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Abstract

Experimental datasets are growing rapidly in size, scope, and detail, but the value of these

datasets is limited by unwanted measurement noise. It is therefore tempting to apply analy-

sis techniques that attempt to reduce noise and enhance signals of interest. In this paper,

we draw attention to the possibility that denoising methods may introduce bias and lead to

incorrect scientific inferences. To present our case, we first review the basic statistical con-

cepts of bias and variance. Denoising techniques typically reduce variance observed across

repeated measurements, but this can come at the expense of introducing bias to the aver-

age expected outcome. We then conduct three simple simulations that provide concrete

examples of how bias may manifest in everyday situations. These simulations reveal sev-

eral findings that may be surprising and counterintuitive: (i) different methods can be equally

effective at reducing variance but some incur bias while others do not, (ii) identifying meth-

ods that better recover ground truth does not guarantee the absence of bias, (iii) bias can

arise even if one has specific knowledge of properties of the signal of interest. We suggest

that researchers should consider and possibly quantify bias before deploying denoising

methods on important research data.

Introduction

Modern science has witnessed major advances in the application of computational analyses to

large datasets [1, 2]. This has led to a ‘big data’ revolution in which datasets of increasing size,

scope, and detail are being amassed [3–5]. In the field of neuroscience, advances in

electrophysiological, optical, and magnetic resonance techniques are enabling measurement of

the structure and function of animal and human brains at higher resolution, with greater cov-

erage, and over longer temporal durations. However, a major challenge in these measurements

is the presence of noise, which we define as unwanted variability across repeated measure-

ments from the same individual. Such noise can originate from a variety of sources and can be

both structured (e.g., imaging artifacts, head motion, physiological noise, variations in cogni-

tive performance) and unstructured (e.g., thermal noise, optical shot noise). Depending on the

goals of a given experiment, many of these types of noise are undesirable to the researcher.

Developing methods for removing noise from data has been a long-standing objective in

neuroscience. High levels of noise in experimental data hinder scientific inferences; thus, there
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is a temptation to apply denoising methods to such data. Indeed, there are many interesting

recently proposed approaches for denoising, including low-rank methods [6–8], methods

based on data-driven noise derivation [9–11], methods that exploit the power of deep neural

networks [12–15], and self-supervised methods [16]. In surveying the literature, we find exten-

sive discussion and consideration of denoising methods and how they fare in specific scientific

paradigms. However, we think that, aside from a few notable exceptions [17, 18], there has

been insufficient emphasis on the issue of statistical bias.

Bias, in the statistical sense, is defined as the discrepancy between the average expected out-

come of a given experiment (and its associated analysis) and the ground-truth parameter

being estimated (a more formal treatment is provided later). In expositions of denoising meth-

ods, the possibility of bias is often not even mentioned or discussed, let alone quantified and

assessed. Coming to clarity on this methodological issue is especially important in the context

of modern datasets. This is because increasing sizes of datasets, increasing levels of noise (due

to increased spatial resolution, temporal resolution, and acquisition speeds), and increasing

complexity of data analysis pipelines all tend to obscure or make more difficult the assessment

of bias. A critical message of this paper is that bias is risky: while a method might improve the

correspondence between a noisy dataset and a ground-truth measure, this might come at the

cost of introducing systematic biases into the data and lead to incorrect scientific inferences.

We write this article with two goals in mind. First, we wish to draw attention to—or per-

haps rekindle interest in—the basic statistical concepts of bias and variance. Our presentation

is general in order to isolate the essential principles at stake. We attempt to provide a concise

distillation of the concepts of bias and variance that is easy to understand for non-statisticians.

Second, we wish to communicate several simulations that illustrate how these concepts and

principles can be applied in concrete scientific paradigms. We design these examples based on

our experience in neuroimaging, and we make freely available the underlying data and code to

promote transparency (files available at https://osf.io/weg87/). The examples are not intended

to establish general methodological findings (for that, more extensive analyses are necessary),

but rather to provide important insights into the nature of denoising. We acknowledge that

the ideas and principles we convey may already be apparent to expert practitioners. Thus, per-

haps the primary audience of this paper are researchers who are interested in—but have not

fully developed their stance towards—strategies for denoising data. Ultimately, we hope this

article spurs method developers to consider and potentially quantify bias in candidate denois-

ing methods and users to consider the risk of bias when applying denoising methods to impor-

tant research data.

Materials and methods

Simulation framework

All simulations (as depicted in Figs 2–4) use a common analytical framework. We first design

a ground truth based on either empirical or synthetic data. We then generate simulated data

by adding randomly generated noise to the ground truth. This produces a set of measure-

ments, each of which may contain multiple data points (e.g. different voxels, different time

points). Next, we apply various denoising methods. Each method is applied independently to

each measurement and produces a set of analysis results. Finally, for each method, we compute

quantitative metrics that assess the performance of the method. Three metrics are computed

and are detailed below.

Bias is quantified by computing, for each data point, the absolute deviation between the

mean across analysis results and the ground truth, normalized by the standard error across

analysis results (this normalization can be viewed as a form of studentization, in which a
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quantity is normalized by a measure of error, producing units that are easy to interpret). Note

that computing the absolute value is important, since a denoising method might overestimate

and underestimate the ground truth in different parts of a dataset and it should be penalized

for doing so. We summarize the results by calculating the median absolute deviation across

data points. The values are in normalized units, and low values are desirable, as they indicate

low deviations from ground truth. Data points for which the standard error across analysis

results is 0 are ill-defined and are ignored in the calculation (e.g. Fig 3B, right column, time = 0

s).

It is important to note that our metric of bias is not, strictly speaking, the same as the ideal-

ized theoretical definition of statistical bias (see Eq 1). The theoretical definition would require

computing expectation over an infinite (or very large) number of simulations; in contrast, our

metric is suitable for computation in finite data regimes and takes into account the limited

number of simulations through normalization by standard error (with the underlying idea

that running more simulations to reduce standard error is always desirable, if computational

resources are available). One issue with the metric is that non-zero values are obtained even

for unbiased measurements (thus, the metric can be viewed as the “apparent bias”). Therefore,

to provide a suitable comparison, we perform Monte Carlo simulations (assuming a Gaussian

noise distribution) to determine the value that is expected for the case of unbiased measure-

ments; this value is plotted as ‘Baseline’ in Figs 2–4. Note that this baseline value can be com-

puted analytically as tinv(0.75,v) which indicates the inverse of the cumulative distribution

function associated with Student’s t-distribution, evaluated at 75% and v degrees of freedom.

For example, in the case of 10 measurements, tinv(0.75,9) = 0.70 indicating that half of a set of

samples drawn from a t-distribution with 9 degrees of freedom are expected to have an abso-

lute value less than or equal to 0.70.

Variance is quantified by computing, for each data point, the standard error across analysis

results. We summarize the results by calculating the median standard error across data points.

The values are in the units of the original data, and low values are desirable, as they indicate

high reliability of analysis results.

Error is quantified by computing Pearson’s correlation between each analysis result and the

ground truth. (Note that correlation allows flexibility for scaling and offset; while a non-flexi-

ble metric such as mean squared error is technically more correct, correlation is appealing for

its interpretable units and is likely sufficient in most cases.) We summarize the results by calcu-

lating the mean correlation observed across analysis results. Intuitively, this metric assesses

how well a denoising method recovers ground truth. Correlation values range from –1 to 1.

High values are desirable, as they indicate high similarity of analysis results to the ground

truth.

Simulation 1: Anatomical data

In this simulation, we use as ground truth the pre-processed 0.8-mm T1-weighted anatomical

volume acquired from Subject 1 from the Natural Scenes Dataset (NSD) [19]. The intensity

values in this volume range approximately from 0 to 1400 (see Fig 2A, middle). Also from

NSD, we use the brain mask calculated for the subject and the tissue segmentation provided by

FreeSurfer (see Fig 2A, bottom). We map the 1-mm MNI T1-weighted atlas provided with FSL

(https://fsl.fmrib.ox.ac.uk/fsl/) to the subject-native anatomical space using linear interpola-

tion (see Fig 2A, top). We generate a set of 10 measurements by adding noise drawn from a

Gaussian distribution with mean zero and standard deviation 300 (noise drawn independently

for each voxel). We evaluate four denoising methods: (1) No denoising refers to using the mea-

surements as-is. (2) Gaussian smoothing refers to spatially smoothing a given measurement

PLOS ONE The risk of bias in denoising methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0270895 July 1, 2022 3 / 19

https://fsl.fmrib.ox.ac.uk/fsl/
https://doi.org/10.1371/journal.pone.0270895


using a 3D isotropic Gaussian kernel with a full-width-half-maximum (FWHM) of 3 mm. (3)

MNI atlas prior refers to averaging a given measurement with the MNI atlas (mapped to sub-

ject-native space). Before averaging, a scale and offset is applied to the atlas such that the mean

of the data within gray matter (as indicated by the tissue segmentation) and the mean of the

data within white matter are matched to the corresponding gray- and white-matter means in

the MNI atlas. (4) Anisotropic smoothing refers to applying nonlinear anisotopic diffusion-

based smoothing [20] as implemented in Segmentator [21]. The diffusion-based smoothing is

run for 20 iterations. For all denoising methods, quantitative metrics of performance (as

described previously) are computed using voxels within the brain mask.

Simulation 2: Response timecourses

In this simulation, we use as ground truth a synthetic hemodynamic response function (HRF)

generated by evaluating a double-gamma function as implemented in SPM’s spm_hrf.m

(https://www.fil.ion.ucl.ac.uk/spm/). The parameters [6 16 1 1 2 0] are used; these are the

defaults, except for the fifth parameter, which is set to create a strong undershoot. The double-

gamma function is convolved with a 1-s boxcar, sampled at a rate of 1 s, and then scaled to

peak at 1. The resulting HRF represents a hypothetical fMRI response timecourse to a 1-s stim-

ulus (see Fig 3A, top). We generate a set of 10 measurements by adding temporally correlated

Gaussian noise with mean zero and standard deviation 0.2 (this was accomplished by generat-

ing zero-mean Gaussian noise with standard deviation 0.2 and convolving the noise with a 5-s

boxcar scaled to have a Euclidean norm of 1). We evaluate three denoising methods: (1) No
denoising refers to using the measurements as-is. (2) Basis restriction refers to projecting the

measurements onto a set of basis functions and then reconstructing the measurements. For

basis functions, we take the library of 20 canonical HRFs obtained from the Natural Scenes

Dataset [19] (getcanonicalhrflibrary.m), predict the response to a 1-s stimulus, perform princi-

pal components analysis on the 20 timecourses, and extract the top three principal component

timecourses (see Fig 3A, bottom). (3) Parametric fit refers to fitting each measurement using a

double-gamma model (same as used to generate the data). Specifically, we use nonlinear opti-

mization (MATLAB Optimization Toolbox’s lsqnonlin.m) to determine the optimal parame-

ters for a double-gamma function (as implemented in SPM’s spm_hrf.m) such that when

convolved with a 1-s boxcar, the result best approximates the measurement in a least-squares

sense. The initial seed for the optimization is set to [6 16 1 1 6 0], which are the defaults in

spm_hrf.m.

Simulation 3: Tuning curves

In this simulation, we use as ground truth a synthetic set of tuning curves associated with sev-

eral hypothetical units (these units can be thought of as individual neurons or voxels). We con-

struct tuning curves that represent the response of 10 units to 50 conditions—these conditions

can be viewed as different points along some hypothetical stimulus dimension. We fix the

dimensionality of the representation to be exactly 4. This is accomplished by creating 4 Gauss-

ian functions spaced equally along the stimulus dimension, and then generating tuning curves

for each unit by weighting and summing these Gaussian basis functions using a set of ran-

domly generated weights (random numbers are drawn from a uniform distribution between 0

and 1 and then cubed). Each unit’s tuning curve is scaled to peak at 1, and to aid visibility,

units are arranged in sorted order according to the center-of-mass of each tuning curve (see

Fig 4A). We generate a set of 30 measurements by adding noise drawn from a Gaussian distri-

bution with mean zero and standard deviation 0.6. (For visibility, only 10 of these 30 measure-

ments are shown in Fig 4B, bottom row.) We evaluate three denoising methods. (1) No
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denoising refers to using the measurements as-is. (2) Boxcar smoothing refers to smoothing

each unit’s measured tuning curve using a boxcar kernel with width 3 and integral 1 (this is

simply a moving average with window size 3). (3) PCA refers to reducing the dimensionality of

each measurement to a specific target rank, a method also referred to as Truncated SVD [22].

Variants of this method can be found in the literature [6, 7]. Specifically, given a measurement

X (10 units × 50 conditions), we perform singular value decomposition to obtain X = USVT

where U (10 × 10) has loadings in the columns, S (10 × 50) has singular values in decreasing

order on the diagonal and zeros elsewhere, and V (50 × 50) has timecourse components in the

columns. We then perform low-rank reconstruction of the measurement using n = 2, 3, 4, 6,

or 8 components (referred to as PCA2, PCA3, PCA4, PCA6, and PCA8) by computing the

reconstructed measurement X� = U�S�V�T where U� contains the first n columns of U, S� con-

tains the upper-left n × n elements of S, and V� contains the first n columns of V.

Tissue segmentation

To provide an example of the downstream impact of denoising, we carry out post-hoc analyses

on the results of the first simulation (anatomical data). First, we generate a noisy measurement

using a noise level of standard deviation 100. We then apply the four denoising methods (as

previously described) to the measurement. Given that a typical goal in anatomical imaging is

to identify different anatomical structures, we attempted to segment the data produced by

each denoising method. Specifically, we take each result, perform skull stripping using FSL’s

BET (Brain Extraction Tool), and then use FSL’s FAST (FMRIB’s Automated Segmentation

Tool) [23] to obtain a tissue segmentation. In Fig 5, we show the hard segmentation output

(‘seg’) which provides labels for cerebrospinal fluid, gray matter, and white matter.

Results

A brief review of bias and variance

We start by briefly reviewing some basic statistical concepts [24, 25]. Suppose we are interested

in estimating a certain population parameter by performing measurements of this parameter.

There are two distinct aspects of the quality of our measurements: bias and variance. Bias
refers to the discrepancy, if any, between the average expected outcome of our measurements

and the population parameter. All else being equal, we want bias to be zero (or low), since we

want our measurements to cluster around the true value of the population parameter. Variance
refers to the variability of our measurements. All else being equal, we want variance to be low,

since this helps us narrow down a range of plausible values for the population parameter.

A simple example helps illustrate these concepts. Fig 1 depicts a 2 × 2 crossing of different

measurement scenarios. The columns differ in the amount of measurement bias. The left col-

umn corresponds to unbiased measurement, in which measurements, on average, equal the

ground-truth parameter, whereas the right column corresponds to biased measurement, in

which measurements, on average, are higher than the ground-truth parameter. The rows differ

in the amount of measurement variance. The top row corresponds to low-variance measure-

ment, in which measurements cluster tightly together, whereas the bottom row corresponds to

high-variance measurement, in which measurements are spread far apart.

A common approach for assessing how well a measurement procedure captures the popula-

tion parameter is to compute mean squared error (MSE), which refers to the average squared

deviation of the measurements from the population parameter. It is important to note that this

error metric reflects separate contributions of bias and variance. Specifically, mean squared
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error is equal to the sum of two separate terms, a squared-bias term and a variance term:

MSE ¼ BIAS2 þ VARIANCE ð1Þ

To see why this is the case, we first define bias as the difference between the average

expected measurement and the ground-truth value:

BIAS ¼ E½ŷ� � y ð2Þ

where y indicates the ground-truth value, ŷ indicates a single measurement, and E is the expec-

tation operator indicating the average over an infinite number of repeated measurements. We

compute the squared bias as follows:

BIAS2 ¼ y2 � 2yE½ŷ� þ ðE½ŷ�Þ2 ð3Þ

Fig 1. Bias and variance in measurement. In each of the four depicted simulations, 2 is the ground-truth value and 30 measurements are simulated

by drawing values from a Gaussian distribution. In the left column, the Gaussian distributions have a mean of 2 (unbiased), whereas in the right

column, the distributions have a mean of 4 (biased). In the top row, the Gaussian distributions have a variance of 0.3 (low variance), whereas in the

bottom row, the distributions have a variance of 8 (high variance). The inset indicates the mean squared error (MSE) between the measurements and

the ground truth. Bias can be estimated as the discrepancy between the mean of the measurements and the ground truth. Variance can be estimated as

the variability across the measurements. Code available at https://osf.io/6x8kq/.

https://doi.org/10.1371/journal.pone.0270895.g001
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Note that squared bias is always non-negative. Next, we define variance as the average

squared deviation of the measurements around their mean:

VARIANCE ¼ E½ðŷ � E½ŷ�Þ2�

¼ E½ŷ2 � 2ŷE½ŷ� þ ðE½ŷ�Þ2�

¼ E½ŷ2� � 2E½ŷ�E½ŷ� þ ðE½ŷ�Þ2

¼ E½ŷ2� � ðE½ŷ�Þ2

ð4Þ

Fig 2. Denoising anatomical data. In this simulation (code available at https://osf.io/qxp8y/), we generate noisy measurements by starting with a ground-truth

T1-weighted anatomical volume and adding Gaussian noise independently to each voxel. We then attempt to denoise the data using different denoising

methods: no denoising, simple Gaussian spatial smoothing, averaging with a group-average atlas prior, and performing anisotropic diffusion. The images

depict a zoomed-in view of the posterior section of a single axial slice, and the same color map and range is used for all images. (A) Reference volumes. We

illustrate the ground-truth anatomical volume (middle), the MNI atlas used in one of the denoising methods (top), and the tissue segmentation obtained from

FreeSurfer, showing gray and white matter (bottom). (B) Denoising results. Each column shows results for a different denoising method. We show three

example measurements (top row), the mean across measurements (middle row), and detailed plots for a small line of voxels (bottom row). (C) Quantitative

assessment of bias, variance, and error. Bias is quantified as the median absolute difference between the average measurement and the ground truth, where the

difference is normalized by the standard error across measurements. Variance is quantified as the median standard deviation across measurements. Error is

quantified as the correlation between each measurement and the ground truth, averaged across measurements. The gray vertical line indicates the bias value

associated with the case of unbiased measurement (assuming Gaussian noise).

https://doi.org/10.1371/journal.pone.0270895.g002
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Finally, we define mean squared error as the average squared deviation of the measure-

ments from the ground-truth value:

MSE ¼ E½ðy � ŷÞ2�

¼ E½y2 � 2yŷ þ ŷ2�

¼ y2 � 2yE½ŷ� þ E½ŷ2�

ð5Þ

Adding some terms and grouping, we obtain:

MSE ¼ ðy2 � 2yE½ŷ� þ ðE½ŷ�Þ2Þ þ ðE½ŷ2� � ðE½ŷ�Þ2Þ ð6Þ

By substituting from Eqs 3 and 4, we see:

MSE ¼ BIAS2 þ VARIANCE ð7Þ

Fig 3. Denoising response timecourses. In this simulation (code available at https://osf.io/6jhmr/), we generate noisy measurements by starting with a

ground-truth hemodynamic response function (HRF) and adding temporally correlated Gaussian noise. We then attempt to denoise the data using different

denoising methods: no denoising, reconstruction using a restricted set of basis functions, fitting using a parametric model. (A) Reference timecourses. We

illustrate the ground-truth HRF (top) and the temporal basis functions used in one of the denoising methods (bottom). (B) Denoising results. Each column

shows results for a different denoising method. We show three example measurements (top row) and comparison to the ground truth (bottom row). (C)

Quantitative assessment of bias, variance, and error. Same format as Fig 2C.

https://doi.org/10.1371/journal.pone.0270895.g003
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Insights and implications for denoising

Having reviewed the concepts of bias and variance, we highlight some important insights.

First, we remind ourselves of the classic distinction between reliability and accuracy. Even

though a procedure might provide highly reliable measurements (low variance), this does not

necessarily imply that that the measurements are accurate. This is because the measurements

might have systematic deviation (bias) from the ground-truth parameter (e.g., see upper-right

panel of Fig 1). Second, we observe that assessing error relative to ground truth does not pro-

vide specific information regarding bias. Error, as discussed earlier, reflects the combination of

both bias and variance. Hence, a situation in which error is low is compatible with the exis-

tence of bias (e.g., in Fig 1, the upper-right panel exhibits lower error than the lower-left panel

but has substantial bias).

We now transition to the topic of denoising. A common situation that an experimentalist

may face is one in which a set of measurements are corrupted by high levels of noise but are at

least expected to converge, across repeated experiments, to the true signal. This situation can

Fig 4. Denoising tuning curves. In this simulation (code available at https://osf.io/a6k9m/), we generate noisy measurements by starting with a ground-truth

collection of tuning curves whose underlying dimensionality is fixed at 4 and adding Gaussian noise independently to each data point. We then attempt to

denoise the data using different denoising methods: no denoising, simple boxcar smoothing of responses to nearby conditions, and dimensionality reduction

using principal component analysis (PCA). (A) Reference data. We illustrate the ground-truth tuning curves as an image (top) and as line plots (bottom). Color

is used to distinguish different units. (B) Denoising results. Each column shows results for a different denoising method. We show three example

measurements (top row) and comparison to the ground truth (bottom row). (C) Quantitative assessment of bias, variance, and error. Same format as Fig 2C.

https://doi.org/10.1371/journal.pone.0270895.g004
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be characterized as high variance and unbiased (Fig 1, lower left). To reduce noise, the experi-

mentalist might try applying a denoising technique to the data. In doing so, there are two gen-

eral types of outcomes. One outcome is that variance is reduced while the absence of bias is

maintained (see arrow labeled ‘Denoising without bias’ that begins in the lower-left panel and

ends in the upper-left panel). This is a great outcome. A different outcome is that variance is

reduced but bias is introduced (see arrow labeled ‘Denoising with bias’ that begins in the

lower-left panel and ends in the upper-right panel). This is a less desirable outcome, as

repeated experiments converge to an incorrect signal. Reduction of variance but introduction

of bias is an instance of the classic bias-variance tradeoff [25]. From a certain perspective, one

might argue that introducing bias is desirable if this reduces overall error [26]. However, we

feel that this is risky and warrants careful consideration (see Discussion).

Examples of bias and variance in denoising

While we have described theoretical considerations to take into account when assessing a

denoising method, it may be unclear how much these considerations actually matter in practi-

cal situations. To provide more concrete insights, we construct three denoising simulations

based on our experience with neuroimaging data. The goal of these simulations is to provide

examples of how the performance of different denoising methods can be formally evaluated.

In each example, we start with a ground truth, generate noisy measurements based on this

ground truth, apply different denoising methods to each measurement, and calculate metrics

that quantify the performance of the denoising methods. We generally follow the theory pre-

sented earlier, but use versions of the metrics that are more suitable and interpretable for prac-

tical data scenarios. Specifically, we quantify bias as the median absolute deviation between the

mean across analysis results and the ground truth and express this in units of standard error;

we quantify variance as the median standard error across analysis results; and we quantify

error as the average correlation between each analysis result and the ground truth (see Meth-

ods). Please note that the denoising methods demonstrated in the examples are not intended

to be realistic methods that one might want to use in practice (e.g., Gaussian smoothing is

Fig 5. Example downstream effects of denoising anatomical data. Here, we perform post-hoc analyses on the results of the denoising methods illustrated in

Fig 2 (code available at https://osf.io/hswaq/). Specifically, we simulate an example noisy measurement, apply different denoising methods, and calculate a

tissue segmentation using FSL’s FAST. The images depict a zoomed-in view of a superior section of a single sagittal slice. The first row shows the original data

and the second row shows segmentation results (black, dark gray, and light gray indicate cerebrospinal fluid, gray matter, and white matter, respectively).

https://doi.org/10.1371/journal.pone.0270895.g005
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obviously a naive approach; averaging with an MNI atlas is obviously a very crude approach).

This is because the point of the examples is not so much to determine the best state-of-the-art

denoising method, but rather to demonstrate how bias and variance can be formally studied.

In the first simulation, we use as ground truth a high-quality 0.8-mm isotropic anatomical

MRI scan of a human brain (Fig 2A) and simulate noisy measurements of this ground truth by

adding Gaussian noise. (Real noise in MRI data is better characterized according to Rician

and/or other types of distributions, and may have complex spatial variations across the image

[27, 28]. Here we use the simplifying assumption of Gaussian noise, and acknowledge that

results may vary in interesting ways for other types of noise.) As expected, the raw data (‘No

denoising’) follow the ground truth, in the sense of lacking bias, but suffer from high variance

(Fig 2B, first column). The method of spatial smoothing (‘Gaussian smoothing’) reduces vari-

ance, but incurs major deviations from ground truth (Fig 2B, second column). This is not sur-

prising since the smoothing kernel used has a relatively large full-width-half-maximum of 3

mm, which will obviously remove fine-scale features of the convoluted cerebral cortex. The

method of averaging a given measurement with a pre-existing atlas (‘MNI atlas prior’) pro-

vides some variance reduction, but also introduces some bias (Fig 2B, third column). This

makes sense, since the atlas is generally expected to provide good guesses for tissue intensity,

but may bias the measurement in parts of the individual’s brain that deviate from the atlas.

Finally, the method of applying anisotropic smoothing (‘Anisotropic smoothing’) greatly

reduces variance and, appealingly, introduces very little bias, if any (Fig 2B, fourth column).

Our interpretation is that the assumption embodied by anistropic smoothing—namely, that

true structures are locally contiguous and have homogeneous signal intensity—is well matched

to the anatomical structure of the brain, at least at the current spatial resolution.

The quantitative summary plots (Fig 2C) provide interesting insights. Anisotropic smooth-

ing reduces variance but does not incur appreciable bias (arrow 1). In contrast, other methods

such as Gaussian smoothing reduce variance but incur substantial bias (arrow 2). Thus, a bias-

variance tradeoff does not necessarily occur in all situations. We also see that error is not a per-

fect metric to discriminate amongst methods, as both anisotropic smoothing (location 3) and

Gaussian smoothing (location 4) yield comparable levels of correlation between analysis

results and ground truth. Finally, there is a general relationship between reducing variance

and increasing similarity to ground truth (arrow 5). This makes sense since denoising methods

should, in theory, reduce unwanted measurement noise and generally push results towards the

ground truth.

In the second simulation, we use as ground truth a synthetic hemodynamic response func-

tion (Fig 3A, top) and simulate noisy measurements of this ground truth by adding temporally

correlated Gaussian noise. As expected, the raw data (‘No denoising’) follow the ground truth,

in the sense of lacking bias, but suffer from high variance (Fig 3B, first column). The method

of reconstructing the measurements using a small set of basis functions (‘Basis restriction’)

greatly reduces variance but incurs major deviations from the ground truth (Fig 3B, second

column). The discrepancy can be traced to the fact that the basis functions do not have much

dynamics around the time of the undershoot (see blue arrow). The method of fitting a

parametric function to the data (‘Parametric fit’) provides variance reduction and, appealingly,

introduces very little bias, if any (Fig 3C, third column). This makes sense, since the parametric

function used to fit the data is the same function that was used to generate the ground truth. If

a different parametric function were used, these results of course may no longer hold.

The quantitative summary plots (Fig 3C) bear out the above observations. Basis restriction

is very effective at reducing variance but is highly biased (location 1). Nonetheless, on balance,

the bias-variance tradeoff is such that error is reduced compared to no denoising (location 2).

However, there is even a better method: parametric fitting is essentially unbiased (location 3)

PLOS ONE The risk of bias in denoising methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0270895 July 1, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0270895


and performs the best at achieving results that are similar to the ground truth (location 4).

Interestingly, even though parametric fitting has more variance across analysis results than

basis restriction, parametric fitting yields results that better match ground truth (arrow 5).

This can be understood as the consequence of the undesirable bias that is induced by basis

restriction.

In the third simulation, we use as ground truth a synthetic set of tuning curves (10 units, 50

conditions) whose dimensionality is fixed to 4 (Fig 4A) and simulate noisy measurements of

this ground truth by adding Gaussian noise. As expected, the raw data (‘No denoising’) follow

the ground truth, in the sense of lacking bias, but suffer from high variance (Fig 4B, first col-

umn). The method of boxcar smoothing substantially reduces variance and, appealingly, does

not incur any appreciable bias (Fig 4B, second column). This makes sense given that the width

of the boxcar used is 3, which is relatively small compared to the intrinsic smoothness of the

ground-truth tuning curves. The method of dimensionality reduction using principal compo-

nents analysis (PCA) yields variance reduction at the expense of bias, with the specific bias-

variance tradeoff controlled by the number of dimensions. Specifically, if dimensionality is

aggressively reduced, more variance reduction is achieved but more bias is introduced (e.g.,

Fig 4B, sixth column). If dimensionality is reduced less aggressively, less variance reduction is

achieved but less bias is introduced (e.g., Fig 4B, third column).

The quantitative summary plots (Fig 4C) provide additional insight. The bias-variance

tradeoff in PCA is clearly visible: there is a continuous progression from PCA6 to PCA2 in

terms of increasing amounts of bias and decreasing amounts of variance (arrow 1). Compared

to PCA8, PCA6 does not incur appreciable bias; this suggests that preserving six dimensions is

sufficient to retain all (or nearly all) of the underlying signal in the noisy measurements. The

method of boxcar smoothing clearly outperforms PCA, as it greatly reduces variance and does

not induce bias (location 2), and, moreover, achieves the best match to ground truth (location

3). Interestingly, the number of dimensions in PCA that maximizes similarity to ground truth

is 3 (location 4), which is not the same as the true dimensionality of the underlying representa-

tion. This may seem counterintuitive at first, but can be understood as the simple consequence

of the mixing of bias and variance when quantifying similarity to ground truth. That is, even

though retaining only 3 dimensions is guaranteed to discard some of the true signal and incur

bias (since the ground-truth dimensionality is 4), the reduction of variance afforded by retain-

ing only 3 dimensions apparently improves the overall similarity to ground truth. Perhaps the

most important insight is that reducing dimensionality to 4 already starts to introduce notice-

able levels of bias (location 5). This is due to the fact that in the presence of measurement

noise, the dimensions identified by PCA will start to deviate from the true dimensions that

underlie the ground-truth representation. In other words, noise inevitably corrupts all of the

PCA-identified dimensions, not just the ones that are discarded [6]. Hence, there is no guaran-

tee that using 4 dimensions will retain all of the relevant signal contained in a given

measurement.

Downstream impact of denoising

The examples provided above demonstrate how bias can be formally studied in practical situa-

tions. However, users of denoising methods are probably not fundamentally interested in low-

level data characteristics such as the amount of bias on individual data points, but are probably

more interested in the impact that bias might have on downstream analysis results. To provide

insight into this matter, we conduct an example downstream analysis in which we take simula-

tions of noisy anatomical MRI data (as in Fig 2), and assess the quality of tissue segmentations

obtained after applying different denoising methods (Fig 5).
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As expected, segmentation results based on the raw data are poor, with numerous speckles

and inaccurate labels of gray and white matter (Fig 5, second column). The atlas-based method

improves the robustness of the segmentation, reducing speckles, but produces fairly inaccurate

segmentation topology (Fig 5, fourth column). Simple Gaussian smoothing yields very robust

results (Fig 5, third column), and in fact, the overall topology of the segmentation appears rea-

sonably matched to the segmentation based on the ground truth (Fig 5, first column). Finally,

we see that anisotropic smoothing produces excellent results. An important insight from these

results is that the quality of downstream analysis results for different denoising methods may

not necessarily mirror the performance of these methods on low-level data metrics. For exam-

ple, from the point of view of bias, Gaussian smoothing seems quite undesirable (see Fig 2C),

but from the point of view of tissue segmentation, the results based on Gaussian smoothing

are actually quite respectable. Thus, the decisions that one makes regarding denoising methods

should take into account not only the potential impact on low-level data metrics like bias, but

also the larger goals that one has for a set of data.

Discussion

In this paper, we have described a simple framework for evaluating denoising methods, and

we have provided examples that highlight important (and possibly surprising) observations

about denoising. These examples were not intended to benchmark the performance of state-

of-the-art methods, but rather to demonstrate insights into the nature of denoising. The main

issues that we focus on—bias and variance—are well-understood in statistics. We believe these

issues need increased attention in experimental fields, especially in light of the increasing com-

plexity of datasets and analysis pipelines. While developing denoising techniques to improve

data quality is a worthwhile endeavor, we should approach such techniques with caution and

strive to avoid introducing systematic bias to our measurements (see also the perspective by

[29]). To summarize our viewpoint, we propose the following three action items.

We should acknowledge bias

As a first action item, we should acknowledge bias as a major potential concern when applying

denoising methods. When making measurements, a presumption is that repeated measure-

ments will help the researcher narrow the range of plausible values for the parameter of inter-

est. In this context, systematic bias should be alarming. Some denoising methods might not

introduce bias, and it might be possible to see that this is the case from a theoretical perspec-

tive. However, in general, denoising methods are likely bound to the bias-variance tradeoff:

there is likely going to be a tradeoff between reduction of variance and introduction of bias.

Even if one does not yet know exactly what the bias is for a given method, it is worthwhile to

acknowledge and discuss what this potential bias might be. In a sense, it should not be surpris-

ing that bias should be a potential concern with denoising methods. Indeed, when presented

with a denoising method, it is common to hear the reaction “How do you know you aren’t

removing signal?”, which can be viewed as an informal expression of the issue of bias.

An intuitive way to think about bias is through the concept of a prior. Denoising methods

can be viewed as bringing priors to a set of data [12]. On the one hand, if we do not incorpo-

rate any priors, the data in their raw form are noisy but safe: they can be expected to provide

the right answer on average (assuming that the noise is zero-mean). On the other hand, if we

apply a denoising method, we are bringing in priors, or implicit assumptions, regarding the

nature of the underlying system. The key question is whether the priors embodied by the

denoising method are a good match to the system. If the priors are very well matched (e.g. Fig

2B, fourth column), little or no bias is introduced, and we can enjoy the reduced variance. If
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the priors are not well matched (e.g. Fig 3B, second column), bias is introduced, and the

reduced variance may not be worth it. Whether a given denoising method is well matched to a

system may vary across situations. For example, anisotropic smoothing (e.g. Fig 2B, fourth col-

umn) is likely inappropriate for structures consisting of point-like features; Gaussian smooth-

ing (e.g. Fig 2B, second column) is actually a good approach in situations where the

measurement resolution is high compared to the scale of the underlying signal of interest.

Analogous to the “No Free Lunch Theorem” in optimization [30], we should recognize that

any given denoising method is not guaranteed to perform well in all situations. Accordingly,

our goal should not only be to demonstrate that a given denoising method performs well in

certain situations, but should also be to identify the range of situations within which the

method performs well and the range within which the method fails.

Illustrative examples of priors come in cases where there are literally no data. These cases

conveniently expose the full nature of the prior embodied by a technique. For instance, sup-

pose we delete a small region of a photograph and use an image inpainting technique to fill in

the region. While we are likely to obtain a reasonable-looking image that generally conforms

to natural image statistics, it is obvious that this is no substitute for actual measurement. Had

there been a specific object in the deleted region, it is likely that the inpainting technique

would miss this completely and instead fill the region with general texture priors [31]. In other

words, the technique would likely incur massive bias. Or, as a different example, suppose we

train a model to predict high-resolution details that typically accompany low-resolution mea-

surements. This model might be quite effective within a certain data regime at predicting high-

resolution details when only low-resolution data are available, but might make non-sensical

predictions when exposed to novel data regimes that differ substantially from the training

dataset [29].

We should study and quantify bias

As a second action item, we should study the bias that may be present in a denoising tech-

nique, and quantify its magnitude in real-world situations. Carefully characterizing the bias of

a method is useful for providing full transparency and enabling accurate risk assessment. Bias

can be studied using different approaches. It might be possible to make a theoretical assess-

ment as to whether a denoising technique is likely to incur bias and what this bias might be

like. This is feasible for denoising techniques that are based on simple, clear principles. For

example, although simple smoothing is a naive approach, one appealing feature is that we fully

understand the risk of bias that it entails. In contrast, denoising techniques that derive their

power from large amounts of training data (e.g. deep neural networks) or techniques that

derive noise estimates from the data themselves are more difficult to assess from an a priori
perspective. Alternatively, we can use empirical analyses to evaluate the bias in denoising tech-

niques (like the examples shown in Figs 2–4).

One of the take-home points of this paper is that different denoising metrics provide funda-

mentally different information:

• One metric of denoising performance is variance. Examining variability of results across

repeated measurements or independent splits of a dataset provides useful information. All

else equal, we want less variance.

• A second metric of denoising performance is error. Assessing error is a widely used approach

in image processing [32, 33] where one seeks to minimize the error between a denoised out-

put and a reference ground-truth image. Error can be quantified in various ways, such as

mean squared error, peak signal-to-noise ratio, or structural similarity index [34, 35].
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Alternatively, error can be assessed through the use of cross-validation to assess generaliza-

tion to unseen samples, which serve as an implicit ground truth. All else equal, we want less

error.

• A third metric of denoising performance is bias. Bias can be quantified by applying a denois-

ing method to multiple independent measurements and carefully comparing the mean of

the results to a ground-truth measure (as shown in Figs 2–4). All else equal, we want less

bias.

It is clear that variance, in and of itself, is an inadequate denoising metric since it is unaf-

fected by (and therefore does not assess) bias. However, since error reflects the combined

influence of bias and variance, could it be a good policy to use error as a denoising metric?

Indeed, some perspectives imply that error is the ultimate criterion and anything that reduces

error is desirable [26, 36]. While we acknowledge that error is an extremely useful metric, we

believe that it is valuable to isolate and quantify bias in addition to error. It is only by isolating

bias that we can understand its prevalence and what downstream impact it may have on infer-

ences made from a set of data. We make this suggestion under full acknowledgment that we

ourselves have not fully implemented these ideas in the past. For example, we used cross-vali-

dated error to evaluate denoising performance in this study [37], but it would have been even

more informative had we specifically assessed bias.

Although we demonstrate ground-truth simulations in this paper, studying bias is not lim-

ited to such situations. On the one hand, ground-truth simulations can deliver many valuable

insights [17, 18]. However, ground-truth simulations are susceptible to the criticism that they

may not capture the full complexity of real empirical data. Fortunately, it is possible to study

bias in real data if one has access to a dataset in which many repeated measurements are avail-

able. One approach is to average across these measurements, treat the result as ground truth,

and evaluate how well denoising methods can use single (or a few) measurements to recover

the ground truth. Note that perfect recovery is not necessarily desired in this scenario since the

ground-truth measure is still subject to some amount of measurement error.

Denoising efforts, especially in the field of machine learning, often place great emphasis on

improving predictive performance, in the sense of generating results that better approximate a

target ground-truth measure. While this engineering mindset has obvious practical and com-

mercial value [38] and can be quite effective in driving competition and therefore progress

[39], it falls short as a means for assessing measurement accuracy. Specifically, predictive per-
formance reflects a combination of bias and variance and therefore is insufficient in and of itself
for studying bias. Unless predictive performance is perfect, there is a potential that bias exists

for a given denoising technique. Emphasis on prediction can be viewed in terms of the divide

between what has been termed ‘predictive modeling’ and ‘explanatory modeling’: “predictive

modeling seeks to minimize the combination of bias and estimation variance, occasionally

sacrificing theoretical accuracy [i.e. correct identification of properties of the underlying sys-

tem] for improved empirical precision” [40].

We should consider the risk of bias to one’s goals

As a third action item, we should consider the risk of bias in the context of the broader goals of

a given endeavor. All else being equal, we would argue that for everyday scientific measure-

ments, we cannot risk using denoising methods that introduce bias, as this may lead to incor-

rect inferences from the data. However, adopting a more realistic perspective, we recognize

that the bias that might be present in a given denoised dataset could be a relatively minor

aspect of the data. Even if we know with certainty that a denoising method introduces bias, we
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might reasonably ask: how strongly does the bias affect the main issues at stake? We think that

the best strategy is to consider each situation on a case-by-case basis and make a deliberate

decision regarding the risk of bias.

In some situations, bias might be acceptable. For instance, if the goal is to clean an audio or

video signal for aesthetic purposes or for basic perceptual interpretation [34], then bias would

seem to cause little harm and a reasonable stance is to simply resign and accept bias [32]. An

example of this is a clinician who is visually inspecting an image. If a denoising method incurs

a little bit of blurriness, this does not seem to pose a major problem (assuming the clinician is

aware of the blurriness). Or, if a denoising method affects an aspect of a given dataset that does

not have substantial impact on the main findings from the data (e.g., small changes in region

identification might be unlikely to change the overall measured activity from a brain region),

then bias would not seem to be a problem.

In other situations, bias might be unappealing but must be accepted out of necessity. For

example, if a dataset is too noisy to make inferences and additional measurements are not pos-

sible (e.g., due to the rarity of the data), it may be necessary to apply a denoising method in

order to salvage the data and make some inferences, even if imperfect. Alternatively, it might

be the case that implementing an unbiased analysis method might require an inordinate

amount of time (either human time or computational time). In such cases, the user might

need to use biased analysis methods out of practical necessity.

But in many situations, bias may be unacceptable. For example, if a set of noisy data is being

used to make a clinical diagnosis, it might be better to leave the data untouched and acknowl-

edge that the data are inconclusive than to risk introducing an artifact or removing a true sig-

nal. Or, as another example, if a set of data is intended to critically test hypotheses about

temporal characteristics of a system, one might avoid applying a denoising method that has

access to multiple temporal measurements, as the method might potentially introduce biases

in the temporal domain, and instead restrict the method to single measurements at a time.

Concluding remarks

In this paper, we have emphasized bias as an important property that should be considered

when evaluating denoising methods. In practice, how might one select which of several denois-

ing methods to use? One approach is to establish a data regime for which one would like a

method to perform well, determine which methods are unbiased (or nearly unbiased) in this

regime, and then select from these methods the one that has the least variance. However, bias

is just one of several factors that influence the larger goals for a set of data. As discussed above,

bias might not have a major impact on a user’s end goals and the inferences that they wish to

make. Additionally, there are other important considerations to take into account when con-

sidering an analysis method. These include the availability of a working implementation, the

time required to incorporate a method into an existing pipeline, execution time, robustness

across diverse types of data, and the clarity and interpretability of the procedures that underlie

the method. Thus, our broader position is that the possibility of bias should be one of many

factors that enters a user’s informed decision regarding the specific methods to apply to a set

of research data.
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