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Abstract

Walking is an important skill with positive impacts on health, function, and well-being. Many
disorders impair walking and its positive impacts through a variety of complex and interre-
lated mechanisms. Any attempt to understand walking impairments, or the effects of inter-
ventions intended to treat these impairments, must respect this complexity. Therefore, our
main objectives in conducting this study were to (1) propose a comprehensive model for
quantifying the causes and consequences of walking impairments and (2) demonstrate the
potential utility of the model for supporting clinical care and addressing basic scientific ques-
tions related to walking. To achieve these goals, we introduced a model, described by a
directed acyclic graph, consisting of 10 nodes and 23 primary causal paths. We gave
detailed descriptions of each node and path based on domain knowledge. We then demon-
strated the model’s utility using a large sample of gait data (N = 9504) acquired as part of
routine care at a regional referral center. We analyzed five relevant examples that involved
many of the model’s nodes and paths. We computed causal effect magnitudes as Shapley
values and displayed the overall importance of variables (mean absolute Shapley value),
the variation of Shapley values with respect to underlying variables, and Shapley values for
individual observations (case studies). We showed that the model was plausible, captured
some well-known cause-effect relationships, provided new insights into others, and gener-
ated novel hypotheses requiring further testing through simulation or experiment. To aid in
transparency, reproducibility, and future enhancements we have included an extensively
commented Rmarkdown file and a deidentified data set.

1. Introduction
1.1 Motivation and purpose

Walking is important. It is the fundamental mode of human movement, contributes to
independence, plays a role in activity, participation, and social relations, and promotes health.
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Walking impairments arise from medical conditions like cerebral palsy, osteoarthritis, stroke,
obesity, traumatic injuries, and many others. These impairments are treated with a variety of
approaches, such as physical therapy, orthoses, oral and injected pharmaceutical agents,
orthopedic surgery, and neurosurgery. To improve or correct walking impairments and

their sequelae it is necessary to (1) identify the cause of the impairment, (2) have access to
treatments that impact the identified cause, and (3) skillfully deliver the proper dose of the
treatment.

Consider a patient with a severely osteoarthritic hip. The patient has a slow, unstable, Tren-
delenburg gait, has trouble conducting activities of daily living, has stopped participating in lei-
sure activities, and reports that these problems lower their independence and happiness. The
primary causal path from the osteoarthritic hip to the impairments seems clear (cartilage degra-
dation), a well-established and effective treatment is available (total hip arthroplasty), and the
dose is not in question (one hip). As a result, a total hip arthroplasty for this patient is likely to
result in large predictable improvements to walking, mobility, and quality-of-life [1]. Of course,
this is a simplification. The patient may have developed weakness or contractures while walking
with compensations for many years, may have risk factors for a poor outcome from surgery,
and may have underlying causes of the osteoarthritis that are not addressed by joint replace-
ment. This reinforces the idea that movement impairing conditions are inherently complex.

Now consider a patient with cerebral palsy (CP) who has spasticity, poor motor control,
weakness, muscle contractures, bony torsions, and unstable feet. The patient presents with
comparable gait, mobility, and quality-of-life complaints as the osteoarthritic patient. Which
of the patient’s underlying orthopedic and neurological problems are the cause of their impair-
ments? What treatments are available for these underlying causes? What dose of correction is
appropriate? Unfortunately, treatment of impairments arising from CP result in modest and
unpredictable outcomes that have been stagnant for at least the last several decades [2]. We
believe that the difficulty in identifying causes of gait impairments is an important contributor
to this unsatisfactory situation.

In this study we will propose a comprehensive model for quantifying causes and conse-
quences of walking impairments and demonstrate the potential utility of the model for sup-
porting clinical care decisions and addressing scientific questions.

1.2 Causal inference

Causal inference has been carefully and succinctly defined many times, including for the Inter-
national Encyclopedia of the Social and Behavioral Sciences (Second Edition). Quoting exten-
sively below [with adaptations for our application to walking impairments in brackets]:

“Causal inference refers to an intellectual discipline that considers the assumptions, study
designs, and estimation strategies that allow researchers to draw causal conclusions based on
data. . .. The dominant perspective on causal inference in statistics has philosophical underpin-
nings that rely on consideration of counterfactual states. In particular, it considers the outcomes
that could manifest given exposure to each of a set of [causal factors]. Causal effects are defined
as comparisons between these ‘potential outcomes.” For instance, the causal effect of [femoral
anteversion] on [in-toeing] would be defined as a comparison of the [in-toeing] that would be
measured [with one level of femoral anteversion] with the [in-toeing] that would be measured
[with a different magnitude level of femoral anteversion]. The challenge for causal inference is
that we are not generally able to observe both of these states: at the point in time when we are
measuring the [in-toeing], each individual . . . has [only one level of femoral anteversion]”

[3].
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We emphasize that the key difficulty for causal inference is that we can never simulta-
neously observe the actual and counterfactual states (e.g., the same limb with two different lev-
els of anteversion). As a result, causal conclusions are not falsifiable. Instead, their validity is
supported or refuted by indirect evidence of a logical or mechanistic nature. Despite this fun-
damental challenge, causal inference has seen an explosion in use over the past two decades,
thanks in large part to the clarification of its theoretical underpinnings, extensive testing and
simulation, and the proliferation of powerful analytical tools. A search of https://app.
dimensions.ai for the term “causal inference” showed that ~190,000 out of 200,000 all-time hits
(~93%) were published after the year 1999 [4]. It is clear that causal inference techniques are
an exceptionally useful and important modern analytical tool.

1.3 Causal identification

We will not recapitulate the entire field of causal inference here, since there are countless out-
standing resources written by experts in the field. For a relatively non-technical yet rigorous
and highly entertaining overview, we direct the reader to The Book of Why (Pearl and Mac-
kenzie, 2018). The process of causal identification starts with proposing an underlying
assumed model. One way such a model can be described is in terms of a directed acyclic graph
(DAG). A DAG consists of a set of nodes, representing variables, connected to one or more
other nodes by arrows. These arrows represent direct causes of one variable on another. The
simple diagram A — B means: “A causes B” (e.g., the wind causes the leaves to flutter, not the
other way around, as the 6-year-old version of the first author believed). Representing a set of
causal hypotheses as a DAG has several strengths, including clear visual communication and
the ability to rigorously define requirements for the estimation of causal effects. The latter is
largely the result of the work of Pearl, and is the key tool in this study for examining causal
effects related to walking impairments [5]. A DAG also allows the identification of conditional
independencies—partial correlations that must be zero (or small, in practice). These indepen-
dencies can be tested to examine the plausibility of the proposed DAG. Satisfying the condi-
tional independencies is a necessary, but not sufficient condition to show accuracy of the
proposed model.

Total and direct effects. We will be examining both direct and total effects in this study.
The direct effect of exposure A on outcome B is the effect passing through the causal arrow
A — B. However, there may also be indirect effects of A on B. For example, perhaps the dia-
gram consists of the paths A—B and A—M—B. In this case, A has a direct effect on B and an
indirect effect on B, mediated by M. The total effect of A on B accounts for causal effects flow-
ing through all paths-both direct and mediated.

Adjustment sets. Given a causal diagram we need a way to isolate the causal effect of a
variable A (sometimes called an “exposure” or a “treatment”) on variable B (sometimes
called an “outcome”). This is done by finding a set of variables called an adjustment set. The
effect of A on B is causal only after conditioning for the adjustment set, which consists of
the other variables that influence the effect of A on B. In an experimental setting, this can
be achieved by controlling for the adjustment set variables through experimental design. In
an observational setting, we cannot control events. Instead, we include the adjustment set
variables in a model. There are mathematically rigorous rules that allow us to find adjust-
ment sets or determine that no such set exists [5]. The adjustment set required to determine
total effects may be different from the one required to determine direct effects. A proper
adjustment set needs to be determined for each variable in order to avoid misrepresenting
a non-causal effect for a causal one. This misrepresentation is called the “Table 2 Fallacy”

[6].
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1.4 Causal estimation

We use a computational model to turn the causal arrows in the DAG into numerical values.
To do this we first represent the variables, which are abstract concepts like mobility, as num-
bers (e.g., 1.35,2.7,42, . ..) or labels (e.g., mild, moderate, severe, . . .). The concept of the vari-
able and its realization as a number or label will be considered exchangeable. If there is a well-
understood mechanism underlying the causal path, the computational model can be explicit.
For example, suppose a causal diagram has a direct arrow from A — B, and we know the effect
of A on B is linear. Then we can model the path as B = * A. In this case, the causal effect is
simply the coefficient 8. If only the world was so simple.

The relationships we are examining in the model we are proposing do not generally have
well understood mechanistic relationships that can be expressed as algebraic formulae. Also,
the number of relationships as well as their complexity and unknown multi-way interactions
presents a challenge. So, rather than proposing explicit relationships for each causal path, we
take the approach of using a flexible computational engine that can accurately model these
relationships. We choose to use Bayesian Additive Regression Trees (BART) as the computa-
tional engine [7]. Using BART for causal inference has been shown to produce accurate and
precise estimates of causal effects across a wide range of real and synthetic datasets [8, 9]. The
reason for this exceptional performance is a result of BART’s ability to flexibly recreate the
shape of the outcome’s response surface.

Interpreting results. In alinear regression it is straightforward to interpret an effect-it
is the coefficient of the variable in the regression equation (8 in the above example). A disad-
vantage of BART is that, as a “black box” machine learning algorithm, extracting interpret-
able causal effect magnitudes requires additional analysis. There are many proposed
solutions to this problem, including partial dependence plots and accumulated local effects.
In this study we have chosen to use Shapley values to represent the causal effect magnitudes
[10]. A variable’s Shapley value is the amount that it contributes to the model prediction for
the outcome. Shapley values are frequently computed relative to the sample mean for the
outcome-in which case the sum of the sample mean outcome plus all Shapley values for all
variables equals the predicted outcome. Shapley values are not necessarily constant, but can
depend on other covariates. As an analogy, we return to the linear regression example above
A — Bwhere B=f"* A. In this example f is the causal effect and has a constant value. But
what if the value of § depended on the value of A? In that case we would have B = 5(A) * A.
In fact, in a more complex situation, B could depend on several variables, not just A. In what
follows, we present Shapley values three ways. If S is the Shapley value for the variable age,
we compute and display the mean absolute Shapley value over all observations (importance
plot). We also examine how age affects the Shapley value by displaying S,,.(age) (dependence
plot). Lastly, we compute Shapley values for important variables on an individual basis (case
studies).

In the following sections we will introduce a model for understanding the causes and conse-
quences of walking impairments. We will describe the model in detail and present five exam-
ples where the model is implemented using data collected during routine clinical gait analysis
assessments.

2. Materials and methods

2.1 The model

The proposed causal model consists of 10 nodes and 23 primary causal paths (Fig 1). For clar-
ity, the depiction of the model omits some details that are described below and may be found
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Fig 1. The proposed causal model in schematic form. The proposed model nodes include Condition (latent), Diagnosis,
History, Age, Sex, Structure and Function, Gait Mechanics, Mobility, Energy, and Quality-of-Life. Extensive details of proposed
nodes are found in the text. Descriptions of the paths are found in S1 Appendix. A full implementation of the model
(Rmarkdown file) and a de-identified dataset can be found in the S1 File.

https://doi.org/10.1371/journal.pone.0270731.g001

in an included Rmarkdown file (n.b., we will use an italicized, monospaced font with a grey
background to indicate software). The model captures causal relationships at a snapshot in
time. In other words, all nodes, including History (n.b., nodes will be capitalized and displayed
in italics throughout), are evaluated at time = t. For example, a patient may present with a ham-
strings contracture and walk in a crouch gait pattern. The model allows us to examine the
effect of hamstrings contracture on crouch gait. However, it is possible that continuing to walk
in such a pattern could result in worsening of hamstring contracture, or perhaps the patient
might undergo a hamstring lengthening surgery to improve the contracture. These changes
would be reflected in a model at time =t + 1.
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2.2 Model nodes

Condition is a latent variable capturing the exact details of the patient’s medical condition.
Note that Condition is a placeholder term for anything causing a change in body structure or
function. This could include injuries, diseases, genetic mutations, malnutrition, aging, etc.

Diagnosis is a surrogate for the Condition variable. We do not expect Diagnosis alone to cap-
ture the full details of the patient’s condition. However, this coarse parameter allows us to
adjust for some of the missing condition-dependent variables we do not measure.

History includes events that can significantly influence body structures and function, such
as prior treatments. Since the model uses the exam date as a starting point, we do not model
the causes of the prior treatments. Therefore, within the History node, we connect prior treat-
ments to a latent variable of unknown common causes (Prior; < Unknown — Prior;, for all j,
k). Note that this detail is not shown on the schematic version of the causal model but can be
found in the included Rmarkdown file.

Structure and Function is shorthand for Body Structures and Functions as described in The
International Classification of Functioning, Disability and Health (ICF) framework [11]. We
are specifically thinking of variables like spasticity (ICF category b750 -Motor reflex functions
and b735 —Muscle tone functions), motor control (b760 —-Control of voluntary movement
functions), strength (b730 —Muscle power), range-of-motion, bony alignment, muscle con-
tracture, and joint health (s740 -Structure of pelvic region, s750 -Structure of lower extremity,
s760 —Structure of the trunk, and s770 —Additional musculoskeletal structures related to move-
ment). The Structure and Function node is the core of the proposed causal model since ele-
ments of this node are the direct targets of treatments, and treatment effects are largest at this
level [12].

Gait Mechanics are the elements of dynamics pertaining to the motion of segments and
joints during gait (usually walking, but running, skipping, and other gaits could be consid-
ered). These data can come from three-dimensional gait analysis, video, or observational anal-
ysis, depending on the questions being investigated. As long as the concept of interest can be
coded as a number or category, it can be included in the model. Gait Mechanics, as we mean it,
appears in the ICF as both a body function (b770 -Gait pattern functions) and as an activity
(d450 -Walking). When choosing variables to represent Gait Mechanics additional choices
need to be made about the relationships among those variables. Variables in this node are
related to one another through definition as well as the geometric and physical constraints of
the lower extremity and walking. Given the topology of the assumed causal model, it can be
shown that these relationships (e.g., Structure and Function — Gait Mechanics or Gait
Mechanics — Energy) do not impact important total causal effect sizes. However, they do
impact implied conditional independencies. For example, if minimum hip flexion and hip
flexion range of motion during gait (related algebraically) are included as part of the
Gait Mechanics node, then a shared cause must be added (i.e., minimum hip flexion «
Unknown — range-of-motion hip flexion). We therefore add an unknown factor to this node
that is connected to all Gait Mechanics variables (Gait Mechanics; < Unknown — Gait
Mechanicsy, for all j, k). Note that this detail is not shown on the schematic version of the causal
model (Fig 1) but can be found in the included Rmarkdown file.

Cadence, step-length, and speed do not appear explicitly in the causal model. Instead, they
are considered part of Gait Mechanics, but merit special attention. Speed is the product of
cadence and step-length. These are part of ICF Walking (d450 —~Walking), which is defined as
“Moving along a surface on foot, step by step, so that one foot is always on the ground, such as
when strolling, sauntering, walking forwards, backwards, or sideways.” Alert readers will note
that the ICF defines walking, in part, as “walking”. The trio of cadence, step-length, and speed
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are not independent. Any two can be chosen freely and fully determine the third. We choose
cadence and step-length as the causes of speed since, to walk (1) we turn muscles on and off in
a sequence and intensity that generates joint movements, (2) the joint movements result in a
step of a given length, and (3) we repeat the step-length generating activation pattern at a given
cadence. Thus, we choose to treat cadence and step-length as the independent causal variables.
Including speed is redundant. However, there are meaningful effects that are more sensibly
expressed as speed effects rather than as combined cadence and step-length effects. For exam-
ple, the inability to keep up with peers while walking in the community, a frequent patient
complaint, is most clearly expressed as a speed problem. Other effects are more naturally
expressed in terms of cadence and step-length, such as the effect these variables have on energy
[13]. Thus, we include cadence, step-length, and speed in the causal model and include the
condition that cadence — speed « step-length. It is important to keep this redundancy in
mind when working with the model, since attempts to independently assign speed, cadence,
and step-length will result in computational and interpretation challenges. This also highlights
the fact that the model schematic does not contain every detail required for computation.
These details can be found in the included Rmarkdown file.

Energy is the metabolic energy required for walking (ICF b5409 —-General metabolic func-
tions unspecified or b789 -Movement functions other specified and unspecified). We recom-
mend against using energy per unit distance—often called “energy cost”, which is obtained by
dividing the time-rate of energy consumption (power) by walking speed. Problems arise at
slow speeds, where energy cost is dominated by the speed™’ term, and the impact of the meta-
bolic term becomes trivial.

Mobility is a broad term referring to a range of functions and abilities related to moving
around within the home or community (ICF d410-429 —Changing and maintaining body
position, d430-449 —Carrying, moving, and handling objects, d450-469 ~Walking and mov-
ing, and d47-489 -Moving around using transportation). The elements of mobility that are
important are patient-specific, and influenced by culture, environment, and many other
factors.

Quality-of-Life may be clear conceptually but is a vexingly difficult quantity to define and
measure. For one patient, walking faster may have a large impact on their quality-of-life. For
another, walking speed may not matter, but gait appearance does. Despite the central impor-
tance of this measure, it is the most likely to be influenced by factors not represented in the dia-
gram, such as social relations, socio-economic status, psychiatric disturbances, job status, and
so on. There are some successful and widely used measures for this domain, such as the World
Health Organization Quality of Life Assessment and the Diener Satisfaction with Life Scale
[14, 15]. We leave Quality-of-Life in the diagram as a reminder of its central importance, while
simultaneously acknowledging the limitations of the model regarding this node.

2.3 Causal paths

Each path in the model indicates the possible existence of a causal effect. It is only necessary to
find one possible example of the path for it to be included in the model. The magnitude of the
effect may turn out to be trivially small, but that is for the data to show. Given this situation,
one might ask “why not allow possible causal paths between all pairs of variables?”. The answer
is that such a fully connected model produces no implied conditional independencies, and
therefore, cannot be falsified. It also ignores the nature of the true causal relationships among
variables, which may result in the introduction of nonexistent and biasing paths. We do not
indicate if an effect is linear, quadratic, or some other form. Nor do we describe the existence
or nature of interactions. Those determinations are part of the causal estimation described in
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section 1.4, Causal Estimation. Brief examples of possibilities for each of the 23 causal paths in
the proposed model can be found in S1 Appendix.

2.4 Missing nodes and paths

No causal model can include every node and path. Some missing nodes that seem important
include socio-economic status, cognition, family dynamics, internal motivation, pain, or other
medical conditions. Missing nodes and paths have two possible impacts. First, they may
increase unexplained variance in an outcome measure. Second, and generally more impor-
tantly, they may bias the causal estimates. It is difficult to predict whether the missing nodes
and paths in a model are biasing or not. There are methods to estimate how much bias missing
paths would need to introduce to change causal conclusions [16]. We will not perform these
sorts of analyses in this study.

2.5 Model realization

Data. This study was reviewed and authorized by the University of Minnesota institu-
tional review board review (STUDY00012420). All experiments were performed in accordance
with relevant guidelines and regulations. Informed consent for use of medical records was
obtained at the time of service from all participants or their legal guardians. An option to
rescind this permission is offered to patients at every visit to our center.

We used data extracted from our laboratory’s historical clinical database collected between
1994 and 2022. Data consisted of measures collected for clinical standard-of-care evaluations.

For the computational models, missing continuous data was left as missing. Missing cate-
gorical data was neither omitted nor imputed, but instead assigned its own category (“Miss-
ing”). For causal effects dependency plots, we did not plot the “Missing” category since we are
not modeling the pattern of missingness, and hence this category has no clear causal meaning.
Handling of missing data in future applications of the model (e.g., hypothesis testing) must be
carefully considered. For example, in our data we know that missing strength values are associ-
ated with more significant physical and cognitive impairments due to a patient’s inability to
understand or cooperate with the examination.

Variables. To turn the conceptual causal model into a practical tool, we needed to realize
the nodes as measured values. The variables contained in the model nodes were chosen to be
comprehensive and commonly measured in clinical gait analysis centers to promote replica-
tion efforts and model extensions.

Diagnosis. Assigned diagnosis lumped into the categories cerebral palsy, myelomeningo-
cele, developmental variants, traumatic brain injury, and other (see S3 Appendix for listing of
“other” diagnoses).

History. Prior treatments lumped into the categories selective dorsal rhizotomy, neurolysis
(e.g., botulinum toxin type A or phenol injection), rectus femoris transfer, femoral derotation
osteotomy, tibial derotation osteotomy, distal femoral extension osteotomy, foot and ankle
bone surgery, psoas lengthening, hamstrings lengthening, adductor lengthening, calf muscle
lengthening, patellar advancement, foot and ankle soft-tissue surgery. These 13 account for
around 90% of the treatments performed on patients in our clinical database. The causal effects
of these treatments have been evaluated previously [17].

Sex. Sex as indicated by the patient’s medical record.

Age. Age ex-vivo. Note that when dealing with very young individuals or incipient walkers,
it might be more appropriate to consider an adjusted age that accounts for premature birth.

Structure and function.
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o Maximum range-of-motion: hip flexion, hip extension, hip abduction (knee extended), pop-

liteal angle (unilateral), knee flexion, knee extension, extensor lag, ankle dorsiflexion (knee
extended), ankle plantarflexion. All measured with handheld goniometry.

« Long bone torsion: trochanteric prominence angle test, bimalleolar axis angle. All measured

with manual goniometry.

« Weightbearing foot alignment: forefoot ab/adduction, forefoot in/eversion, hindfoot var/val-

gus, midfoot position (subjectively assessed). Raw data also included severity scores for these
measures, which have been dropped for this analysis.

Spasticity: overall lower extremity spasticity defined as first component score from polycho-
ric principal component analysis applied to spasticity of the adductors, hamstrings, hip flex-
ors, plantarflexors, posterior tibialis, and rectus femoris [18]. The resulting measure is a z-
score with respect to the sample.

Strength: overall lower extremity strength defined as first component score from polychoric
principal component analysis applied to manual muscle strength testing of abdominal, back
extensors, hip abductors, hip adductors, hip extensors, hip flexors, knee extensors, knee flex-
ors, ankle plantarflexors, anterior tibialis, posterior tibialis [19]. The resulting measure is a z-
score with respect to the sample.

Static selective motor control: overall lower extremity static selective motor control
defined as first component score from polychoric principal component analysis applied
to subjectively assessed measures of isolated static motor control (0-fully patterned,
1-partially patterned, 2-normal) of abdominal, back extensors, hip abductors, hip
adductors, hip extensors, hip flexors, knee extensors, knee flexors, ankle plantarflexors,

anterior tibialis, posterior tibialis. The resulting measure is a z-score with respect to the
sample.

« Dynamic motor control: The Dynamic Motor Control Index during Walking [20]. This
measure requires electromyography data. For many years we did not routinely collect elec-
tromyography data during post-treatment visits, resulting in a greater amount of missing

data for this measure.

Gait mechanics. Kinematic parameters derived from three-dimensional gait analysis: mean
pelvic tilt, pelvic tilt range-of-motion (ROM), minimum stance-phase hip flexion, mean
stance-phase hip rotation, minimum stance phase knee flexion, knee flexion at initial contact,
swing phase knee flexion ROM, maximum swing phase knee flexion, mean stance knee rota-
tion, ankle dorsiflexion at initial contact, mean stance ankle dorsiflexion, mean swing ankle
dorsiflexion, mean stance foot progression, dimensionless step-length, dimensionless cadence,
dimensionless speed. All kinematics are obtained from the Vicon plug-in gait model with
functional hip and knee axis [21, 22]. For data collected prior to 2006, we did not compute a
functional knee axis and therefore do not report a knee rotation value. Speed, cadence, and
step-length nondimensionalized following Hof [23]. Data represent the average of at least
three (and generally fewer than 7) trials of over-ground walking at self-selected speed. This
reflects our standard clinical protocol.

Energy. Net energy consumption during walking at self-selected speed. The value is nondi-
mensionalized and expressed as a z-score with respect to speed-matched typically-developing
controls [24]. For simplicity we will refer to this as net energy consumption.

Mobility. Functional Assessment Questionnaire Transform (FAQt) [25]. Demonstrated
mobility measures like the GMFM-66 would be preferable, but these data are not available for
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most of the patients in this study. The FAQt has been shown to be strongly correlated with the
GMFEM-66 (r ~ .60).

Quality-of-Life. Domain scores from the GOAL survey: Activities of Daily Living and Inde-
pendence, Body Image and Self-Esteem [26].

Software. We use the dagitty package in R to build the DAG [27]. Programming details
are in the included Rmarkdown file (electronic addendum).

Deriving adjustment sets. We derived adjustment sets using the provided functions in
dagitty.

Computational engine. We used BART models to compute the causal effects. For out-
come variables expressed as continuous or dichotomous variables we used the bartMachine
package [28]. We enabled the use of missing data, which BART handles without imputation
[29]. Note that outcomes expressed as polytomous variables can be predicted using the BART
package [30]. We used default settings for all BART models, which have been shown to be
nearly optimal across a wide range of conditions. We found only ~1-3% improvement in out-
of-sample performance from cross-validation optimized models.

Quantifying causal effect magnitude with Shapley values. Shapley values were com-
puted using the fastShap package [31]. We present Shapley values in three different forms: (1)
importance plots display mean absolute Shapley values and give an overall picture of the causal
importance of a variable, (2) dependence plots show how the Shapley value varies over the
domain of the causal variable and (3) case studies show Shapley values of chosen variables for
individual patients.

2.6 Plausibility of the model

Model plausibility was tested using implied conditional independencies. In the case of the pro-
posed model, most of these involved large numbers of conditioning variables (2 tests with 0
conditioning variables, 48 with 1, 165 with 15, 280 with 20, and 1 with 38). The calculations
are unreliable in this situation, so we only evaluated conditions with 0 or 1 conditioning vari-
ables [32]. Furthermore, many of the tests did not provide meaningful plausibility information
since they were essentially tests of the relationship between speed, cadence, and step length,
which is fulfilled by definition. To compute test values we first generated a polychoric correla-
tion matrix for the variables using the lavaan package [33]. Note that this step was necessary
since the implied conditional independencies involved a mix of continuous and ordered data.
The diagnosis variable was further lumped into two categories—CP (~80% of observations) and
Other. This dichotomization was necessary since diagnosis is an unordered category.

2.7 Examples

We demonstrate the utility of the proposed causal model with five examples. The purpose of
these examples is to show how to use the model, highlight the model’s potential clinical and
scientific value, and provide some face validity. There are many different combinations of
exposures and outcomes we could consider-each producing dozens of graphs and tables.
Rather than giving an encyclopedic treatment here we are providing an Rmarkdown file and a
demonstration data set of deidentified observations so that readers can run the Rmarkdown
file to create facsimiles of the plots presented here and can modify the code to explore,
enhance, test, or utilize the causal model. For each example we (1) chose an exposure node and
outcome measure, (2) determined the proper adjustment set for valid causal inference, (3)
built a BART model for the outcome based on the adjustment set, and (4) examined a combi-
nation of importance plots, dependence plots, and case studies.
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Example 1: Total effects of Structure and Function on mean stance foot progression.
The effect of impairments at the Structure and Function level on impairments at the Gait
Mechanics level is the primary problem of interest in most clinical gait studies, and directly
drives treatment decisions. The broader goals of treatment may include improving Energy,
Mobility, or Quality-of-Life, but the treatment assignment process is largely based on assump-
tions about how structural impairments cause gait impairments. These assumptions are ad
hoc, rarely based on evidence, and essentially never based on causal evidence, since the gait lit-
erature contains (almost) none. To demonstrate the application of the proposed model to this
causal path we examined the total effects of Structure and Function on in- and out-toeing,
which is a common problem of concern to patients and is frequently treated with surgery. We
quantified in- and out-toeing by mean stance foot progression. The adjustment set consists of
variables belonging to the Structure and Function, Age, and Diagnosis nodes [S2 Appendix].

Example 2: Total effects of Structure and Function on FAQt. Mobility is important to a
patient and is often discussed in relation to treatment decisions. We have chosen to quantify
Mobility using the FAQt. Note that some components of the FAQt are clearly mediated by
Gait Mechanics (e.g., overall walking ability and climbing stairs) and some are not (e.g., kick-
ing, hopping, and jumping). The adjustment set consists of variables belonging to Structure
and Function, Age, and Diagnosis nodes. Note that it would be wrong to adjust for Gait
Mechanics, which is a mediator (i.e., there is a path consisting of Structure and Function —
Gait Mechanics — Mobility) [S2 Appendix].

Example 3: Total effect of Gait Mechanics on net energy consumption. The net energy
consumption during walking for children with cerebral palsy is high-averaging over twice that
of typically developing controls. We quantify Energy walking -resting energy consumption
(time rate of energy) nondimensionalized and expressed as a z-score with respect to speed
matched controls [24]. Common treatments show limited effectiveness to reduce net energy
consumption. In a previous study, overall kinematic deviations were shown to contribute sub-
stantially to elevated net energy consumption [34]. By examining the effects of Gait Mechanics
on net energy consumption we can determine which specific kinematic deviations are the
most impactful. The adjustment set consists of variables belonging to the Gait Mechanics,
Structure and Function, Age, and Diagnosis nodes [S2 Appendix].

Example 4: Direct effect of Age on net energy consumption. A particular challenge with
observational data is disentangling direct effects of age from effects due to other factors.
including treatment. In this example, we examine the direct effect of age on net energy con-
sumption. By examining the direct effect of age on net energy consumption we can quantify
the effect that maturation has, independent of associated changes in Structure ¢ Function, His-
tory, or Gait Mechanics. Unlike the previous examples, where we estimated total effects, here
we examine the direct effect of Age. This is an effect that is impossible to observe-hence an
ideal situation for causal inference methods. The direct effect isolates the developmental role
of Age from the concomitant impact it has on factors like gait mechanics and treatment deci-
sions, which result in indirect causal effects. The adjustment set consists of variables belonging
to the Diagnosis, Structure and Function, and Gait Mechanics nodes [S2 Appendix]. For this
example, we analyzed only individuals diagnosed with cerebral palsy.

Example 5: Total effects of (1) Structure and Function on Activities of Daily Living and
Independence and (2) Gait Mechanics on Body Image and Self-Esteem. Independence and
self-esteem are important aspects of Quality-of-Life. The GOAL survey provides validated self-
report measures from these domains. We use the GOAL'’s Activities of Daily Living and Inde-
pendence domain score as a measure of independence, and the Body Image and Self-Esteem
score as a measure of self-esteem. We estimate the total effects of Structure and Function on
the Activities of Daily Living and Independence score and Gait Mechanics on the Body Image
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and Self Esteem score. The adjustment set for the total effects of Structure and Function on
Activities of Daily Living and Independence consists of variables belonging to the Age, Diagno-
sis, and Structure and Function nodes. The adjustment set for the total effect of Gait Mechanics
on Body Image and Self-Esteem consists of variables belonging to the Age, Diagnosis, Structure
and Function, and Gait Mechanics nodes [S2 Appendix].

For examples 1 through 3 we computed Shapley values for a random sample of 1500 obser-
vations, which is around 1/6™ of the data and gives a representative picture of the response
without making the plots overly dense. For example 4 we also included all observations youn-
ger than 4 years and older than 15 years in order to have sufficient density across ages. For
example 5 we selected all available data.

3. Results
3.1 Data

The database query resulted in 9504 individuals (Tables 1-5). We selected the affected side
(unilateral diagnosis) or the left side (bilateral diagnosis) from each individual for further anal-
ysis. We have not seen a meaningful impact from the use of bilateral data in this model or pre-
vious causal treatment effect models, though there may be situations where using bilateral data
is appropriate.

3.2 Implied conditional independencies

As noted in the methods, due to the number of variables in the model and the structure of the
proposed DAG, many implied conditional independencies could not be tested and those that
could were largely fulfilled by definition. The conditions that were tested exhibited partial cor-
relations less than 0.20.

3.3 Examples

For each example, observations where the outcome was missing were excluded resulting in a
reduced sample size in examples 1-5 (N = 9504, 5498, 7672, 7672, and 835/839, respectively).
Example 1: Total effects of Structure and Function on mean stance foot progression.

As expected, tibial torsion (estimated by bimalleolar axis angle) and femoral anteversion (esti-
mated by trochanteric prominence test angle) were the two largest causes of mean stance foot
progression (Fig 2). The next three largest causes of meaningful magnitude were related to
foot deformity.

Table 1. Age, sex, and diagnosis.

Variable N =9,504
Age, Median (IQR) 10.5 (7.7-13.8)
Diagnosis, n (%)
Cerebral Palsy 6,667 (70)
Developmental Variant 597 (6.3)
Myelomeningocele 314 (3.3)
Traumatic Brain Injury 207 (2.2)
Other 1,719 (18)
Sex, n (%)
Female 4,247 (45)
Male 5,257 (55)

https://doi.org/10.1371/journal.pone.0270731.t001
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Table 2. History of prior treatment.

Treatment N
Neurolysis, n (%) 3,850 (41)
Calf Muscle Lengthening, n (%) 2,446 (26)
Femoral Derotation Osteotomy, n (%) 2,359 (25)
Selective Dorsal Rhizotomy, n (%) 2,242 (24)
Foot Bone, n (%) 1,716 (18)
Foot Soft Tissue, n (%) 1,309 (14)
Tibial Derotation Osteotomy, n (%) 1,220 (13)
Hamstrings Lengthening, n (%) 1,164 (12)
Adductor Lengthening, n (%) 891 (9.4)
Rectus Transfer, n (%) 814 (8.6)
Psoas Lengthening, n (%) 782 (8.2)
Patellar Advancement, n (%) 342 (3.6)
Distal Femoral Extension Osteotomy, n (%) 162 (1.7)

https://doi.org/10.1371/journal.pone.0270731.t1002

The dependence of mean stance foot progression on long bone torsion appears to be
approximately linear, with slopes of around 0.6 and 0.3 degrees of mean stance foot progres-
sion per degree of torsion for the tibia and femur, respectively (Fig 3). We also see the expected
relationship at the forefoot, with an abducted forefoot causing external foot progression and
an adducted forefoot causing internal foot progression. Identifying these foot-related effects is
reassuring since they are sensible, but also pleasantly surprising, since these measures tend to
be quite coarse and noisy.

As an aside, recall that Shapley values are expressed with respect to the mean over the sam-
ple, so dependence plots cross the zero line at the sample mean of the corresponding exposure
value. In other words, visual inspection of Fig 3 shows that the sample mean bimalleolar axis
angle is ~15°, trochanteric prominence test angle is ~35° and forefoot abduction/adduction is
neutral.

Four examples from individuals-two with significant in-toeing (top row) and two with sig-
nificant out-toeing (bottom row)-show different Structure and Function profiles leading to
similar in- and out-toeing (Fig 4). This has obvious clinical importance since different treat-
ments would be considered each of these cases.

Example 2: Total effects of Structure and Function on FAQt. Strength and motor con-
trol (static and dynamic) were the most important causal contributors to mobility as measured
by the FAQt (Fig 5).

The dependence plots suggest that the difference between poor overall strength (-1 is 1 SD
weaker than sample average) and good strength (+is 1 SD stronger than sample average) is 20
points, or 2 SD on the FAQt scale (Fig 6). While this is a large effect, the likelihood of improv-
ing overall strength by 2 SD through any intervention is low. The motor control effects are
nearly as large but improving motor control is also an extremely challenging therapeutic goal.

All highly mobile patients resemble one another. They are strong and have good motor
control. Those with poor mobility also fit a consistent prototype of poor strength and poor
motor control. Individual examples of both high and low FAQt scores typify this finding (Fig
7).

Example 3: Total effect of Gait Mechanics on net energy consumption. The largest
causal contributor to net energy consumption was initial contact knee flexion, which was
twice as impactful as the next closest cause (Fig 8). Elements of stance phase knee flexion and
ankle dorsiflexion were the next most important causes—equal in magnitude to one another.
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Table 3. Structure and function.

Variable N Value
Maximum Hip Flexion, Median (IQR) 9,503 135 (124-135)
Maximum Hip Extension, Median (IQR) 7,422 0 (-10-5)
Maximum Hip Abduction (Knee Extended), Median (IQR) 9,499 31 (25-40)
Popliteal Angle (Unilateral), Median (IQR) 9,490 50 (40-60)
Maximum Knee Flexion, Median (IQR) 9,491 135 (135-135)
Maximum Knee Extension, Median (IQR) 9,502 0 (-2-0)
Extensor Lag, Median (IQR) 7,281 0 (0-5)
Maximum Ankle Dorsiflexion (Knee Extended, Median (IQR) 9,145 5(0-10)
Maximum Ankle Plantarflexion, Median (IQR) 9,464 50 (42-50)
Trochanteric Prominence Test Angle, Median (IQR) 9,457 30 (20-45)
Bimalleolar Axis Angle, Median (IQR) 9,031 15 (7-20)
Forefoot Varus/Valgus, n (%) 9,504
Valgus 1,260 (13)
Neutral 6,084 (64)
Varus 312 (3.3)
Missing 1,848 (19)
Forefoot Abd/Add, n (%) 9,504
Abducted 3,391 (36)
Neutral 4,395 (46)
Adducted 1,455 (15)
Missing 263 (2.8)
Hindfoot Var/Val, n (%) 9,504
Valgus 5,271 (55)
Neutral 2,983 (31)
Varus 572 (6.0)
Missing 678 (7.1)
Midfoot Cavus/Planus, n (%) 9,504
Cavus 555 (5.8)
Neutral 2,919 (31)
Planus 3,875 (41)
Missing 2,155 (23)
Lower Extremity Spasticity, Median (IQR) 9,348 -0.48 (-0.76-0.49)
Lower Extremity Strength, Median (IQR) 8,634 0.05 (-0.69-0.76)
Lower Extremity Static Motor Control, Median (IQR) 8,660 0.31 (-0.89-1.00)
Dynamic Motor Control, Median (IQR) 4,347 82 (75-90)

https://doi.org/10.1371/journal.pone.0270731.t1003

Shapley value dependence plots showed that initiating ground contact with the knee in a
flexed position has a substantial net energy consumption penalty—around 1.5 SD difference
between contacting with 10° vs. 50° of flexion (Fig 9).

It is interesting to note that walking in crouch (minimum stance knee flexion > 25°) seems
to provide an energetic benefit. Previous studies, both experimental and analytical, have
reported mixed and inconclusive findings regarding the relationship between energy and
crouch. It is possible that this is because they failed to control or adjust for the proper con-
founders [35, 36]. Walking in a plantarflexed position also contributes to elevated net energy
consumption. The apparent threshold effect for plantarflexion may be a consequence of using
a tree-based computational model, or it may reflect a true mechanism related to the way that a
heel strike promotes an energetically efficient step-to-step transition [13]. The disruption of
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Table 4. Gait mechanics.

Variable

Mean Pelvic Tilt, Median (IQR)
Range-of-Motion Pelvic Tilt, Median (IQR)
Minimum Stance Hip Flexion, Median (IQR)
Mean Stance Hip Rotation, Median (IQR)
Minimum Stance Knee Flexion, Median (IQR)
Initial Contact Knee Flexion, Median (IQR)
Range-of-Motion Knee Flexion, Median (IQR)
Maximum Swing Knee Flexion, Median (IQR)
Mean Stance Knee Rotation, Median (IQR)
Initial Contact Ankle Dorsiflexion, Median (IQR)
Mean Stance Ankle Dorsiflexion, Median (IQR)
Mean Swing Ankle Dorsiflexion, Median (IQR)
Mean Stance Foot Progression, Median (IQR)
Normalized Cadence, Median (IQR)
Normalized Step Length, Median (IQR)

https://doi.org/10.1371/journal.pone.0270731.t1004

Value

17 (12-22)

6.4 (4.5-8.9)

2 (-4-10)
4(-5-12)
9(3-18)

22 (12-32)

40 (28-51)

61 (55-67)

-3 (-14-4)
2(-7-3)

6 (2-10)

-3 (-10-3)

-7 (-16-3)

0.27 (0.24-0.29)
1.32(1.14-1.47)

passive walking dynamics may also be the mechanism underlying the energy penalty caused

by knee hyperextension.

After observing the minimum stance-phase knee flexion result, we hypothesized that this
reflected the energetic penalty for extending a loaded and flexed knee and thus raising the
body center-of-mass (recall that the initial contact position is accounted for in the model).
Such a pattern is sometimes called “jump gait”. We explored this hypothesis by stratifying the
minimum stance phase knee flexion plot by initial contact knee flexion, binned into mild,
moderate, and severe categories (Fig 10). We see that, in support of our hypothesis, only indi-
viduals who land in severe crouch derive a net energy consumption benefit from remaining in
crouch. Not all these individuals derive the net energy consumption benefit, indicating that
additional causal factors play a role. The results of the model are suggestive of a mechanism

but need to be tested experimentally or through simulations.

Two examples, each from individuals with high net energy consumption levels, show that
different Gait Mechanics profiles can lead to similar levels of walking energy (Fig 11). The two
cases have identical net energy consumption, but one is in severe crouch while the other is in

equinus and knee hyperextension.

Example 4: Direct effect of Age on net energy consumption. Net energy consumption
undergoes a substantial reduction with age (~ 1 SD) (Fig 12). For clarity we have fit a general-
ized growth (Richards’) curve to the data [37]. This results in an initial net energy consump-
tion of +0.49, final net energy consumption of -0.42, midpoint of maturation of 10.1 years, and

time constant of 0.49. The age dependence shows significant energy decrease (0.91 SD) occur-

ring primarily between ages 5-12 years.

Table 5. Mobility, energy, quality of life.
Variable

Functional Assessment Questionnaire Transform (FAQt), Median (IQR)

Net Energy Consumption, Median (IQR)
Body Image and Self-Esteem, Median (IQR)

Activities of Daily Living and Independence, Median (IQR)

https://doi.org/10.1371/journal.pone.0270731.t1005

N Value

5,498 55 (32-79)
7,672 2.81 (1.55-4.32)
839 50 (38-58)

835 75 (57-91)
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Causal Effects of Structure and Function on Mean Stance Foot Progression
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Fig 2. Importance of Structure and Function on mean stance foot progression. The nine variables with the largest absolute Shapley values for mean
stance foot progression are shown. Unsurprisingly, torsions of the tibia and femur are the two largest contributors to mean stance foot progression. Foot
deformities comprise the next three largest causes.

https://doi.org/10.1371/journal.pone.0270731.9002

An implication of this effect’s importance can be seen in outcomes of selective dorsal rhi-
zotomy. Elevated net energy consumption is commonly observed in children with cerebral
palsy. Historically, selective dorsal rhizotomy was believed to be effective at reducing net
energy consumption. Recent studies have shown that this is not true [38, 39]. At our center the
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Fig 3. Dependence plots for Structure and Function variables with large effects on mean stance foot progression. The three most important causal
variables are shown. The effects of long bone torsions (femur and tibia) are nearly linear. Note that for many years measurements were only recorded at
five-degree increments, leading to vertical striations in the left and middle panels.

https://doi.org/10.1371/journal.pone.0270731.9003
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Predicted Mean Stance Foot Progression = 19.84
Sample Avg. Mean Stance Foot Progression = -5.65
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Fig 4. Case studies of Structure and Function effects on mean stance foot progression. The top row shows patients with significant in-toeing. On the
top-left, the primary cause is excess femoral anteversion, with additional contributions from hindfoot varus and forefoot adduction. On the top-right
femoral anteversion and tibial torsion both contribute. The bottom row shows patients with significant out-toeing. On the bottom left, external tibial
torsion and forefoot deformity cause the out-toeing. On the bottom right, both femoral retroversion and external tibial torsion contribute meaningfully,
along with forefoot abduction.

https://doi.org/10.1371/journal.pone.0270731.9004

mean baseline and follow-up ages for selective dorsal rhizotomy evaluations are 6.3 and 7.8
years, which is during the period where age alone-independent of treatment-causes rapid
reductions in net energy consumption. Thus, the misattribution of age effects as treatment
effects probably contributed to the erroneous ideas about selective dorsal rhizotomy and net
energy consumption.

Example 5: Total effects of (1) Structure and Function on Activities of Daily Living and
Independence and (2) Gait Mechanics on Body Image and Self-Esteem. Strength and
motor control (static and dynamic) are the largest Structure and Function variables affecting
Activities of Daily Living and Independence (Fig 13). As has been discussed earlier, these neu-
rological factors are difficult to change with currently available treatments.

The next largest causal factors were related to ankle and foot deformity. Among Gait
Mechanics variables affecting Body Image and Self-Esteem, large pelvic tilt range-of-motion,
rapid cadence, and foot progression were the three largest causal factors. The model was able
to identify detrimental effects on Body Image and Self-Esteem of both out- and in-toeing
(external and internal foot progression)-with internal having a substantially larger impact (Fig
14). Foot progression is effectively treated with femoral and tibial derotation osteotomies and
bony foot surgery.

4. Discussion
4.1 Summary

The purpose of this study was to propose a comprehensive model for evaluating causal effects
of walking impairments and their consequences. We have described the model, demonstrated
its plausibility using data from a pediatric clinical motion analysis laboratory, and presented
several ways that it can be used to test and expand our understanding of walking impairments.
The model provides results and data that can further our understanding of the relationships
between treatments and outcomes by identifying the important sources of an impairment. The
model’s output reinforces some beliefs, provides useful details regarding others, and generates
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Causal Effects of Structure and Function on FAQ Transform
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Fig 5. Importance of Structure and Function on FAQt. Strength and motor control (static and dynamic) are the main contributors to mobility as
measured by the FAQt. These neurological variables have effects around two- to four-times larger than any other variable.

https://doi.org/10.1371/journal.pone.0270731.9005
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Fig 6. Dependence plots for Structure and Function variables with large effects on FAQt. Strength and motor control (static and dynamic) constitute
the top causal contributors to mobility as measured by the FAQt. The positive effect of dynamic motor control plateaus at around 90, which is 1 SD
below typical.

https://doi.org/10.1371/journal.pone.0270731.9006
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Fig 7. Case studies of Structure and Function effects on the FAQt. Good mobility (high FAQt) is caused by good strength and good motor control,
poor mobility is caused by weakness and poor motor control. Strength and motor control are related, but that fact has been accounted for in the chosen

adjustment set.

https://doi.org/10.1371/journal.pone.0270731.9g007

new hypotheses. The model can also be used to estimate causal effects for individuals, with
obvious implications for supporting treatment decisions.

4.2 Examples

This is not a “validation” study, per se, and the examples were not meant to prove the model is
correct. Nevertheless, it is important that the model produces results that provide an element
of face validity by reproducing-perhaps with more detail and rigor-existing knowledge. The
large impact of femoral anteversion and tibial torsion on in- and out-toeing is not surprising.
However, in addition to confirming this well-known effect, the model estimates the functional
form, showing that tibial torsion is about twice as impactful as femoral anteversion on a
degree-for-degree basis.

We can compare this result with clinical data. Consider two groups of limbs: One group
underwent tibial derotation osteotomies without femoral derotation osteotomies or bony
foot surgery (Tibial Derotation). The other group underwent femoral derotation osteotomies
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Fig 8. Importance of Gait Mechanics on net energy consumption. Knee flexion at initial contact has a causal impact twice as large as the next largest
contributors, which are comprised of stance phase kinematic features of the knee and ankle.

https:/doi.org/10.1371/journal.pone.0270731.9g008

without tibial derotation osteotomies or bony foot surgery (Femoral Derotation). Examining
the change in mean stance foot progression compared to the change in torsion (estimated
from pre- and post-surgical physical examination) reveals slopes that closely match the
causal prediction (Fig 15). Note that we do not expect exact matches due to additional
factors that can influence foot progress, such as age, other treatments, and compensatory
movements.

In- and out-toeing were also found to be detrimental to Body Image and Self-Esteem, a
widely believed concept, but one that is not easily seen in raw data. In addition to clearly iden-
tifying this causal link, the model showed that in-toeing was around twice as impactful as out-
toeing. Like the torsion findings, the direct effect of age on net energy consumption is not
novel, but the model demonstrates this effect using substantially different methods than have
been used in the past. Furthermore, we derive an explicit functional form for the age-depen-
dence that can be used for adjusting observed treatment effects. The evaluation of net energy
consumption also confirmed the critical role of knee flexion. However, rather than finding a
monotonic crouch — energy consumption relationship, we saw a subtle yet sensible interac-
tion effect between initial contact knee position, minimum stance-phase knee flexion, and
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Fig 9. Dependence plots for Gait Mechanics variables with large effects on net energy consumption. Being flexed at
initial contact imparts a substantial net energy consumption penalty. Knee hyperextension is costly, but maintaining a
flexed position is not. This counterintuitive finding is discussed further in text. A large pelvis range-of-motion and
stance phase ankle plantarflexion were also substantial causes of high net energy consumption-though with much
smaller effects than knee kinematics.

https://doi.org/10.1371/journal.pone.0270731.9009

energy consumption. While the purported mechanism needs to be tested, uncovering
unknown or poorly understood phenomena like this exemplifies an important role that causal
models can play. We found that strength and motor control are the key causal factors for both
Mobility and Quality-of-Life (Activities of Daily Living and Independence). This result agrees
with clinical beliefs and suggests why correction of orthopedic impairments does not lead, on
average, to improvements in mobility [17].

Init. Cont. Knee Flex. < 15° 15° < Init. Cont. Knee Flex. < 25° Init. Cont. Knee Flex. > 25°

40 0 20 40 0 20 40
Min. Stance Knee Flexion [deg]

Fig 10. The effect of stance-phase knee flexion on net energy consumption, stratified by initial contact knee flexion. The energy benefit of stance-
phase crouch scales with the amount of initial contact knee flexion. Only individuals who land in a severely crouched position exhibit a large energy
benefit from a large minimum stance-phase knee flexion. Not all individuals who land in severe crouch derive the benefit, suggesting a role for

additional causal factors.

https://doi.org/10.1371/journal.pone.0270731.9010
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Fig 11. Case studies of Gait Mechanics effects on net energy consumption. The two individuals depicted have net energy consumption between 6 and
7 SD above speed-matched typically developing controls. For the individual on the left, initial contact knee flexion (59°) is an important cause. The
individual is in severe crouch (minimum stance knee flexion = 33°)-yet this crouch lowers the net energy consumption. The hypothesized mechanism
for this is described in the text. For the patient on the right, knee hyperextension and excessive ankle plantarflexion both contribute meaningfully to the
elevated net energy consumption.

https://doi.org/10.1371/journal.pone.0270731.9011

4.3 Interpreting model outputs

Shapley values are well-established, principled, and easily interpreted method for quantifying
causal effects. Other commonly used methods are partial dependence plots, accumulated local
effects plots, and individual conditional expectation plots. All these methods give more-or-less

1.0

0.5

0.0

Shapley Value [dimensionless]

-1.0

0 5 10 15 20 25
Age [yr]
Fig 12. The direct effect of age on net energy consumption. Meaningful maturation effects accounting for around 1
SD of net energy consumption reduction can be clearly seen. The period of rapid reduction occurs from around 7.5

12.5 years. Evaluating the effect of treatment on energy consumption during this epoch must account for the direct
effects of age to avoid conflating age-related reductions with treatment effects.

https://doi.org/10.1371/journal.pone.0270731.9012
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Fig 13. Importance of Structure and Function effects on Activities of Daily Living and Independence, Importance of Gait Mechanics
effects on Body Image and Self-Esteem. Strength and motor control dominate causes of Activities of Daly Living and Independence. These
factors are difficult to change using currently available treatments. Some of the important causal variables can be addressed with well-
established treatments. For example, ankle plantarflexion (Activities of Daily Living and Independence) or mean stance foot progression
(Body Image and Self-Esteem).

https://doi.org/10.1371/journal.pone.0270731.9013
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Fig 14. The impact of in- and out-toeing on Body Image and Self Esteem. Raw, non-causal (left) and causal (right)
impacts of in- and out-toeing (mean stance foot progression) are shown. The raw data is widely dispersed but is
suggestive of detrimental effects when deviating from typical foot alignment (around -10°). These effects are much
clearer in the causal dependence plot. Deviations in either direction from typical result in lower Body Image and Self-
Esteem, but the impact of in-toeing (positive) is about twice as large as that of out-toeing. There is a precipitous drop in
Body Image and Self Esteem starting at around 0°, which is probably where in-toeing becomes easily discernable.

https://doi.org/10.1371/journal.pone.0270731.9014

the same answer. This raises an important point regarding the sort of precision we expect from
causal models. Many are familiar with the saying “measure with a micrometer and cut with a
hack-saw”. Here, we do not have that problem since we are essentially using a hacksaw for
both measuring and cutting. In other words, our goal is not to identify effects down to the mil-
limeter or degree, but to identify the main causal factors, rule out non-causes unjustified
beliefs, and derive reasonable sign and magnitude estimates for causal effect sizes [40].

Shapley values estimate causal factors and therefore give useful guidance for treatment deci-
sions. However, Shapley values do not necessarily predict changes associated with treatment.
There are several reasons for this. Multiple variables may change with a treatment, leading to a
different causal impact due to interactions. Furthermore, patients can compensate for changes
introduced by treatment. For example, suppose a patient’s Shapley profile indicated in-toeing
largely caused by femoral anteversion. Now suppose the patient underwent a femoral derota-
tion osteotomy of magnitude matching the Shapley value. Finally, suppose the patient com-
pensated after surgery by internally rotating their pelvis by half the amount of the derotation.
In this case, the treatment outcome would only be half of the original causal effect of antever-
sion, despite a full orthopedic correction. Additional work is needed to quantify the relation-
ships between causal effects and treatment outcomes.
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Fig 15. Clinical estimates for the causal effects of tibial torsion and femoral anteversion on in- and out-toeing.
The effects are approximately linear, with slopes of -0.7 and 0.3 for tibial and femoral torsion, respectively. This is
similar to the predicted causal effect slopes of -0.6 and 0.3 degrees.

https://doi.org/10.1371/journal.pone.0270731.9015

PLOS ONE | https://doi.org/10.1371/journal.pone.0270731 December 28, 2022 24/29


https://doi.org/10.1371/journal.pone.0270731.g014
https://doi.org/10.1371/journal.pone.0270731.g015
https://doi.org/10.1371/journal.pone.0270731

PLOS ONE

Causal model of walking impairments

4.4 Limitations

All causal models are proposals that can never be fully confirmed or refuted, and thus need
to be evaluated critically. The minimal level of model checking involves testing implied con-
ditional independencies to establish model plausibility. Most implied conditional indepen-
dencies could not be evaluated for the proposed model due to the large numbers of
conditioning variables. Those that could be tested supported the plausibility of the model.
We know that there are missing paths in the model. Some of these missing paths could repre-
sent important causes while others could introduce bias. However, not every missing path
leads to bias. For this to be the case, missing variables would, at a minimum, need to be a
common cause of the exposure and outcome of interest. For example, cognition would need
to affect Structure and Function and Gait Mechanics for its absence to bias the findings
regarding torsion and in-toeing. Furthermore, even if biasing paths exist, it is not clear

how large an effect such a bias would have. This question can be studied with sensitivity
analysis.

The Diagnosis node is crude. The most obvious next element to add to this node is a mea-
sure of severity. Those involved in CP research will immediately notice the absence of the
Gross Motor Function Classification System (GMFCS), which is often viewed—-explicitly and
implicitly—as a severity measure. We have left the GMFCS out of the model for two main rea-
sons. The first reason is that we do not have similar scales for other diagnoses and would thus
introduce significant imbalance in missing values. This is a relatively minor problem since
missing values can be handled seamlessly by bartMachine. The second reason, which is more
important and more intriguing, is that it is unclear whether the GMFCS level is a cause or an
effect. The original description suggests GMFCS as a cause-a fixed value that is a surrogate for
severity [41, 42]. However, in practice, a GMFCS level is assigned based on observed functional
skills like climbing stairs or carrying objects. This creates a paradox, since the skills dictating
the GMFCS assignment are caused by Structure and Function and Gait Mechanics impair-
ments. In other words, it is not clear whether the causal arrow is GMFCS — Structure and
Function/Gait Mechanics or Structure and Function/ Gait Mechanics — GMFCS. Given the
lack of formal causal modeling in CP research, it is not surprising that this paradox has not
been discussed previously. The proper causal model would appear to at least contain GMFCS
«— Severity — Structure and Function/Gait Mechanics, with Severity a latent variable. We have
experimented with other severity measures such as age of walking onset, which seems to work
well. However, establishing the validity of such a severity measure is beyond the scope of this
study.

Our study is limited by sample bias. This is an observational study, and our data comes
from a convenience sample of individuals seen for clinical necessity. One obvious problem
with such a sample is that it reflects individuals with larger impairments than the population.
More subtle biases may arise from non-representative cultural and socioeconomic factors.
Another consequence of our convenience sample is that it is clearly biased towards younger
individuals (Age, Median (IQR) = 10.5 (7.7-13.8)). The factors that impair gait in older indi-
viduals may vary substantially from those represented in these data. It is critical to recognize
the limited applicability of this model to an ageing population.

In this study we have only examined continuous outcomes. The basic methodology
applies directly to categorical outcomes (binary, ordered, polytomous), but for
ordered and polytomous outcomes it is a necessary and straightforward modification
to use a different BART engine, since bartMachine does not handle ordered and polyto-
mous outcomes. We have successfully used the BART package for these types of outcomes
[30].
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4.5 Future directions

As stated at the outset, this model is a proposal that is meant to be critically evaluated, validated
or refuted, altered, and improved over time. Such improvements might include the introduc-
tion of new nodes, variables, and paths. We are particularly interested in modeling the effects
of social determinants of health, though we recognize the monumental challenge this presents.
Quality-of-Life is affected by many factors not in the model, such as employment, social rela-
tions, and other health conditions, to name a few. Nevertheless, the results (sensibly) suggest
that certain impairments of Structure and Function and Gait Mechanics reduce Quality-of-Life.
The current model does not include pain. Pain is clearly an important phenomenon, but it is
unclear how to properly include it. For example, pain can be a cause of Gait Mechanics (antal-
gic gait caused by osteoarthritic pain) or pain can be an effect of Gait Mechanics (e.g., knee
pain caused by pre-patellar pressures present in crouch gait).

The replication crisis in science is real. There are vanishingly few examples of important
clinical gait studies being replicated or refuted [43]. To encourage open and transparent scien-
tific practice, we are providing a detailed Rmarkdown file and a sample dataset. We expect that
this will greatly ease the burden of implementing this model in other centers and will help
researchers identify model shortcomings and propose possible improvements.

Causal inference is inherently ambiguous since we cannot observe multiple realizations of
the same person with different characteristics. Causal models must be evaluated through indi-
rect means and reasoning [44]. We have proposed a model, demonstrated its utility, and pro-
vided limited face validity. We have made our methods transparent and easy to implement
and scrutinize by peers. It is important to design experiments and simulations that test the pre-
dictions and underlying assumptions of this model. That difficult task must be the source of
future efforts.

Supporting information

S1 File. Causal model-Rmarkdown. This compressed folder contains the files necessary to
generate the model and output from this manuscript. The file ReadMe.txt contains basic
instructions (knowledge of R is assumed). The file Causal Model.Rproj is the R project file that
should be launched. The file Main.Rmd is the Rmarkdown file that builds the model and gen-
erates the output. The file sample-data.RData contains deidentified data needed as input to the
model.
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