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Abstract

Turfgrass management relies on frequent watering events from natural precipitation or irri-

gation. However, most irrigation scheduling strategies in turfgrass ignore the magnitude of

canopy interception. Interception is the process by which precipitation or irrigation water is

intercepted by and evaporated from plant canopies or plant residue. The objective of this

study was to quantify the magnitude of precipitation interception and throughfall in ‘Meyer’

zoysiagrass (Zoysia japonica L.) and ‘007’ creeping bentgrass (Agrostis stolonifera L.). We

used a new method consisting of co-located pluviometers with and without circular turfgrass

patches to measure interception and throughfall. The resulting dataset includes 15 storms

and 25 individual rainfall events ranging in precipitation totals from 0.3 mm to 42.4 mm

throughout the research study. Throughfall amount resulted in a strong (r = 0.98) positive lin-

ear relationship with precipitation totals. On average, zoysiagrass and creeping bentgrass

canopies intercepted a minimum of 4.4 mm before throughfall occurred. This indicates that,

on average, no precipitation reaches the soil surface for precipitation events <4.4 mm. After

the point of throughfall, 16% of each additional millimeter of precipitation or irrigation is lost

due to interception. Nearly, 45% of the area of the contiguous U.S. could result in >50% of

the annual precipitation being intercepted by canopies of zoysiagrass and bentgrass. This

study provides detailed insights to understanding the interception dynamics in turfgrass and

highlights the inefficient nature of small precipitation and irrigation events in turfgrass

systems.

Introduction

In the United States, there are more than 12.5 million hectares of irrigated turfgrass [1]. Golf

courses alone account for 600,000 hectares of turf that use approximately use 2.2 km3 of water

per year [2]. Turfgrass plays an important role in recreational spaces, sport fields, and land-

scaping both for aesthetic purposes and to prevent soil erosion. Inevitably, the shallow (i.e.,

<30 cm) root system usually makes turfgrass vulnerable to soil water deficits, thus, irrigation

is typically an integral component of turfgrass management. To better guide in-season
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irrigation decisions, such as irrigation amounts and frequencies, irrigation scheduling in turf-

grass requires accurate knowledge of the components of the soil water balance [3]. While tradi-

tional irrigation scheduling involves fixed watering amounts and frequencies, improved

irrigation decisions aimed at conserving water resources typically integrate meteorological and

soil moisture information to assess the ability of turfgrass to cope with the atmospheric

demand given the available rootzone soil water capacity [2]. However, a component of the soil

water balance that is often neglected in irrigation prescriptions is the magnitude of both natu-

ral precipitation and irrigation interception by the turfgrass canopy, which can reduce the

amount of precipitation and irrigation water reaching the rootzone.

Interception can be defined as precipitation or irrigation water that is prevented from

reaching the soil surface by plant canopies or surface litter. Intercepted droplets can remain on

the surface of leaves, stems, and litter, and then evaporate into the atmosphere during and

after precipitation events [4, 5]. As a result, interception is often considered a loss in the soil

water balance [6, 7]. In formal terms, interception can be defined as [8]:

I ¼ P � TF ½Eq 1�

where I represents canopy and litter interception (mm), P is precipitation (mm), and TF is

throughfall (mm). Throughfall is defined as the amount of precipitation or irrigation water

that passes through the canopy. For clarity, in this study we limit the use of the term “precipita-

tion” to denote liquid precipitation. In trees and shrubs there is often an additional term for

stemflow, which is the water that flows down along branches and the main stem. Unlike trees

and shrubs, turfgrass systems are uniquely characterized by a dense plant canopy that can

propagate by stolons and/or rhizomes. Thus, mature turfgrass canopies typically develop a

thatch layer of intermingled dead and living material between the actively growing canopy and

the soil surface that can restrict and hold precipitation and irrigation water [9, 10]. For

instance, previous studies suggested that creeping bentgrass (Agrostis stolonifera L.) could

retain an amount of water equivalent to 50% of the thickness of the thatch layer [11]. Thus, in

this study we use the term throughfall to denote the additive combination of both throughfall

and stemflow.

Previous studies have extensively investigated canopy interception in land covers other

than turfgrass. For example, a forage sorghum (Sorghum bicolor L. Moench) canopy in a

humid subtropical climate in Oklahoma, US intercepted 27–45% of the growing season rainfall

[12]. In a tallgrass prairie dominated by big bluestem (Andropogon gerardii), little bluestem

(Schizachyrium scoparium), and Indiangrass (Sorghastrum nutans) in the Flint Hills region in

Kansas, US, mean canopy interception throughout a two-year study accounted for 38% of

annual rainfall [13]. A study in a coastal redwood (Sequoia sempervirens) and Douglas-fir

(Pseudotsuga menziesii) forest in northwest California, US revealed that about 22% of the

annual precipitation is evaporated from the foliage and stems [14]. Therefore, canopy intercep-

tion can play an important role in the fraction of annual precipitation that reaches the soil sur-

face. Across most interception studies, the amount of canopy interception is related to plant

canopy characteristics such as leaf area index and biomass, and meteorological factors such as

rainfall amount, duration, intensity, and atmospheric evaporative demand. While considerable

research has been conducted to show the impact of canopy interception in other land covers,

to our knowledge no prior study has quantified the magnitude of canopy interception and

throughfall in turfgrass. Our study introduces a simple method for measuring turfgrass canopy

interception and throughfall at high temporal resolution. The new method can be adapted to

multiple turfgrass species and takes into account natural rainfall events. Unfolding this

unknown component of the soil water balance could be a key element for a more efficient use
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of water turfgrass systems. The objective of this study was to quantify the magnitude of precipi-

tation interception and the timing of canopy throughfall in ‘Meyer’ zoysiagrass (Zoysia japon-
ica Steud.) and ‘007’ creeping bentgrass using a new method consisting of co-located

pluviometers.

Materials and methods

The study was conducted at the Rocky Ford Turfgrass Research Center near Manhattan, Kan-

sas (39˚13’59.628” N, 96˚34’30.612” W, 315 m a.s.l.) during September and October 2019 and

from March to June 2020. The study site is characterized by an average annual temperature of

13.4˚C and an average annual rainfall of 895 mm that is concentrated during the late spring

and summer months. The site belongs to the Dfa Köppen-Geiger climate classification, which

is characterized by humid continental hot summers with year-round precipitation [15]. The

selected grasses represent two of the most widely used turfgrass in the United States. Zoysia-

grass is a turfgrass widely used in transitional and warm climatic regions and often requires

minimal maintenance and low inputs [16], while bentgrass is well-adapted to cool and humid

climates [17].

Throughfall and precipitation interception were measured simultaneously using a new

approach consisting of co-located pluviometers with and without circular turfgrass patches

inserted into the pluviometer funnel. A few hours before each storm, a new set of turfgrass

patches of zoysiagrass and creeping bentgrass were cut, cleaned from debris, and then placed

inside the pluviometer funnel that had an opening with a diameter of 24.5 cm (Fig 1A–1C).

The turfgrass patch encompassed the canopy leaves and the thatch layer, all roots below the

thatch layer were removed. The turfgrass heights were maintained at 16 mm in the zoysiagrass

and 12.7 mm in the bentgrass to mimic typical golf course fairway heights for each turfgrass.

The thickness of the patch was determined by placing the turfgrass patch between a benchtop

and a rigid disk that had the same area of the patch with a mass of 1 kg on top of it. This proce-

dure allowed us to consistently measure the thickness of all patches. At the end of each storm,

canopy storage capacity was determined by completely submerging each patch in a bucket

with water for 5 minutes and then allowed to drip for 1 minute on a rack before recording the

mass representing the maximum storage capacity of the patch. Then, patches were oven-dried

at 105˚C for 48 hours to determine the dry mass of the patch.

For this experiment we used a total of nine tipping-bucket pluviometers grouped in triplets

to ensure replication of the experiment (Fig 1D). Each triplet had one open pluviometer (model

TE525MM, Texas Electronics Inc., resolution of 0.1 mm per tip), one pluviometer covered with

a patch of zoysiagrass, and one pluviometer covered with a patch of bentgrass (Fig 1C and 1D).

Each pluviometer triplet was mounted on a pole at 0.75 m above the ground. This height was an

arbitrary, but practical choice to ensure turfgrass patches were correctly placed before a storm.

All pluviometers were calibrated following the manufacturer’s recommendation using a Mar-

iotte’s bottle dispensing water at a rate of 473 ml of water in 45 minutes. All sensors met the fac-

tory requirement of 100 ± 3 tips for this amount of water. In addition to precipitation, relative

humidity and air temperature were monitored using a sensor (model CS215, Campbell Scien-

tific) mounted at a height of 1.2 m. For storms in 2020, changes in soil water storage were moni-

tored using soil moisture sensors (model CS655, Campbell Scientific) installed vertically (0–12

cm depth) in adjacent areas of bare soil and zoysiagrass. A datalogger (model CR1000, Campbell

Scientific) was programmed to record all variables at one-minute intervals, which allowed for

detailed information of precipitation and throughfall measurements.

In the data analysis stage, we used a minimum inter-event time (MIT) criterion of one hour

without measurable rainfall in the open pluviometers to identify individual rainfall events
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within a given storm [18, 19]. This criterion was selected to differentiate intra-storm precipita-

tion events while still capturing low amount (~0.1 mm, resolution of the pluviometer) precipi-

tation events as a single event. The Python programming language was utilized to read and

process the 1-minute data and identify the individual precipitation events using the selected

MIT. Time series for each gauge with the same patch treatment were averaged.

Results and discussion

During the study period we captured a total of 15 storms and 25 individual precipitation

events. Canopy throughfall and interception were measured for all storms in zoysiagrass and

for ten out of the 15 storms in bentgrass (Table 1), using a total of 75 different turfgrass

patches. Storm precipitation totals ranged from 0.4 mm to 42.4 mm (Table 1), values that are

similar to the 1st percentile (i.e., 0.25 mm d-1) and 99th percentile (i.e., 57 mm d-1) estimated

from daily precipitation records for the 2010–2020 period for the Manhattan station of the

Kansas Mesonet [20], which is located 2.7 km from the experimental site. Among the three

open pluviometers, the average difference between the lowest and highest recorded precipita-

tion total for all precipitation events was typically 0.5 mm and the coefficient of variation was

Fig 1. Figure illustrating A) the process of delineating and cutting the turfgrass patch using the pluviometer collector as template to ensure close fit, B) the top

and bottom of a turfgrass patch after removing the soil attached to the bottom of the thatch layer and ready to be inserted into the pluviometer collector, C) a

top view example of the pluviometers with and without the turfgrass patches of zoysiagrass and creeping bentgrass before the occurrence of a precipitation

event, and D) the replicated field set up with showing three sets of three co-located pluviometers, a sensor for measuring air temperature and relative humidity,

soil moisture sensors deployed in bare soil and below the surrounding zoysiagrass canopy, and associated logging hardware.

https://doi.org/10.1371/journal.pone.0271236.g001
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1.8%. The storm with the largest number of individual precipitation events occurred on 1

October 2019 (storm 3), totaling four events. The longest duration for a single precipitation

event lasted 16.1 hours (storm 5a) and the shortest precipitation event lasted only 23 minutes

(storm 12a). The highest maximum rainfall intensity of 97 mm h-1 was recorded at the minute

level for a storm on 22 September 2019 (storm 1a). Thus, our study covered a wide range of

precipitation durations, amounts, and intensities typical for the central U.S. Great Plains [21].

Considering the total precipitation for all storms measured for each turfgrass, canopy inter-

ception losses accounted for 34% (73 out of 214 mm) in zoysiagrass and 47% (39 out of 84

mm) in bentgrass (Table 1). The relationship between gross precipitation and throughfall

amount resulted in a strong positive linear correlation (r = 0.98), with an x-intercept of 4.4

mm (95% CI [3.6, 5.3]), and a slope of 0.84 (P<0.001) (Fig 2). In this context, the x-intercept

represents the cumulative precipitation at the time throughfall (Itf). The slope of this relation-

ship represents the precipitation losses due to interception after the point of throughfall. Thus,

for zoysiagrass and bentgrass, only 84% of each additional millimeter of precipitation after the

point of throughfall reaches the soil surface (Fig 2). Precipitation was completely intercepted

by the turfgrass patches in five out of the 15 storms (Table 1). This is significant because the

Table 1. Table showing the duration, gross precipitation (Pg), precipitation maximum intensity (Pimax), throughfall (TF), interception until the point of throughfall

(Itf), and canopy interception (I) for each individual precipitation event across 15 storms for turfgrass patches of ‘Meyer’ zoysiagrass and creeping bentgrass. Can-

opy interception values in parenthesis represent the percentage of Pg. Values for each precipitation event are the average of three pluviometers.

Zoysiagrass Bentgrass

Storm-Event Duration Pg Pimax TF Itf I TF Itf I

minutes mm mm hr-1 mm mm mm mm mm mm

1-a 86 40.3 97 32.9 6.4 7.4 (18)

2-a 102 4.3 28 0.1 3.4 4.2 (98)

2-b 66 1.7 22 0.7 1.1 1.1 (62)

3-a 40 14.7 88 8.5 2.4 6.2 (42)

3-b 211 3 18 0.8 1.7 2.2 (74)

3-c 148 5.3 22 4.6 0.3 0.7 (14)

3-d 74 5.4 60 5 0.3 0.4 (7)

4-a 320 12 10 8.5 2.7 3.6 (30)

4-b 37 0.3 4 0 ― 0.3 (100)

5-a 968 42.4 14 29.8 5.7 12.6 (30)

6-a 178 2.3 6 0 ― 2.3 (100) 0 ― 2.3 (100)

7-a 390 8.7 12 5.3 3.3 3.4 (39) 4.5 3.4 4.2 (49)

7-b 347 1.7 4 1.4 0.3 0.3 (19) 1.1 0.5 0.6 (35)

8-a 38 0.5 4 0 ― 0.5 (100) 0 ― 0.5 (100)

9-a 24 0.3 2 0 ― 0.3 (100) 0 ― 0.3 (100)

9-b 265 1.3 10 0 ― 1.3 (100) 0 ― 1.3 (100)

10-a 120 3.9 8 0 ― 3.9 (100) 0 ― 3.9 (100)

10-b 363 6.1 18 4.3 1.9 1.8 (29) 3.3 2.2 2.9 (47)

10-c 305 1.4 6 0.9 0.1 0.5 (37) 0.8 0.2 0.7 (47)

11-a 32 1.2 6 0 ― 1.2 (100) 0 ― 1.2 (100)

11-b 27 0.1 2 0 ― 0.1 (100) 0 ― 0.1 (100)

12-a 23 0.4 4 0 ― 0.4 (100) 0 ― 0.4 (100)

13-a 241 25.8 72 19.9 5.4 5.9 (23) 18.1 7.1 7.7 (30)

14-a 141 13.2 62 8.6 3.5 4.6 (35) 8.2 4 5 (38)

15-a 360 17.3 44 9.8 5.3 7.4 (43) 9.1 4.3 8.2 (48)

Total 4906 213.6 141.1 72.6 39.3

https://doi.org/10.1371/journal.pone.0271236.t001

PLOS ONE Measuring turfgrass canopy interception and throughfall using co-located pluviometers

PLOS ONE | https://doi.org/10.1371/journal.pone.0271236 September 2, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0271236.t001
https://doi.org/10.1371/journal.pone.0271236


long-term median daily precipitation total for the study region is only 2.8 mm d-1 and only

about 43% of the daily precipitation events at the study site are>4.4 mm. The interception at

the point of throughfall found in this study for zoysiagrass and bentgrass was about 4 times

larger than the Itf of 1.61 mm found for a Spruce (Picea crassifolia Kom.) forest in the semiarid

mountain regions of China using 60 throughfall collectors [22]. Our results are also slightly

higher than the reported Itf values of 3.9 mm for a mature tallgrass prairie grasses and 3.4 mm

for a close stand of Redcedar (Juniperus virginiana L.) trees in central Oklahoma [23]. Simi-

larly, a recent study in this region estimated that the interception of natural grassland vegeta-

tion typically results in 7.6 mm [24]. However, the study by Parker and Patrignani [24] also

included in the interception estimate the soil water storage of the first ~2 cm of the soil profile,

further indicating that our value of 4.4 mm is reasonable for this region when solely consider-

ing the turfgrass canopy and thatch layer. The slope of the precipitation-throughfall relation-

ship found in our study also agrees well with previous studies in other land covers. For

instance, the relationship between gross precipitation and throughfall in a matorral commu-

nity in northeastern Mexico resulted in r = 0.99 and a slope of 85% [25].

The x-intercept and the slope of the relationship between gross precipitation and through-

fall are of practical relevance to scientists and practitioners alike. Based on the findings

Fig 2. Relationship between precipitation and throughfall amount of patches of zoysiagrass and creeping bentgrass for all 15 natural storms. The x-

intercept of 4.4 mm (95% CI [3.6, 5.3]) represents the minimum canopy interception before throughfall begins. The linear fitting exercise was done only using

storm events that had throughfall>0 mm. Error bars represent the standard deviation of throughfall and precipitation. For some markers error bars are

masked by the marker size.

https://doi.org/10.1371/journal.pone.0271236.g002
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reported in Fig 2, the daily interception amount could be approximated as follows:

I ¼ P for P � Itf ½Eq 2�

I ¼ Itf þ 0:16ðP � Itf Þ for P > Itf ½Eq 3�

where Itf is the cumulative precipitation at the time throughfall begins and 0.16 (i.e., 1−0.84) is

the interception loss after throughfall (Fig 2). This relationship should provide a good first-

order approximation for estimating the interception loss in zoysiagrass and creeping bentgrass

mowed at standard heights for precipitation events up to ~45 mm d-1. Further research is

required to estimate whether the Itf and slope found in this study can be used to estimate inter-

ception in other turfgrass canopies and other regions.

To illustrate the impact of precipitation pulses and antecedent wetting events on canopy

interception and throughfall, we compared two storms that resulted in similar precipitation

amount, but that had contrasting duration and number of intra-storm precipitation events

(Fig 3). The first storm (storm 14 in Table 1) occurred on 22 May 2020 and consisted of only

one precipitation event totaling 13.2 mm over the period of 141 minutes (Fig 3A). During

storm 14, the point of throughfall occurred in the zoysiagrass canopy after 3.5 mm and in bent-

grass canopy after 4.0 mm of precipitation. The total interception amount for zoysiagrass was

4.6 mm and for bentgrass was 5 mm (Table 1, Fig 3B). The zoysiagrass canopy intercepted

35% and the bentgrass canopy intercepted 38% of the precipitation in storm 14. On the other

hand, the second storm (storm 10 in Table 1) that occurred on 16 April 2020 had three intra-

storm precipitation events and lasted a total of 18.5 hours (Fig 3C). In this storm, the first

Fig 3. Comparison of cumulative precipitation, cumulative throughfall, and canopy interception for patches of zoysiagrass and creeping bentgrass during a

storm with a single rainfall event (A and B, storm 14 in Table 1) and a storm with three rainfall events of variable lengths (C and D, storm 10 in Table 1). Both

storms resulted in similar precipitation amount but had a different number of intra-storm precipitation events. The point of throughfall denoted by arrows.

https://doi.org/10.1371/journal.pone.0271236.g003
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precipitation event with an amount of 3.9 mm was completely intercepted by both turfgrass

patches. Throughfall eventually occurred during the second precipitation event, when the

cumulative precipitation reached 5.8 mm in the zoysiagrass canopy and 6.1 mm in the bent-

grass canopy. The first, second, and third precipitation events within the zoysiagrass canopy

intercepted 100%, 29% and 37% of the precipitation and the bentgrass intercepted 100%, 47%,

and 47% for each event during the storm, respectively. This decreasing interception percentage

illustrates that the canopy interception capacity is highest at the start of a rainfall event and

decreases with precipitation [26]. However, during rainless break periods water stored in the

canopy can be lost to evaporation allowing the plant canopy to partially dry and restore some

of its water storage capacity [27]. Considering the precipitation total for in storm 10, the zoy-

siagrass canopy intercepted 54% and the bentgrass canopy intercepted 65% of the precipitation

(Fig 3B and 3D).

Detailed inspection of individual precipitation events using time series similar to those in

Fig 3 revealed that canopy interception in turfgrass canopies had three well-defined stages.

The first stage was characterized by complete precipitation interception by the canopy. During

the first stage, droplets from precipitation and splashing can remain on top of leaves, stems,

and litter, be evaporated, or be absorbed by plant tissue and organic material. The magnitude

of each of these processes is likely dictated by the nature of the canopy and thatch layer, precip-

itation intensity, and the atmospheric demand during the precipitation event. The second

stage was characterized by both throughfall and canopy interception, although the evaporation

rate may be minor compared to throughfall amount due to the typically low (~0.1 kPa) vapor

pressure deficit during rainfall events in this region [24]. The second stage exhibited a well-

defined starting point (i.e., the point of throughfall, Itf) at which the canopy can no longer

intercept all the precipitation, and therefore, additional water droplets move through the can-

opy and the thatch layer. The third stage consisted of the drying of the canopy after the precipi-

tation has ceased, which includes some dripping and evaporation. Fig 3A and 3C show the

timing of the third stage either at the end of a storm with a single rainfall event (Fig 3A) or dur-

ing rainless periods in storms with multiple precipitation events (Fig 3C), which appear in a

recurring cycle (Fig 3D).

The interception stages identified in our study are similar to those identified in a prior

study investigating canopy interception of forest canopies [28], which were defined as: 1) a

wetting phase as rainfall reaches the plant canopy, 2) a saturation phase as the plant canopy

reaches its maximum water storage capacity, and 3) a drying phase after precipitation has

ceased, in which the intercepted precipitation by the canopy evaporates from the external sur-

face of the leaves and stems. Some of the main differences between the stages identified by

Gash [28] and our study are evident in the second stage, in which the cumulative precipitation

at the time of throughfall was nearly half of the measured interception storage capacity (S)

using the submersion method. For instance, the zoysiagrass patches averaged S = 8.9 mm

(SD = 1.3) and the bentgrass patches averaged S = 9.1 mm (SD = 1.4) (Table 2). The average

interception at the point of throughfall was ~44% of the storage capacity for the zoysiagrass

and ~50% for the bentgrass, thus illustrating throughfall occurs much earlier than the satura-

tion point of the turfgrass canopy. Our findings indicate that at the point of throughfall, the

amount of water held in the canopy does not necessarily match the storage capacity of the

patch. The assumption of a “saturation phase” proposed by Gash [28] does not seem to apply

in turfgrass.

The method used in this experiment to quantify canopy interception and throughfall does

not allow for measurements of the evaporation rate from the turfgrass canopy during the third

stage after precipitation has ceased. A previous study aimed at measuring canopy interception

and forest floor evaporation in a beech (Fagus Sylvatica L.) forest in Luxembourg resolved this
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problem by stacking and weighing two aluminum basins with strain gauges, so that the evapo-

ration rate of the precipitation interpreted by the forest floor could be measured when the

event ceased [29, 30]. So, in the context of turfgrass patches, it may be possible to place a tip-

ping-bucket pluviometer on top of a logging scale to track the rate of canopy evaporation dur-

ing the storm and during the third stage of the process.

Furthermore, for a selected set of precipitation events, we investigated the impact of canopy

interception by monitoring the change in soil water storage from 0–12 cm using soil moisture

sensors. For instance, during a 13.3 mm rainfall event (storm 14a), soil water storage rapidly

increased in a no canopy cover (Fig 4A). However, under the zoysiagrass canopy cover the

increase in soil water storage was much slower and delayed. By the end of the rainfall event,

soil water storage was 8.8 mm less under the zoysiagrass canopy than in the bare soil area. This

further illustrates the impact that canopy interception has on near-surface soil moisture condi-

tions and the soil water balance of shallow rooted plants, like turfgrass.

After the rainfall ceased, soil water storage decreased in the bare soil area with no canopy

cover (Fig 4A), which was likely a result of multiple factors. First, the bare soil surface was

directly exposed to solar radiation, which undoubtedly altered its energy balance and resulted

in higher evaporation rates and faster drying rates than in the soils shaded by the zoysiagrass

Table 2. Storm, storage capacity, dry biomass, thatch layer for turfgrass patches of zoysiagrass and bentgrass. Value between parenthesis represent the standard error

of the mean.

Storm Storage Capacity Dry Biomass Patch Layer Thickness

mm g mm

Zoysiagrass

1 10.1 (0.3) 444 (12.3) 42 (0.5)

2 9.8 (0.4) 430 (9.1) 46 (0.4)

3 9.4 (0.4) 479 (18.9) 47 (0.4)

4 9.7 (0.2) 483 (3.2) 47 (0.5)

5 9.5 (0.6) 447 (20.8) 42 (0.4)

6 9.9 (0.4) 462 (22.5) 48 (0.3)

7 9.6 (0.7) 424 (8.5) 48 (0.7)

8 8.0 (0.5) 356 (51.6) 43 (0.2)

9 8.2 (0.7) 391(67.2) 46 (0.5)

10 9.6 (0.3) 402 (45.6) 46 (0.4)

11 6.1 (0.4) 325 (24.8) 45 (0.3)

12 7.7 (0.6) 485 (26.9) 47 (0.3)

13 7.1 (0.3) 332 (44.9) 46 (0.3)

14 11.1 (0.3) 361 (4.5) 45 (0.3)

15 9.4 (0.3) 578 (25.7) 47(0.2)

Bentgrass

6 8.7 (0.9) 314 (13) 28 (0.4)

7 8.6 (0.2) 196 (35) 24 (0.4)

8 7.5 (0.4) 204 (23) 24 (0.7)

9 8.8 (2.6) 161 (19) 23 (0.5)

10 10.0 (0.7) 150 (19) 24 (0.4)

11 8.9 (0.5) 164 (29) 24 (0.4)

12 11.4 (1.4) 249 (56) 23 (0.4)

13 7.0 (2.8) 293 (75) 24(0.4)

14 10.9 (0.3) 337 (39) 26 (0.3)

15 9.4 (0.7) 316 (44) 24 (0.4)

https://doi.org/10.1371/journal.pone.0271236.t002
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canopy [31, 32]. Increasing vapor pressure deficit after the rainfall also increased evaporation

rates (Fig 4B), contributing to the faster drying (change in soil water storage) of bare soils com-

pared with soils under the zoysiagrass. Finally, decreasing soil water storage in bare soils after

the rainfall may have been caused in part by soil moisture redistribution to deeper soil layers

(i.e., drainage).

Conversely, immediately after rainfall, the change in soil water storage was very slow in

soils under the zoysiagrass canopy (Fig 4A). This was likely because evaporation in the zoysia-

grass area was (initially) primarily from the wet canopy/thatch layer and not from the soil.

This low evaporation from soils after rainfall is a positive aspect of having a turfgrass cover.

A better understanding of canopy interception can also be used to improve the estimation

of other processes of the soil water balance, like runoff. For instance, in hydrology, the initial

abstraction (Ia) is a term used to describe precipitation storage prior to the beginning of water

runoff. The Ia accounts for the depression storage due to surface roughness, canopy and litter

interception, and pre-ponding soil infiltration. A study in a non-infiltrating and highly com-

pacted lawn found an Ia (interception + depression storage) value of 6.8 mm, a value close to

the observed value of 4.4 mm in our study [33]. Hence, measuring the amount of canopy inter-

ception may also be a key component to improve runoff prediction. To some extent, the mean-

ing of Itf in the interception process can considered analogous to the meaning og Ia in the

runoff process.

To illustrate the potential impact of precipitation interception by turfgrass canopies like

zoysiagrass and bentgrass over a larger spatial extent, we also quantified the median daily pre-

cipitation amount and the potential canopy interception amount for the contiguous United

States. For this analysis, we used a multi-sensor gridded precipitation product from the US

National Weather Service at 4-km spatial resolution for the period of 1 January 2017 to 31

December 2020 (Fig 5). Interestingly, 72% of the area of the contiguous US has a median daily

precipitation below the minimum interception storage capacity of 4.4 mm found in this study

for zoysiagrass and bentgrass (Fig 5A). Considering the average interception losses during pre-

cipitation events >4.4 mm based on Eq 3, our analysis revealed that 45% of the area of the con-

tiguous US could result in>50% of the annual precipitation being intercepted by canopies of

zoysiagrass and bentgrass (Fig 5B). This exercise assumed that the findings in this study can be

extrapolated to other regions. While these assumptions may not be valid over the entire terri-

tory and across seasons beyond those included in this study, this exercise allowed us to approx-

imate the potential impact of turfgrass canopy interception on the national water balance.

One limitation of this study is that the turfgrass patches of zoysiagrass and bentgrass were

clipped at a slightly (~3 mm difference) different height. This decision was intentional to

match the typical heights in golf course fairways for each turfgrass. While the turfgrass height

can affect the interception capacity of the patches, based on the storage capacity and patch

thickness values reported in Table, this difference is likely in the order of a fraction of a milli-

meter of intercepted water. Similarly, the thickness of the thatch layer in our study is specific

to the growth and management conditions in this study. Our study leaves several unanswered

questions that warrant further research to better quantify the magnitude of canopy interpce-

tion and throughfall for different turfgrasses, clipping heights, and thatch thickness. A second

limitation of this study is that the pluviometers were deployed 0.75 m above the ground (for

practical reasons), which could have created a different aerodynamic resistance in the patches

Fig 4. A) Changes in 1-minute soil water storage in the 0–12 cm soil layer measured with a vertically inserted soil water reflectometer in bare soil and in a Zoysiagrass

canopy during a 13.3 mm rainfall event with a duration 2.5 hours on 22 May 2020 (Storm 14a); B) Vapor pressure deficit during and after the rainfall event. The post-

storm decrease in soil water storage in Figure A is a result of soil moisture redistribution to deeper soil layer and evaporation driven by the increasing evaporative

demand.

https://doi.org/10.1371/journal.pone.0271236.g004
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inside the pluviometer funnel compared to the surrounding grass. Thus, the evaporation rate

of water droplets from the external surface of leaves and stems i) during rainfall events and ii)

between rainfall events within the same storm. One possible modification to improve this tech-

nique and mitigate the issue of aerodynamic resistance is to bury the body of the pluviometers,

so that the turfgrass patch inside the funnel is at the same level of the surrounding turfgrass.

However, because of the relative humidity during rainfall events is typically ~99% it remains

unclear whether the extra effort would result in measurable differences in canopy interception

and throughfall.

Conclusions

Our study consisted of quantifying throughfall and canopy interception of zoysiagrass and

creeping bentgrass during rainfall events using a new method based on co-located pluvi-

ometers with and without a turfgrass patches. This new method enables simultaneous mea-

surements of throughfall and canopy interception of turfgrass at high temporal resolution

under natural rainfall conditions. The method of the co-located pluviometers allowed us to

clearly identify well-defined stages of the interception process that may also apply to other

land covers beyond turfgrass consisting of (1) complete precipitation interception by the can-

opy, (2) characterized by both throughfall and canopy interception, (3) and drying of the can-

opy after the precipitation has ceased.

Interception losses during the study period ranged from 34% in zoysiagrass to 47% in bent-

grass. On average, the point of throughfall was 4.4 mm, suggesting that precipitation events

<4.4 mm are unlikely to reach the soil surface in healthy turfgrass mowed at typical golf course

fairway heights. Throughfall occurred when the turfgrass patches reached between 44 and 50%

of their maximum water storage capacity. We encourage scientists and water managers to

account for interception in water balance computations and irrigation scheduling routines. To

our knowledge, this is the first study that provides detailed insights to understanding the inter-

ception dynamics in turfgrass and highlights the inefficient nature of small precipitation and

irrigation events in turfgrass systems.
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