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Abstract

Introduction

Currently, sub-second monitoring of neurotransmitter release in humans can only be per-
formed during standard of care invasive procedures like DBS electrode implantation. The
procedure requires acute insertion of a research probe and additional time in surgery, which
may increase infection risk. We sought to determine the impact of our research procedure,
particularly the extended time in surgery, on infection risk.

Methods

We screened 602 patients who had one or more procedure codes documented for DBS
electrode implantation, generator placement, programming, or revision for any reason per-
formed at Wake Forest Baptist Medical Center between January 2011 through October
2020 using International Classification of Diseases (ICD) codes for infection. During this
period, 116 patients included an IRB approved 30-minute research protocol, during the
Phase 1 DBS electrode implantation surgery, to monitor sub-second neurotransmitter
release. We used Fisher’s Exact test (FET) to determine if there was a significant change in
the infection rate following DBS electrode implantation procedures that included, versus
those that did not include, the neurotransmitter monitoring research protocol.

Results

Within 30-days following DBS electrode implantation, infection was observed in 1 (0.21%)
out of 486 patients that did not participate in the research procedure and 2 (1.72%) of the
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116 patients that did participate in the research procedure. Notably, all types of infection
observed were typical of those expected for DBS electrode implantation.

Conclusion

Infection rates are not statistically different across research and non-research groups within
30-days following the research procedure (1.72% vs. 0.21%; p = 0.0966, FET). Our results
demonstrate that the research procedures used for sub-second monitoring of neurotrans-
mitter release in humans can be performed without increasing the rate of infection.

Introduction

There is great promise in leveraging opportunities in the operating room (OR) to conduct
human neuroscience research. Deep Brain Stimulation (DBS) in particular lends itself to
research, as the procedure typically entails intraoperative electrophysiological assessments of
neural targets; thus, research data can be acquired with relatively minor protocol changes [1-
5]. This has allowed research teams to make breakthrough discoveries using data collected in
the OR during DBS electrode implantation procedures [1-16]. Notable innovations include
first-of their kind measurements of neurotransmitters [1-5,7,8], including dopamine
[1,2,4,5,12], serotonin [3,4,12], and adenosine [7,8] in humans. Other advances include single
unit recordings from substantia nigra [6] and expanding DBS targeting to provide symptom
relief in treatment-refractory depression, substance use disorder, Alzheimer’s disease, and
obsessive-compulsive disorder [9-11,13-16].

One potential limiting factor in conducting translational research in the OR is the possibil-
ity that the added OR time necessary to conduct experiments may increase infection risk
[17,18]. Infection risks following DBS surgeries are well described and provide a good basis for
comparison. A metanalysis covering 1354 patients across 23 articles reported a 6.9% overall
risk of infection following DBS electrode implantation surgeries [19]. Similarly, one large sin-
gle-center study of 447 DBS patients identified an overall infection rate of 5.82% (26 patients);
this study also identified a 30-day infection rate of 2.01% (9 patients) [17]. This 30-day infec-
tion rate is corroborated by other large, single-institution studies, including a study of 273
patients with a median time to infection of 1 month that reported an infection rate of 3.1%
across procedures for primary DBS electrode placement [20]. To date, however, no study has
investigated whether adding OR time due to a predefined research protocol increases infection
risk after elective surgery.

Our group has over a decade of data and experience measuring neurotransmitters while
patients complete behavior tasks during DBS electrode implantation surgeries [1-5,12]. These
experiments have added a maximum of 30 minutes to the scheduled OR time. Thus, we have
ample research and surgical records to retrospectively explore whether there are group differ-
ences in post-operative infection rates between patients receiving DBS who participate in
research (‘research’) and who do not participate in research (‘non-research). Here, we compare
the 30-day post-operative infection rates of research (N = 116) and non-research (N = 486)
groups at our institution to investigate whether these experiments increased infection risk.

Materials and methods

The Institutional Review Board at Wake Forest University Health Sciences approved all proce-
dures described for this retrospective study (IRB00064371) and for our ongoing research
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protocol in the DBS operating room (IRB00017138). Data were analyzed anonymous under
IRB00064371. Research participants gave their written informed consent prior to participation
in the research study under protocol IRB00017138. All relevant data for sharing are contained
within the manuscript and its Supporting Information files.

Clinical data

We screened all patients who had one or more procedure codes documented for DBS electrode
implantation, generator placement, programming, or revision for any reason at Wake Forest
Baptist Medical Center between January 2011 through October 2020 using International Clas-
sification of Diseases (ICD) codes for infection. These ICD codes included: T85.731 (Infection
and inflammatory reaction due to implanted electronic neurostimulator of brain); T85.734
(Infection and inflammatory reaction due to implanted electronic neurostimulator, generator),
61867 (First Electrode with microelectrode recording, typical), 61868 (Second Electrode on
same side with recording, other side), 95983 (Intraoperative analysis / programming), 61885
(For single electrode), 61886 (For multiple electrodes), 61880 (Electrode removal / revision),
61888 (Generator removal / revision, use for attaching previously placed lead); Z45.42 (DBS
Phase / Stage 3, generator change).

We further screened the total number of DBS procedures using the medical record number
(MRN) of all patients who received DBS and participated in our research protocol (Table 1).

Our research procedure occurs during microelectrode-based electrode placement planning
for deep brain stimulation (DBS) surgery, which will be summarized here [1-4,12]. In prepara-
tion for deep brain stimulation (DBS) surgery, the neurosurgeons on our research team fita a
Cosman-Roberts—Wells (CRW) stereotactic frame on the head, and the medical team takes a
volumetric computed tomography (CT) scan. This information is integrated with preoperative
MRI images, which are used together to determine DBS electrode targets. Therapeutic targets
are the subthalamic nucleus, internal segment of the globus pallidus, or the thalamus. Our
research targets (the caudate, putamen, and thalamus) are anatomically superior to therapeutic
targets used in DBS, which are approximately 15mm to 20mm deeper than the research
recording targets [1-4,12]. Thus, use of our research electrode is typically performed just prior
to functional mapping with tungsten microelectrodes (provided by FHC inc.) [1-4,12].

The neurosurgeons place our custom carbon-fiber microsensors into the caudate or puta-
men, using one of five potential microelectrode recording trajectories made available by a five-
hole “Ben-gun” array, at depths that do not surpass treatment depths deemed safe during

Table 1. Yearly patients consented for DBS research surgeries.

Year | Total Patients Consented | Total Patients Completed | Total Patients Consented Only | % Patients Completed | % Patients Consented Only

2012 4 4 0 100% 0%
2013 23 17 6 74% 26%
2014 20 14 6 70% 30%
2015 9 7 2 78% 22%
2016 13 11 2 85% 15%
2017 14 10 4 71% 29%
2018 24 18 6 75% 25%
2019 23 15 8 65% 35%
2020 9 8 1 89% 11%

Total numbers of patients who are consented for, and ultimately complete, a research protocol during deep brain stimulation (DBS) neurosurgery. This data starts in
April 2012 and continues through December 2020.

https://doi.org/10.1371/journal.pone.0271348.t001
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planning stages. The carbon-fiber microsensors are constructed by our laboratory to match
the dimensions of the tungsten microelectrodes used for functional mapping during DBS elec-
trode implantation surgery. These custom carbon fiber microelectrodes have passed a success-
ful Ethylene Oxide Sterilization Exposure and Sterility Audit conducted by BioLabs to ensure
preoperative ethylene oxide treatment fully sterilizes the carbon-fiber microsensor electrodes.
These electrodes have also been validated and approved for autoclave and hydrogen peroxide
sterilization.

The research protocol adds a maximum of 30 additional minutes to the DBS surgery time
and requires an informed consent process that takes place ahead of the surgery [1-4,12]. This
compares to an average overall DBS operating time previously reported as 4 hours for unilat-
eral and 4.7 hours for bilateral surgeries [21]. While the research team measures neurotrans-
mitter levels, participants complete behavioral tasks displayed on a computer monitor and
input decisions using a standard gaming controller [1-4,12]. Research records were also
screened to determine the number of patients consenting to versus completing research proto-
cols during their DBS surgeries.

Statistics

All statistical analyses were conducting using RStudio [22]. We used Fisher’s Exact test (FET)
to compare 30-day infection rates following Phase 1 DBS electrode implantation procedures
across patients that did and did not participate in our DBS research protocol during their
Phase 1 DBS procedure.

Results

We identified 602 patients who had a Phase 1 DBS electrode implantation procedure per-
formed at Wake Forest Baptist Medical Center between January 2011 through October 2020
using our specific ICD codes for infection (Fig 1). Of those 602 patients, 486 patients met crite-
ria for having a Phase 1 DBS procedure that did not include the research protocol (‘non-
research’), and an additional 116 patients met criteria for Phase 1 DBS procedures that did
include the research protocol (‘research’).

Of the 486 non-research DBS patients, there was 1 infection within 30 days of the DBS pro-
cedure (0.21% of patients). Of the 116 research DBS patients, there were 2 within 30 days of
the DBS procedure (1.72% of patients, Fig 1). Using FET, we determined that there is no

Electronic Medical Record Search By ICD Codes
n =602 patients

Research DBS Phase 1
n = 116 patients

Non-research DBS Phase 1
n =486 patients

n = 1 patient (0.21%)
Fig 1. Acquisition of cases by medical record review. Flowchart demonstrating the acquisition and filtering of deep
brain stimulation (DBS) procedures (or cases) from the electronic medical record (EMR) using International

Classification of Diseases (ICD) codes. There is no statistically significant difference between the non-research and
research DBS groups in the 30-day infection rates (0.21% vs. 1.72%; p = 0.0966, FET).

https://doi.org/10.1371/journal.pone.0271348.9001

Infections within 30 Days
n = 2 patients (1.72%)
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Table 2. Diagnoses of patients consented for DBS research surgeries.

Diagnosis Total Patients Consented | Total Patients Completed | Total Patients Consented Only | % Patients Completed | % Patients Consented Only
Parkinson’s Disease 97 73 24 75% 25%
Essential Tremor 36 28 8 78% 22%
Dystonia 6 3 3 50% 50%

Diagnoses of patients who are consented for, and ultimately complete, a research protocol during deep brain stimulation (DBS) neurosurgery. This data starts in April
2012 and continues through December 2020.

https://doi.org/10.1371/journal.pone.0271348.t1002

statistically significant difference between the non-research and research DBS groups in the
30-day infection rates (0.21% vs. 1.72%; p = 0.0966, FET, Fig 1).

The infectious pathogens in the research group were reported to be: Methicillin-resistant
Staphylococcus aureus (MRSA), Methicillin-sensitive Staphylococcus aureus (MSSA), and Ser-
ratia marcescens. All of these pathogens have been reported in the literature as potential causes
of post-operative infections after DBS, with the Staphylococcus genus the most common cul-
prit [23].

We also identified the yearly number of patients who were approached for consent to par-
ticipate in research, and the actual number of patients who completed the research study start-
ing in April 2012 and continuing through December 2020 (Table 1). The diagnoses of
consented patients were also identified (Table 2). Reasons for consenting but not completing a
research protocol can be influenced by the individual anatomy of each participant (i.e. no
good trajectory connecting striatum and target).

Discussion/Conclusion

Our results investigating the infection rates of DBS surgery patients with and without a
30-minute invasive research procedure during DBS electrode implantation demonstrate that
there is no difference in 30-day infection rates between groups. This is consistent with the con-
clusion that these experiments can be performed without increasing the risk of infection in
these patient populations. Further confidence in our results can be found in a comparison to
studies reporting similar 30-day infection rates to our results. Our 30-day infection rates of
0.21% for non-research and 1.72% for research procedures are comparable to—and even
lower than—similar studies reporting 30-day infection rates of 2.01% [17] and 3.1% [20]
where intracranial research was not performed. The infectious pathogens reported for the
research infections (MRSA, MSSA, and Serratia marcescens) have all been reported as poten-
tial infectious causes in post-operative DBS infections [23]. This provides further support that
the 30-minute research period introduces no new infection related risks to patients.

There are a number of potentially influential factors in maintaining low infection rates
while conducting translational research in the DBS OR. First and foremost, all research elec-
trodes in our study go through independently validated sterilization procedures typical of all
surgical equipment requiring sterilization [1-4]. During the research procedure, the neuro-
surgeon leads the clinical staft and maintains the sterile field while handling all equipment
within the sterile field. We have limited the research protocol to a maximum of thirty minutes
of additional time in surgery. Should the research tasks be delayed or extended for any reason
the research activities are to be prematurely terminated at the thirty-minute threshold. This is
done primarily to avoid unbounded delays in the surgery so that patient safety and comfort
are maintained as much as possible. All patients who are candidates for DBS-electrode implan-
tation surgery are offered the opportunity to participate. Those that choose to volunteer may
be among the most likely to be capable of post-surgical selfcare that would aide in minimizing
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post-surgical infections. In this retrospective analysis, we do not have the appropriate data to
assess this possibility, but it is potentially a major factor in the low infection rates we observe.
The similarly low infection rates in the non-research group suggests that if this were the expla-
nation for low infection rates then the comprehensive process of screening potential candi-
dates for DBS-surgery at our institution would be the causative factor.

Research, including this current study, that shares information about the risks of observa-
tional human research studies during DBS are necessary to verify the anticipated safety of new
applications of intracranial research protocols in the neurosurgery setting. The DBS-electrode
implantation procedure is a safe and relatively low risk procedure as has been demonstrated
repeatedly in the past [1-5,12]; it also affords unique access to areas of the human brain that
have not been accessible in the past. Measurements of neurotransmitters, single units, and
local field potentials in the human brain may provide new information about brain function
and the mechanisms underlying disorders that may aid in improving the efficacy of DBS treat-
ment [1-8] or in the development of novel neurosurgical goals. In addition to basic knowledge
generation, these studies may also lead to the development of novel biologic markers of disease
and treatment management. Our demonstration that these kinds of research protocols can be
performed without an increase in infection rates should-with appropriate expertise, care, and
consideration-encourage further intracranial investigation of human brain function. Our
results show that intracranial recordings of sub-second neurotransmitter release in a time-
extending research protocol utilizing a novel research probe are possible without increasing
infection rates.

Supporting information

S1 File. Anonymized patient list. This file includes a list of all patients included in our study.
There are separate columns for infection and whether a patient was a study patient, indicated
with a “1”. The days to infection are included with a countdown to the prior surgery and a
countdown to the study (if applicable). The culture information is also included in the final
column for patients with infections.

(XLSX)

S2 File. Anonymized patient list of infected patients only. This file includes only the patients
with infections included in our study. There are separate columns for type of surgery before
infection and study participation (indicated with a “1”). The days to infection are included
with a countdown to the prior surgery, a countdown to the prior phase 1 surgery, a countdown
to the study (if applicable). The culture information is also included in the final column.
(XLSX)
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