement between calorimetric and Fick-based methods has been reported

previously, the latter do not include pulmonary oxygen consumption and global oxygen con-

sumption values are usually reported around 20–40 ml min−1m−2 lower compared to those

obtained from breathing gas analysis [10–12]. Examples of previous studies comparing meth-

ods for assessing oxygen consumption by either breathing gas analysis or Fick-based measure-

ments are presented in Table 1. Yet, if this bias remains unchanged in the intra- and

postoperative period, such estimations could be studied in larger samples and related to other

clinical parameters and outcomes.
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We aimed to investigate the relationship and temporal changes between estimations of oxy-

gen consumption (EVO2), from LiDCO™plus-derived cardiac output and blood gas sampling

from arterial and central venous lines, and measured oxygen consumption (GVO2). We used

prospectively collected data from an observational study on perioperative oxygen consumption

and delivery in elderly patients undergoing major abdominal surgery [13].

Table 1. Examples of previous studies comparing methods for gas-derived VO2 with Fick-derived VO2.

Author, year Subjects, N = Number of paired

measurements

Method gas-derived

VO2

Method Fick-derived

VO2

Bias (SD or 95% CI),

limits of agreement in ml

min-1 m-2

Statistical

methodology

Bizouarn et al. 1992

[17]

Postop cardiac

surgery, N = 10

50 IC Deltatrac1 PAC thermodilution 34 (SD 27)

LoA: -33 to 88

B-A

ANOVA for time-

effects

Bizouarn et al. 1995

[25]

Postop cardiac

surgery, N = 9

54 IC Deltatrac1 PAC (continuous

thermodilution)

15 (95% CI, 13 to 17)

LoA: -3 to 33

B-A

PE-RE

Epstein et al. 2000

[26]

Trauma ICU,

N = 38

152 IC Puritan

Bennett1
PAC thermodilution 41 (95% CI, 20 to 63)

LoA*: lower -40 to -72,

upper 120 to 149

B-A

Hofland et al. 2003

[18]

Intraop vascular

surgery, N = 11

73 CC Physioflex1 PAC thermodilution 36 (not presented)

LoA**: -40 to 112

B-A

Linear regression/

Spearman rank

correlation

Inadomi et al. 2008

[20]

Postop major

abdominal surgery,

N = 28

56 IC Puritan

Bennett1
CVC+PDD 33 (not presented)

LoA: -31 to 97

B-A

Linear regression

Keinanen and

Takala, 1997 [10]

Periop cardiac

surgery, N = 9

45 IC Deltatrac1 PAC thermodilution 33 (25)

LoA (not analysed)

Linear regression

ANOVA

Leonard et al. 2002

[8]

Periop cardiac

surgery, N = 29

29*** CC Biro method PAC thermodilution 75 (121)

LoA: -162 to 311

B-A

Myles et al. 1996

[27]/revised 2007

[19]

Periop cardiac

surgery, N = 20

143 IC Deltatrac1 PAC thermodilution 20 (50)

LoA -128 to 88,

revised 30 (-116 to 57)

B-A (1996)

Random effects model

(2007)

Peyton and

Robinson, 2005

[11]

Intraop cardiac

surgery, N = 9

18 Modified Bains

circuit

PAC thermodilution 19 (20) (95% CI, 9 to 29)

ml min-1

LoA (not analysed)

Mean difference

Saito et al. 2007

[12]

Periop oesophag-

ectomy, N = 35

210 IC Deltatrac1 PAC thermodilution 23 (95% CI, 20 to 27)

LoA: -23 to 69

B-A

Correlation

Difference over time

Smithies et al. 1991

[28]

General ICU, N = 8 20 CC spirometry PAC thermodilution 36 (SD29) ml min-1

LoA (not analysed)

Mean difference

Soussi et al. 2017

[29]

ICU burns patients,

N = 22

44 IC E-COVX1 CVC +PiCCO1 60 (not presented)

LoA: -84 to 203

Linear regression

Bland-Altman

Stuart-Andrews

et al. 2007 [30]

Intraop cardiac

surgery, N = 30

30*** Modified semi-

closed breathing

circuit

PAC thermodilution 21 (25)

LoA (overall in graph)

Correlation

Bland-Altman

Walsh et al. 1998

[31]

ICU hepatic failure,

N = 17

98 IC Deltatrac1 PAC thermodilution -41(30) (95% CI, -31 to

-47)

LoA: -101 to 19

(Fick–Gas)

Bland-Altman

Repeatability

Abbreviations: IC; indirect calorimetry: PAC; pulmonary artery catheter: B-A; Bland-Altman method for assessing agreement: ANOVA; analysis of variance; PE:

percentage error; RE: relative error: ICU; intensive care unit: CC; closed circuit anaesthesia system: CVC; central venous catheter: PDD; pulse dye densitometry:

* no overall LoA.

** derived from graph

***pre-CPB measurements.

https://doi.org/10.1371/journal.pone.0272239.t001
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Materials and methods

This was a pre-planned prospective explorative study based on data collected during an obser-

vational study in patients > 65 yrs undergoing open liver or pancreatic surgery between Dec

2017 and April 2018 (clinicaltrials.gov NCT03355118). The results on oxygen transport

parameters from that study has been published [13]. The Regional Ethics Review Board of the

Stockholm Region (ID 2017/291-31/4) approved the study and written informed consent was

obtained from all participants.

Patients and settings

A description of selection and enrolment, patient characteristics’ and perioperative manage-

ment can be found in the previous publication [13]. As stated there, 20 ASA II-IV patients

over 65 years undergoing open pancreatic or liver resection surgery in epidural and general

anaesthesia were included. The study was conducted at the Karolinska University Hospital in

Huddinge, a tertiary referral center for upper abdominal surgery.

Data extraction and time-points

Paired values of oxygen consumption by estimations based on cardiac output monitoring

from LiDCO™plus and arterial-central venous blood gas samples (EVO2) and indirect calo-

rimetry GVO2) from five perioperative time-points were analysed; T1: during anaesthesia,

right before surgical skin incision; T2: early during surgery, directly after skin incision; T3:

later during surgery, >2h after skin incision; T4: early postoperatively, <12h after extuba-

tion; T5: late postoperatively, on postoperative day 1. The mean values for GVO2 during the

approximate 20-minute measurement periods were compared with simultaneous cardiac

output measurements averaged for each minute exported from LiDCOviewPRO (LiDCO

Ltd, Cambridge, UK). The blood gas parameters were calculated as means of two simulta-

neously drawn arterial and central venous samples at 5 and 15 minutes into the measurement

period.

Measurements of VO2 by indirect calorimetry (GVO2)

Indirect calorimetry was performed by QuarkRMR (COSMED srl, Italy). This device applies a

breath-by-breath technique to measure gas flow and concentrations that are synchronised by

data processing algorithms. The Haldane transformation is used to calculate oxygen consump-

tion [14]. During intraoperative measurements, the flow meter (Flow-REE, COSMED srl,

Italy), gas sampling line and moist filter were placed between the endotracheal tube and the Y-

piece of the ventilator. The ventilator was set to a fresh gas flow of 2 L min-1 and FiO2 of 0.5

during measurements to allow for gas sampling. All other ventilation settings were left

unchanged. Postoperative measurements were made with a tight-fitting face mask connected

to a bidirectional turbine flow meter and a gas sampling line. No supplemental oxygen was

administered during the postoperative measurements. The calorimeter was calibrated before

start of intraoperative measurements and before each postoperative measurement after a

warm-up time of 20 minutes with a standardised gas mixture containing 16% oxygen and 5%

carbon dioxide. The gas sampling line, Flow-REE and moist filter were changed before each

measurement (except before T2, continuous to T1) and all flowmeters were calibrated with a

3L-syringe.
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Estimation of VO2 by minimal-invasive cardiac output and arterial-central

venous oxygen content difference (EVO2)

EVO2 was calculated by the reverse Fick’s principle with central venous instead of pulmonary

artery blood using the following formulas: [15]

EVO2 ¼ CO� Ca-cvO2 x 10

Ca-cvO2 ¼ Hb� 1:31� ðSaO2 � ScvO2Þ þ 0:0225� ðPaO2 � PcvO2Þ

[CO; cardiac output in L min-1, Ca-cvO2; oxygen content difference between arterial and cen-

tral venous blood in ml dl-1, Hb; haemoglobin in g dl-1, SaO2; arterial oxygen saturation,

ScvO2; central venous saturation, PaO2; partial pressure of oxygen in arterial blood, PcvO2;

partial pressure of oxygen in central venous blood, constants 1.31 and 0.0225, referring to the

Hüfner constant and the solubility coefficient of oxygen (ml O2 dl-1 kPa-1), and 10 as a conver-

sion factor from dL to L.].

Cardiac output was obtained from LiDCO™plus (LiDCO Ltd, Cambridge, UK). The device

was calibrated and recalibrated a minimum of three times according to the manufacturer’s

instructions. This was done using a transpulmonary lithium bolus indicator dilution technique

for an absolute CO value to obtain a calibration factor and to perform autocalibration after

which continuous measurement of haemodynamic variables is carried out by the pulse power

analyses integrated in the LiDCO™plus system. Calibration procedures was undertaken at

times to avoid interference by non-depolarising muscle relaxants. Missing values from CO
measurements (averaged for each minute) were substituted by linear interpolation between

the subsequent measurements, making sure not more than three data points were missing, and

no major haemodynamic changes occurred. Blood gases were analysed immediately after sam-

pling by ABL800 Flex or ABL90 Flex (Radiometer Medical ApS, Denmark). Cardiac output

and measured oxygen consumption were indexed for body surface area using the DuBois for-

mula yielding values of GVO2 and EVO2 in ml min−1m−2 [16].

Statistical analysis

The sample size calculation was performed for the primary study [13], based on a previous

meta-analysis [4], from which 20 patients were expected to demonstrate a relevant change in

oxygen consumption after induction of anaesthesia. This would yield a maximum of 100

paired measurements of EVO2 and GVO2 which was considered sufficient based on sample

sizes in previous studies (Table 1) and with a possible >10% data loss. Continuous data was

tested for normality distribution and statistical tests applied accordingly. Statistical analyses

were performed and constructed in R (version 3.5.3; R Foundation for Statistical Computing,

Vienna, Austria, URL; https://www.R-project.org) and SAS (version 9.4; SAS Institute Inc,

Cary, NC, U.S.). The statisticians conducting the analyses were not involved in the data collec-

tion. Mean difference between EVO2 and GVO2 with 95% confidence interval were calculated

from the individual paired measurements and grouped by time point (T1-5). These changes

over time were analysed by linear mixed models with Holm-adjusted Tukey post-hoc tests. To

investigate the overall association between EVO2 and GVO2, a random coefficient model was

used based on individual slopes and coefficients. Analyses of the perioperative changes over

time of GVO2 compared to EVO2 and its input variables (CI; cardiac index and Ca-cvO2) were

conducted by random effect mixed models with method or component and time as fixed

effects. Adjustment for differences in variances of the methods or components was made. In

these models, the relative changes were normalised to the patients’ individual baseline
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measurements (T1). In the model analysing changes of each method in awake and anaesthe-

tised subjects, the changes were normalised to the respective overall mean.

Traditional agreement assessment was also performed by intraclass correlation and Bland-

Altman analysis. Single score intraclass correlation was used, a in a two-way model yielding

ICC coefficients with 95% CI. Bias and limits of agreement with 95% CI was visualised in

Bland-Altman plots. Both ICC and Bland-Altman analyses were performed separately for each

time-point T1–T5. The overall ICC and Bland-Altman analyses were not adjusted for repeated

measurements as these were performed under varying intra- and postoperative conditions.

Normality and homoscedasticity were assessed in residual plots. An alpha of 0.05 was consid-

ered significant.

Results

A total of 85 paired measurements of EVO2 (LiDCO™plus-derived cardiac output Ca-cvO2)

and GVO2 (measurements by indirect calorimetry) were obtained in 20 subjects; 58 were

obtained intraoperatively and 27 in the postoperative period. Four paired intraoperative mea-

surements were not performed due to early termination of surgery (unexpected metastatic

spread of malignancy) in two patients. Thirteen paired measurements could not be performed

in the postoperative period because of technical or arterial line failure (n = 2), logistical reasons

(n = 2), patients’ decline (n = 3), exclusion due to short postoperative stay (n = 4) and need for

supplemental oxygen (n = 2). Correct positioning of the CVC was confirmed by postoperative

chest x-ray in all patients. As stated above, patients’ characteristics and perioperative data

along with enrolment details can be found in the main oxygen transport study [13].

Taking all 85 paired measurements together, EVO2 was generally lower than GVO2 with an

overall mean difference of oxygen consumption between EVO2 and GVO2 of -26 (95% CI -20

to -32; P<0.001) ml min−1m−2. The difference at the different perioperative stages (anaesthe-

sia, early and late surgery, early and late postoperative) is presented in Fig 1. The changes

between these stages were not statistically significant. [F(4, 168) = 1.39, P = 0.241]. The mean

overall difference between GVO2 and EVO2 unadjusted for body surface area was -50 (95% CI

-61 to -39; P<0.001) ml min-1. Percentage error (PE) for all measurements was 30 (95% CI 26

to 34) % with a coefficient of variation of 61%. Intraoperative measurements had a PE of 34

(95% CI 30 to 38) % and postoperative 21 (95% CI 13 to 29) % with coefficients of variation of

47% and 94%, respectively.

Bland-Altman plots were constructed to illustrate the bias and limits of agreement between

EVO2 and GVO2 at the different time-points, see Fig 2. The overall unadjusted mean bias was

26 ml min-1 m-2 with limits of agreement (1.96SD) of -32 to 85 ml min−1m−2. Excluding one

outlier in the late postoperative period (a patient with a large Ca-cvO2 difference) changed the

unadjusted bias to 28 (LoA -20 to 75) ml min-1 m-2. The overall correlation for absolute agree-

ment was poor, with an intraclass coefficient ICC(A,1) of 0.37 (95% CI 0.34 to 0.65) [F

(84,10.2) = 3.07, P = 0.0266], and improved to moderate but with large confidence intervals

when adjusted for lower overall mean difference of EVO2, ICC(A,1) = 0.51 (95% CI 0.34 to

0.65) [F(84, 84) = 3.07, P<0.001]. Graphs depicting the correlation between indexed GVO2

and EVO2 at the different time-points (T1–5) including the unadjusted overall correlation are

presented in S1 File.

Parallel changes were demonstrated between GVO2 and EVO2 when separated to the anaes-

thetised intraoperative state [F(2, 49.9) = 0.57, P = 0.5669] and the awake postoperative state F

(1, 22) = 0.00, P = 0.9604), Fig 3a and 3b. An overall association between GVO2 and EVO2 was

demonstrated in a random coefficient model for predicting GVO2 from EVO2, but with large

predictions intervals as illustrated by the model coefficients (Fig 4). The two patients with
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early termination of surgery were excluded from this analysis. The variances of EVO2 and its

components, oxygen content difference in arterial and central venous blood (Ca-cvO2) and

cardiac index (CI) were larger compared to GVO2 at all time-points, these analyses are pre-

sented in S2 File.

Discussion

To the best of our knowledge, this is the first study investigating a Fick-based estimation

method for perioperative oxygen consumption based on commonly used haemodynamic

monitoring (LiDCO™plus and blood gas sampling from arterial and central venous lines). Bias

and agreement with indirect calorimetry were approximate to previous studies using pulmo-

nary artery catheters in which Fick-based methods have demonstrated 20–40 ml min-1 m-2

lower values compared to metabolic measurements. As in many of these studies, limits of

agreement and coefficients of variation were unacceptably large [12, 17–19]. The relationship

between estimated and measured oxygen consumption was investigated by intraclass correla-

tion, parallelity and with a random coefficient model. Parallelity and overall association was

demonstrated, but the model had large prediction intervals, probably attributable to the lim-

ited number of observations and the variability of collected data. This estimation method can-

not be recommended as clinically useful to assess perioperative oxygen consumption.

Fig 1. Difference between oxygen consumption measured indirect calorimetry (GVO2) and estimated from

LiDCOplus™-derived cardiac output and Ca-cvO2 (EVO2) at each perioperative time-point; anaesthesia (before

skin incision), early surgery (after skin incision), late surgery (>2hrs after skin incision), early postop (<12 hrs

after extubation, late postop (postoperative day 1) expressed as mean (95% CI) ml min-1 m-2.

https://doi.org/10.1371/journal.pone.0272239.g001

PLOS ONE Estimations of perioperative oxygen consumption in major surgery

PLOS ONE | https://doi.org/10.1371/journal.pone.0272239 July 25, 2024 7 / 15

https://doi.org/10.1371/journal.pone.0272239.g001
https://doi.org/10.1371/journal.pone.0272239


Nevertheless, it can provide important guidance in the design and analytical approaches of

future studies involving precise monitoring and larger number of observations.

Most previous studies investigating methods for oxygen consumption monitoring perio-

peratively or in critically ill patients were performed decades ago using traditional method

comparison analytical methods. Examples of the earlier method comparison studies are sum-

marised in Table 1. Newer studies using non-invasive cardiac output monitors have not

shown agreement with oxygen consumption measurements from indirect calorimetry [20] or

pulmonary artery catheters [21]. However, the monitors used were not calibrated by transpul-

monary or indicator dilution such as the PiCCO™ or LiDCO™plus systems and did not analyse

changes over time. Estimates of increased oxygen extraction, i.e low mixed or central venous

Fig 2. Bland-Altman plots describing mean GVO2-EVO2 vs ΔGVO2-EVO2 in ml min-1 m-2 at the different time-

points with bias (continuous lines) and limits of agreement (dotted lines). Anaesthesia (T1; N = 20); b. Early

surgery (T2; N = 20); c. Late surgery (T3; N = 18); d. Early postop (T4; N = 13); e. Late postop (T5; N = 14); f. all time-

points in the same plot (N = 85 paired measurements).

https://doi.org/10.1371/journal.pone.0272239.g002

Fig 3. a and b. Perioperative changes of GVO2 (red) and EVO2 (black) separated for anaesthetised (a) and awake postoperative (a) states. Least square means

estimates with 95% CI and normalised to overall means (= 1.0) of each method in anaesthetised intraoperative (T1–T3) and awake postoperative states (T4–T5).

(T1) anaesthesia; Early surgery (T2); Late surgery (T3); Early postop (T4); Late postop (T5).

https://doi.org/10.1371/journal.pone.0272239.g003
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Fig 4. A random coefficient model for predicted GVO2 from EVO2 based on all perioperative time-points. GVO2 = β0 + β1 (EVO2). Two patients with a

total of only 2 paired intraoperative measurements(T1–T2) were excluded from the analysis.

https://doi.org/10.1371/journal.pone.0272239.g004
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saturation, are associated with poor surgical outcomes [22, 23]. However, cut-off levels remain

unclear and the quality of evidence is low [24]. In order to further study and distinguish the

role of oxygen consumption in the perioperative period, feasible estimations are needed. Oxy-

gen consumption calculated by the reverse Fick equation is consistently reported lower than

simultaneous measurements by analysis of respiratory gas exchange [8, 10–12, 17, 25–32].

This difference or bias has been attributed to the pulmonary oxygen consumption [30, 33, 34].

However, variability of Fick-derived measurements [28, 31] and wide limits of agreement [19]

has made it difficult to estimate a systematic methodological bias. Many previous studies have

either been performed in thoracic or cardiovascular surgery [10–12, 17, 33] or in critically ill

patients [26, 29, 31, 35]. Pulmonary oxygen consumption can be expected to increase after tho-

racic surgery [12] and in intensive care patients with varying degrees of lung injury [36]. Some

studies that involve patients undergoing predominately abdominal surgery have shown accept-

able agreement between the methods [37, 38]. The age of the studies is also reflected by the fre-

quent use of the Deltatrac Metabolic Monitor1 (Datex Instrumentarium, Helsinki, Finland), a

metabolic monitor using a mixing-chamber technique and which is no longer in production.

Many metabolic monitors in modern clinical use are based on breath-by-breath technology

such as the Es-COVX1 (GE Healthcare, Helsinki, Finland) or the QuarkRMR1 in our study.

Although there is supporting evidence for some overestimation of oxygen consumption, the

technology has shown clinically acceptable agreement when compared with mixing-chamber

methods [39, 40] and it has been validated in the semi-closed circle absorber systems com-

monly used in anaesthesia [41]. Our results on GVO2 were comparable with studies using Del-

tatrac II when corrected for difference in units (Table 1). The estimations of oxygen

consumption rely on accurate cardiac output determinations and oxygen content difference

measurements. The LiDCO™plus has shown acceptable performance against the pulmonary

artery catheter and other devices in cross-comparisons in cardiac output accuracy studies [42,

43]. During rapidly changing haemodynamic situations, concerns regarding trending ability

and underestimation of cardiac output have been raised [44, 45]. The 20-minute data extrac-

tion periods in this study were specifically chosen to represent perioperative time points that

usually are without considerable circulatory instability. Central and mixed venous oxygen sat-

uration have not shown interchangeability [46–48] but some studies have suggested that trends

in ScvO2 can replace SvO2 [49–51]. During stable intraoperative conditions, oxygen content

difference is not expected to vary to a large extent whereas cardiac output can show consider-

able in- and between patient variability [21]. In our study, oxygen content difference and car-

diac output demonstrated similar coefficients of variation.

The known lack of agreement between gas- and Fick-derived measurements of oxygen con-

sumption and the lack of a clinically available golden standard method led us to apply alterna-

tive analytical approaches. Time effects and repeated measurements in the same subject under

changing conditions constitute important statistical challenges in studies involving periopera-

tive patients. Previous studies have often used simple linear regression or correlation [10, 11,

20, 29] or Bland-Altman analysis [52] without correction for repeated measurements [12, 20,

26, 37] except for some [19, 32]. Only a few address the relationship between measurements

over time [17, 27]. In the present study, we developed a prediction model for EVO2 and GVO2

by using a random coefficient model based on individual slopes and intercepts. A significant

positive association was demonstrated here, but with large prediction intervals. Such predic-

tion models should obviously be evaluated in larger samples. We also present analyses of rela-

tive changes of EVO2 and its components with GVO2. The parallelity that was demonstrated

could indicate an ability of EVO2 to track changes in oxygen consumption. To address this fur-

ther, multiple measurements during shorter periods of time would be required. Analytic mod-

els previously used for cardiac output monitors such as polar plot approaches could assess the
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magnitude and direction of changes [44]. Intraclass correlation (ICC) was used as it better

reflects reliability and agreement based on analysis of variance of the pooled data [53]. When

adjusted for the consistently lower values of EVO2, the ICC estimates of the model improved

but not so much (ICC coefficient 0.51 vs 0.37). Bland-Altman analysis has since long been the

standard method for visualisation of agreement when comparing different methods of oxygen

consumption monitoring [19]. Myles and Cui further elaborated the methodological issues

related to repeated measurements in the same subject already considered by Bland and Altman

[54] and proposed different random effects models to adjust limits of agreement [19]. As mea-

surements were performed under varying perioperative conditions, we present the time-points

separately and did not adjust the overall limits of agreement for repeated measurements in the

same patient.

This study has several major limitations in addition to those discussed above. Although the

number of observations is in the same range as in many previous studies (Table 1), no sample

size calculation was performed for the specific analytical approaches that were applied. Conse-

quently, it is possibly underpowered for many of these outcomes. There was a considerable

loss of data in the postoperative period limiting the conclusions on the changes at the different

perioperative stages.

In summary, this estimation method cannot be regarded as clinically useful, and results

were comparable to previous comparisons between Fick-based and metabolic methods. Large

variability of data and possible underpowering limited the construction of a prediction model

and determination of a precise systematic bias. The results on parallelity and the overall associ-

ation between the methods should be regarded as indicative. That aside, it can provide useful

methodological tools for future studies on oxygen consumption assessment.
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(T0) (= 1.0); Early surgery (T2); Late surgery (T3); Early postop (T4); Late postop (T5) pp.18–25
S2:4.Mixed effect models for parallelity analysis between GVO2 and EVO2 normalised to overall
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Late surgery (T3) pp.26–31S2:5. Mixed effect models for paralellity analysis between GVO2 and
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Bartha.

Investigation: Julia Jakobsson.

Methodology: Julia Jakobsson, Eva Hagel, Magnus Backheden, Sigridur Kalman, Erzsébet
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