

RETRACTION

Retraction: Identification for surrogate drought tolerance in maize inbred lines utilizing high-throughput phenomics approach


The *PLOS ONE* Editors

The *PLOS ONE* Editors retract this article [1] because it was identified as one of a series of submissions for which we have concerns about authorship, competing interests, and peer review. We regret that the issues were not addressed prior to the article's publication.

ZAD, SAD, SL, AI, SHW, MB, and MJA did not agree with the retraction. JAK, AAL, BAL, RHK, JR, SA, and SAA either did not respond directly or could not be reached.

Reference

1. Dar ZA, Dar SA, Khan JA, Lone AA, Langyan S, Lone BA, et al. (2021) Identification for surrogate drought tolerance in maize inbred lines utilizing high-throughput phenomics approach. *PLoS ONE* 16(7): e0254318. <https://doi.org/10.1371/journal.pone.0254318> PMID: 34314420

OPEN ACCESS

Citation: The *PLOS ONE* Editors (2022) Retraction: Identification for surrogate drought tolerance in maize inbred lines utilizing high-throughput phenomics approach. *PLoS ONE* 17(8): e0272178. <https://doi.org/10.1371/journal.pone.0272178>

Published: August 3, 2022

Copyright: © 2022 The *PLOS ONE* Editors. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.