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Abstract

Adult acquired flatfoot deformity becomes permanent with stage Il posterior tibialis tendon
dysfunction and results in foot pain and difficulty walking and balancing. To prevent progres-
sion to stage Il posterior tibialis tendon dysfunction when conservative treatment fails, a
flexor digitorum longus to posterior tibialis tendon transfer is often conducted. However,
since the flexor digitorum longus only has one-third the force-capability of the posterior tibia-
lis, an osteotomy is typically also required. We propose the use of a novel implantable mech-
anism to replace the direct attachment of the tendon transfer with a sliding pulley to amplify
the force transferred from the donor flexor digitorum longus to the foot arch. In this work, we
created four OpenSim models of an arched foot, a flatfoot, a flatfoot with traditional tendon
transfer, and a flatfoot with implant-modified tendon transfer. Paired with these models, we
developed a forward dynamic simulation of the stance phase of gait that reproduces the
medial/lateral distribution of vertical ground reaction forces. The simulation couples the use
of a fixed tibia, moving ground plane methodology with simultaneous activation of nine
extrinsic lower limb muscles. The arched foot and flatfoot models produced vertical ground
reaction forces with the characteristic double-peak profile of gait, and the medial/lateral dis-
tribution of these forces compared well with the literature. The flatfoot model with implant-
modified tendon transfer produced a 94.2% restoration of the medial/lateral distribution of
vertical ground reaction forces generated by our arched foot model, which also represents a
2.1X improvement upon our tendon transfer model. This result demonstrates the feasibility
of a pulley-like implant to improve functional outcomes for surgical treatment of adult
acquired flatfoot deformity with ideal biomechanics in simulation. The real-world efficacy
and feasibility of such a device will require further exploration of factors such as surgical var-
iability, soft tissue interactions and healing response.
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Introduction

Traumatic injury or degeneration of the posterior tibialis (PT) tendon causes the foot arch to
collapse and is one of the primary causes of adult acquired flatfoot deformity [1]. The PT ten-
don runs past the medial malleolus, inserts into the navicular tuberosity on the medial side of
the foot, and acts as a key supporter of the medial longitudinal arch (see Fig 1A) [1, 2]. In stage
III PT tendon dysfunction, as classified by Johnson and Strom [3], the flatfoot condition
becomes permanent. This leads to foot pain, difficulty walking and balancing, and anatomical
deformity. To avoid progression to stage III, conservative treatment, such as footwear and
orthotics, are prescribed in stage II PT tendon dysfunction. However, in instances where con-
servative treatment is ineffective, surgical intervention is indicated.

One of the common surgical procedures employed in the treatment of stage II PT dysfunc-
tion is a flexor digitorum longus (FDL) to PT tendon transfer surgery followed by a corrective
osteotomy [1, 4-7]. In the tendon transfer surgery, the FDL tendon is separated from its natu-
ral insertion point on the lateral toes and directly attached to the navicular tuberosity to re-
establish supporting forces to the medial longitudinal arch (see Fig 1B). Due to this direct cou-
pling between the tendon and bone, the force transferred from the donor muscle to the host
site is limited by the donor muscle’s force generating capacity; in this case, the FDL. Since the
FDL generates less than one-third the force of the PT, the tendon transfer only partially
restores the physiological supporting forces to the foot arch. Typically, the lack of strength of
the transferred FDL is accepted because its primary function is to oppose foot eversion gener-
ated by the peroneus brevis muscle, which the FDL has two-thirds the strength of [8]. How-
ever, while the tendon transfer procedure alone leads to pain relief and improved inversion
strength, the deformity often remains. This suggests that additional strength may be required
in the transferred FDL to properly restore the foot arch and correct adult acquired flatfoot
deformity. Due to the lack of candidate donor muscles and limitations in soft tissue surgery
options, an additional osteotomy is currently required to fully correct the deformity and to
optimize the biomechanics of the reconstructed PT tendon [1].

To address the limitations that arise in orthopedic surgery from using direct attachments,
such as sutures, bone screws, and suture anchors, our group has previously developed a sepa-
rate rod-shaped implantable mechanism that improves grasp function for patients with high
median-ulnar nerve palsy [9, 10]. The device is implanted in the forearm between hand flexor
tendons and redistributes the movement generated by a single muscle to multiple tendons by
creating a “differential” tendon network.

In this paper, we explore the feasibility of a different type of passive implantable mechanism
in the early developmental stage that amplifies muscle force for the treatment of adult acquired
flatfoot deformity. The novel implant will amplify the force transferred from the weaker FDL
to the PT tendon by replacing the direct attachment between the tendons with a pulley-like

B) )

FDL to PT Bone screw

tendon transfer
FDL

Implant

PT

Fig 1. Treatment options for adult acquired flatfoot deformity. Drawings of (A) an arched foot, (B) a traditional FDL to PT tendon transfer surgery,
and (C) our proposed implant-modified FDL to PT tendon transfer surgery.

https://doi.org/10.1371/journal.pone.0270638.g001
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device that provides mechanical advantage (see Fig 1C). Since the implant is passive, it elimi-
nates the need for external power, electronics, motors, and control signals. Thus, the implant
will enable the individual’s own muscle to generate the force and movement necessary to over-
come the strength difference between the FDL and PT. If this device can be successfully devel-
oped and demonstrate efficacy in foot arch restoration, the force amplification provided by the
implant has potential to restore supporting forces to the medial longitudinal arch beyond what
is attainable with current surgical techniques. For the appropriate patients, the need for an
additional osteotomy may be completely supplanted with the implant-based tendon transfer
procedure.

A preliminary human cadaver study conducted using this concept yielded promising
results, with the implant-modified procedure leading to a significant medial shift of the center
of pressure during the stance phase of gait [11]. However, evaluating the efficacy of surgical
procedure and optimizing the design of surgical implants in cadaveric specimens is an
extremely tedious process. Biomechanical simulations enable rapid design modification and
provide immediate feedback regarding parameter sensitivity and post-operative outcomes.
Since additional aspects of the implant design and surgical protocol need to be explored to
fully evaluate the biomechanical feasibility of this implant-based procedure, this motivates the
development of a biomechanical simulation capable of incorporating varying surgical proto-
cols and foot pathologies while providing a measure of functional patient outcomes. We are
especially interested in evaluating vertical ground reaction force distributions, which are a key
parameter in both diagnosing foot pathologies [12-15] and retrospectively evaluating treat-
ment efficacy [16, 17].

Surgical treatment of stage II adult acquired flatfoot deformity results in a quantifiable lat-
eral shift of vertical ground reaction forces during the stance phase of gait [11, 18, 19]. How-
ever, there is currently a lack of lower extremity models that are capable of producing ground
reaction force distributions during the stance phase of gait as outputs to simulation. Instead,
ground reaction forces are primarily recorded experimentally and used as inputs in bio-
mechanical simulations to estimate muscle forces and joint kinematics in inverse dynamic
simulations [20, 21]. Thus, the models produced in this work seek to accurately generate verti-
cal ground reaction forces of gait as an output variable to enable us to predict treatment out-
comes under ideal circumstances defined in forward dynamic biomechanical simulation.

Furthermore, a review of forty-one manuscripts showed that the current models did not
emphasize the foot arch in dynamic gait simulation [22]. Specifically, current foot models have
either three or four segments that include the hindfoot, midfoot, forefoot, and hallux, which
only divide the foot into anterior and posterior sections. Without a degree of freedom between
the medial and lateral sides of the foot, the height of the medial longitudinal arch cannot be
easily adjusted between models, and the deformations of the arch cannot be properly
accounted for in gait simulation. While models with a fully-defined medial longitudinal arch
and passive ligaments do exist, these models are typically loaded statically and are not simu-
lated in gait due to their complexity [23-25]. Modeling all the soft tissue and rigid body inter-
actions in these complex models lead to heavy computational and time resource usage if
applied to dynamic gait simulation. Conversely, simple models that are capable of accurately
reproducing ground reaction forces during gait typically lack the detail to enable complex
model modification to analyze various surgical treatment options or foot pathologies [26-30].
With reproduction of ground reactions forces as a main target for these models, anatomical
definition is often abstracted away in favor of simplified mathematical models that reduce the
computational strain and complexity in simulating dynamic gait.

The aim of this paper is to create a forward dynamic biomechanical simulation of gait to
determine the feasibility and efficacy of using a force-amplifying implantable mechanism in
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restoring the foot arch for individuals with adult acquired flatfoot deformity. The biomechani-
cal models presented in this paper differ from previously developed gait models because they
use forward dynamics to produce ground reaction forces throughout the stance phase of gait
rather than use ground reaction force data as an input to inverse dynamic simulation. Our
multi-segmented models also use a simplified medial longitudinal arch to enable arch height
adjustment between models and arch deformation during gait simulation. This model feature
is especially important since the severity of adult acquired flatfoot deformity correlates with a
decrease in medial longitudinal arch height, which alters the medial/lateral distribution of ver-
tical ground reaction forces over the plantar aspect of the foot throughout the stance phase of
gait.

In total, we have developed four foot models for simulation: (1) an arched foot, (2) a flatfoot
with stage II adult acquired flatfoot deformity (henceforth called “flatfoot”), (3) a flatfoot with
the traditional FDL to PT tendon transfer, and (4) a flatfoot with the implant-modified tendon
transfer. These models were developed by modifying an existing lower limb model in Open-
Sim 3.3. OpenSim is a biomechanical simulation platform that has been used extensively to
model lower extremity kinetics and kinematics [31-34]. The fidelity of the ground reaction
force data generated by our simulations and models were compared with experimental results
from prior work in the field. Specifically, we compare the overall ground reaction forces gener-
ated by the arched foot and flatfoot models to the literature, and we evaluate the differences in
the medial/lateral distribution of vertical ground reaction forces created by our four foot mod-
els. The biomechanical efficacy of using a novel force-amplifying implant to treat adult-
acquired flatfoot deformity was analyzed by comparing ground reaction force data generated
by our implant-modified tendon transfer flatfoot model with data from the other three foot
models.

Materials and methods

The lower-extremity models presented in this paper are based on cadaveric models from a col-
laborative study using a “Robotic Gait Simulator” to evaluate the feasibility and efficacy of a
pulley-like device similar to the implant described in this paper [11]. The Robotic Gait Simula-
tor is a six degree-of-freedom robot that reproduces the kinematics and kinetics of the stance
phase of human gait in lower limb cadaver specimens [35]. The robot has been used previously
to simulate both physiological and pathological gait [36, 37]. It replicates gait by actuating a
ground plane with the inverse motion of gait relative to a lower-limb cadaveric specimen fixed
at the tibia. The ground plane is instrumented with a force plate that records ground reaction
forces through the simulated stance phase of gait. While the gait kinematics are reproduced
through the ground plane, linear actuators simultaneously coordinate the “activation” of nine
lower limb tendons: the PT, FDL, anterior tibialis, extensor digitorum longus, extensor hallicus
longus, peroneus longus, peroneus brevis, flexor hallicus longus, and the Achilles. In the
cadaver study, stage II adult acquired flatfoot deformity models were simulated by collapsing
the medial longitudinal arch through ligament attenuation followed by cyclic weight-bearing
loading. Three of the experimental groups developed from this cadaveric flatfoot model were
an untreated flatfoot, a flatfoot treated with a FDL to PT tendon transfer surgery, and a flatfoot
treated with an implant-modified tendon transfer surgery.

The computational models described in this paper seek to replicate these three flatfoot
models and provide an additional arched foot model for comparison. Like the Robotic Gait
Simulator, the biomechanical simulation discussed in this paper uses a moving ground plane,
lower limb models fixed at the tibia, and simultaneous activation of nine extrinsic lower limb
muscles while recording ground reaction forces between the foot models and the ground
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plane. These modifications greatly simplify a full-body gait model down to a single limb actu-
ated by nine muscles while retaining the complex kinematics and kinetics associated with
ground reaction force generation during the stance phase of gait (see Fig 2). The two primary
components of the biomechanical simulation are (1) the foot models and (2) the simulation of

Fig 2. Foot model overview. Modified lower limb model of an arched foot truncated at the femur with nine extrinsic
muscles (blue) and five spheres (pink) for generating contact with a moving ground plane.

https://doi.org/10.1371/journal.pone.0270638.g002
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gait kinematics and kinetics. Further details on the development of these components are
described in the following sections.

Foot models

The four foot models presented in this paper (arched foot, flatfoot, flatfoot with tendon trans-
fer surgery, and flatfoot with implant-modified tendon transfer surgery) are modified versions
of Stanford’s Gait2392 full-body model. The original OpenSim model represents a healthy
adult subject with normal joint function and without adult acquired flatfoot deformity, so the
foot models presented in this work are constrained by the base model they are developed
from. Since the properties of the original model were not designed to replicate pathological
function, the expected compensatory adaptions of tendons and muscles to adult acquired flat-
foot deformity are not represented. However, this limitation does not prevent between-model
comparisons from being drawn from the simulations.

The Gait2392 model contains seventy-six muscles in the torso and lower extremities [31].
Inertial properties of the bones were inherited from the original model, which uses adapted
experimental values from a previously developed computational model [38]. To minimize sim-
ulation complexity, our models are truncated at the knee joint and include bones from only
the right lower limb. We can still fully simulate the stance phase of gait with this simplification
because our methodology takes advantage of foot models fixed in space at the tibia while a
moving ground plane tracks the inverse motion of gait. This modification reduces the seventy-
six muscles in the original model to nine extrinsic muscles of the lower limb: the PT, FDL,
anterior tibialis, extensor digitorum longus, extensor hallicus longus, flexor hallicus longus,
peroneus longus, peroneus brevis, and soleus.

Four joints are included in each of the foot models. The ankle, subtalar, and metatarsopha-
langeal joints are inherited from the original Gait2392 model while a simplified medial longi-
tudinal arch joint was created as part of this work. The three joints included with the original
model rotate about axes defined in the original model [31]. The foot arch joint is parallel to the
sagittal plane in the midfoot and divides the first metatarsal and phalanx from the second to
fifth metatarsals and phalanges. This additional arch joint combined with the model’s existing

metatarsophalangeal joint results in four distinct sections of the foot (see Fig 3). The medial

Fig 3. Foot model segments and contact geometries. Foot model developed for the gait simulations with four distinct segments: medial midfoot (red),
medial forefoot (white), lateral midfoot (blue), and lateral forefoot (green). Five spheres used for generating contact forces between the foot and ground
plane (pink) and the joints between foot segments (black lines) are also shown.

https://doi.org/10.1371/journal.pone.0270638.9g003
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(A) Arched Foot

(first phalanx to navicular) and lateral (second through fifth phalanges to calcaneus) halves of
the foot can rotate independently from each other about the foot arch joint. The first phalanx
and second through fifth phalanges can flex independently of each other about the metatarso-
phalangeal joint, which was split at the intersection of the arch joint. Decreasing the angle of
the arch joint raises the medial longitudinal arch while increasing the angle relaxes the medial
longitudinal arch and flattens the foot.

In the arched foot model, the arch joint angle was maintained from the original Gait2392
model. In the flatfoot models, the arch joint was flattened according to an 8 mm difference in
first metatarsocuneiform height typically observed between arched feet and flatfeet [6, 39]. In
addition to considering the skeletal geometry in our simplified foot arch model, we also
included a simple model of the medial longitudinal arch’s elasticity, which is crucial for energy
storage during gait [40]. The foot arch’s elasticity is typically provided by the passive deltoid
and spring ligaments in the foot and the attachment of the posterior tibialis muscle onto the
navicular bone [41]. In our foot models, we simplify the elasticity produced by the passive foot
ligaments with a torsional stiffness of 1 Nm/* applied at the arch joint.

For the four foot models, the paths of the nine extrinsic muscles remained consistent with
the original Gait2392 model. Modifications to the PT and FDL muscles were made when
appropriate to physiologically replicate each condition. In the arched foot model, no modifica-
tions were made to the routing of the muscles and tendons (see Fig 4A). In the flatfoot model,
the PT muscle was disabled to simulate PT tendon dysfunction in stage II adult acquired flat-
foot deformity, resulting in no PT muscle force being transferred to the navicular bone (see
Fig 4B). In the flatfoot model with tendon transfer surgery, the FDL muscle was disabled to
simulate removal of the FDL tendon from its original insertion. FDL forces were instead
applied through the PT muscle, which maintained its original muscle path terminating on the
navicular bone. Consequently, the original PT now acts as the transferred FDL in the tendon
transfer model (see Fig 4C).

In the flatfoot model with implant-modified tendon transfer surgery, the FDL muscle was
again disabled to simulate its use as the donor tendon in tendon transfer surgery. The PT,
which now acts the transferred FDL, was rerouted to represent the implant-modified tendon
transfer. Rather than route the transferred FDL directly to the navicular bone, it is routed
around the pulley implant, pulled back parallel with the proximal portion of the transferred
FDL, and then anchored onto the tibia. The original tendon length of the transferred FDL was
maintained during modification of the muscle path. An artificial tendon was then introduced
into the model with one end fixed on the implant and the other end attached to the original
insertion point of the PT tendon on the navicular bone (see Fig 4D). Due to the degradation of

(C) Flatfoot with FDL (D) Flatfoot with FDL
(B) Flatfoot Transfer Transfer and Implant

<D

Implant

I DL I rT I Artificial Tendon

Fig 4. Overview of the four foot models. The stance phase of gait was simulated with forward dynamics using (A) an arched foot model, (B) a flatfoot
model, (C) a flatfoot with FDL tendon transfer model, and (D) a flatfoot with FDL tendon transfer and implant model. Only the routing of the flexor
digitorum longus (FDL) and posterior tibialis (PT) are shown for clarity.

https://doi.org/10.1371/journal.pone.0270638.g004
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the original PT tendon, this artificial tendon in the foot models represents either grafted ten-
don or artificial tendon that will be required to make this attachment clinically. The movement
of the implant within this model is constrained to the sagittal plane. This simplification was
made because we assume the implant operates in its intended design without twisting or rotat-
ing and to reduce simulation complexity. After the transfer, FDL activation will cause its ten-
don to pull and slide on the implant, resulting in proximal translation of the implant. This
artificially-created tendon network now acts like a pulley system and amplifies the force gener-
ated by the FDL, which is then transferred to the foot arch (see Fig 5). Fundamental physics
dictates that the trade-off for the mechanical advantage provided by the implant is a propor-
tional loss of excursion. Thus, 2X the excursion of the transferred FDL tendon is required to
produce 2X the force at the insertion of the PT tendon and the same excursion as the original
PT. In the ideal conditions created by this model, the implant creates a force amplification of
2X. In reality, the force amplification depends on several parameters, including FDL anchoring
location, anchoring method, and tendon-implant friction. However, these parameters are
beyond the scope of this paper, which aims to purely evaluate the initial feasibility and efficacy
of such an implant under ideal circumstances in biomechanical simulation.

Achor point

Fig 5. Diagram of the force amplification created by the implant-based tendon transfer surgery. The tendon
network created by the implant forms a pulley system that amplifies the force generated by the transferred flexor
digitorum longus muscle as it is routed to the navicular bone.

https://doi.org/10.1371/journal.pone.0270638.9005
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The model parameters that were not mentioned as modifications of the original Gait2392
model, such as bone geometry and muscle force-length curves, were kept consistent across all
four models described in this paper.

Gait simulation kinetics and kinematics

To generate vertical ground reaction force distributions for each of the four foot models, a sim-
ulation of the stance phase of gait was developed. The simulation consists of three primary
components: coordinated muscle activations, ground plane kinematics, and contact dynamics
between the ground plane and foot.

During the simulated stance phase of gait, muscle forces are generated for the nine extrinsic
muscles in our foot models (PT, FDL, anterior tibialis, extensor digitorum longus, extensor
hallicus longus, flexor hallicus longus, peroneus longus, peroneus brevis, and soleus). The
muscle forces are derived from electromyography-based estimates of muscle activation from a
healthy population defined in previous studies using the Robotic Gait Simulator [35, 37, 42,
43]. The activation levels were defined at ten evenly distributed points throughout the stance
phase of gait. The time histories of the muscle forces for the arched foot were generated in
OpenSim for the entire stance phase of gait by linearly interpolating between these ten points
and taking a product between each muscle’s activation curves and their maximum isometric
force (see Fig 6). While the piecewise linear nature of these presented muscle forces do not
mimic physiological muscle force patterns, we prefer to use this low resolution data because it
is coupled with the kinematic data from the Robotic Gait Simulator studies we are mirroring
with our simulations. We recognize that this is a limitation of our study. However, because all

FDL i FHL 150 TP
100
50
50
0 0
0 50 100 0 50 100 0 50 100
PB 100 PL 100 TA
50 50
0 0 -
0 50 100 0 50 100 0 50 100
EDL 20 EHL Soleus
2000
10
/ 1000
0 0
0 50 100 0 50 100 0 50 100

Percent Stance Phase (%)

Fig 6. Generated muscle forces. Forces generated by nine extrinsic muscles of the lower limb during simulation of the stance phase of gait.

https://doi.org/10.1371/journal.pone.0270638.g006
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four of our foot models are actuated with the same methodology, we remain confident in our
ability to make between-model comparisons.

In the flatfoot model, the same muscle activations as the arched foot were used with the
exception of the PT, which was not activated to simulate PT tendon dysfunction [11, 44].
While compensatory muscle activations are likely to develop in adult acquired flatfoot defor-
mity, directly removing the PT forces in this manner enables us to isolate the effects that a dys-
functional PT tendon may have on shifting vertical ground reaction forces during gait
compared to our arched foot model.

In the two treatment models (flatfoot with tendon transfer and flatfoot with implant-modi-
fied tendon transfer), the FDL muscle forces shown in Fig 6 were applied to the original PT
muscle path to represent the new transferred FDL tendon. In this scenario, we assume that
there are no negative effects of tendon re-routing introduced during surgery for the flatfoot
with traditional tendon transfer surgery model because the path of the transferred FDL exactly
matches that of the original PT. This enables us to evaluate the efficacy of our implantable
device compared to an ideal surgical scenario. The original FDL muscle was not activated, and
all other muscles were actuated with the same activation curves as previously discussed for the
arched foot and flatfoot models. By maintaining these muscle activation curves across the four
models, we can more clearly evaluate how the FDL tendon transfer and implant-modified ten-
don transfer models shift vertical ground reaction force distributions during gait when com-
pared to our base flatfoot and arched foot models.

These simplifications in muscle activations and tendon routing in our models enable us to
initially determine the feasibility and efficacy of a force-amplifying implant when compared to
similar models under ideal circumstances.

Since all the foot models are fixed in space at the tibia, gait kinematics are reproduced by
applying the inverse motion of the stance phase of gait through a rectangular ground plane.
This decision to generate gait kinematics through the ground plane greatly simplifies our sim-
ulation because we circumvent the need to control the complex dynamics of accelerating a
full-body skeletal model. Instead, the simple ground plane drives gait kinematics, so we can
reduce the full-body model to a single lower-limb skeletal model. Because of this methodology,
full dorsiflexion to plantarflexion range of motion is achieved in simulation even with the
excursion trade-off produced by the implant mechanics. While the active range of motion of
the foot models is not explored in this study, a separate gait study using the Robotic Gait Simu-
lator and human lower limb cadavers showed that the implant-based procedure did not cause
the FDL muscle to exceed its physiological excursion limits [11].

The prescribed motion of the ground plane was generated by fitting polynomial curves to
experimental data tracking three translational and three rotational coordinates from a previous
cadaver study of adult acquired flatfoot deformity using the Robotic Gait Simulator [11, 35].
The ground plane began in contact with the heel (heel-strike) and ended in contact with the
hallux (toe-off). The simulated stance phase kinematics are based off the cadaver study and
lasts 4.09 s. This duration is about one-sixth the speed of physiologic gait and was originally
used to protect the integrity of the cadaveric specimens [11]. The same kinematic trajectory of
the ground plane was used in the simulation of all four foot models to remain consistent with
the experimental methods used by the Robotic Gait Simulator and is shown in Fig 7. A visual
progression of the arched foot model through the described kinematic trajectory of the ground
plane is provided in Fig 8.

The contact between the ground plane and the foot models was simulated using an elastic
foundation force contact model [45]. This model uses a layer of triangular meshes covered
with springs that independently interact with other objects in contact with the mesh, which
enables application of both stiffness and friction characteristics. Stiffness values for the contact
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Fig 7. Ground plane kinematics. Kinematic trajectory of the ground plane used as an input to gait simulation. (A) shows the local coordinate axes of
the ground plane with respect to the orientation of a foot model. The input kinematic trajectory is split into (B) translational and (C) rotational
components.

https://doi.org/10.1371/journal.pone.0270638.9007

objects were adjusted until realistic deformations of the foot pads during gait were attained
(peak of approximately 1 cm [46-48]). We assumed that the foot would not slip while in con-
tact with the ground, so we used a very high friction coefficient to prevent slip between contact
spheres on the foot models and the ground plane and to simplify computation during simula-
tion. A viscous friction model is provided in OpenSim and is defined as Fr = Fy F, v, where
Fyis normal force, F, is the coefficient of viscous friction, and v; is the slip velocity.

Contact forces were defined between designated contact objects placed on both the ground
plane and the foot models. For the ground plane, a rectangular contact object with the same
dimensions as the ground plane was defined as the contact object. For each foot model, five
contact spheres were placed on the foot’s plantar aspect (see Fig 3). The sizing and placement
of the contact spheres were approximated based on ellipsoidal contact volumes on the foot
model developed by Brown and McPhee that reproduces ground-contact forces in forward
dynamic simulation [48]. In their model, the size of the ellipsoids was determined based on a
70 kg subject. Since our model represents a larger, 82 kg subject, we increased the size of each
of our spheres by 1 cm. We also split the metatarsal ellipsoid created in their work into two
individual spheres and added an additional sphere at the fifth toe to enable evaluation of the
medial/lateral distribution of vertical ground reaction forces. Specifically, we placed one 6 cm
sphere at the heel while the four remaining spheres were placed to measure contact in each of

Heel Strike Early Midstance Late Midstance Toe-Off

Fig 8. Simulation of stance phase of gait. Gait simulation kinematics of the stance phase of gait through a healthy foot
model. The tibia of the model is held fixed while a moving ground plane tracks the inverse motion of gait at heel strike,
early midstance, late midstance, and toe off.

https://doi.org/10.1371/journal.pone.0270638.g008
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the four foot segments at the first metatarsal head (4 cm), fifth metatarsal head (3 cm), hallux
(3 cm), and fifth toe (2 cm). The placement of the spheres creates contact points around the
foot perimeter and between each of the four segments of the foot model and the ground plane.

A body weight loading of approximately 82 kg was applied to each of the foot models. This
was accomplished by iteratively adjusting the initial distance between the foot models and the
ground plane. At zero-percent stance phase, the heel contact sphere was set to intersect the
ground plane such that the magnitude of the double-peak profile of vertical ground reaction
forces represented that of an 82 kg individual’s gait. Contact between the foot models and the
ground plane was maintained throughout stance phase via the ground plane kinematic trajec-
tory, muscle activations, and friction between foot models and the ground plane. No other soft
tissue interactions were included as part of the simulation. This contact model for the foot
greatly simplifies the complex contact dynamics of gait while enabling the focus of this paper;
namely, the evaluation of the medial-lateral distribution of vertical ground reaction forces
throughout the stance phase of gait [49].

Results

The simulations presented in this paper produced two results: (Result 1) an analysis of our
simulation methodology for generating vertical ground reaction forces during the stance
phase of gait using our arched foot and flatfoot models; and (Result 2) a predictive comparison
of treatment efficacy between a traditional tendon transfer procedure and our implant-based
procedure for adult acquired flatfoot deformity. All ground reaction forces are normalized by
body weight.

Vertical ground reaction force generation analysis

The arched foot and flatfoot model simulations for generating vertical ground reaction forces
were evaluated using two parameters: the overall vertical ground reaction force curves that
were produced and the difference in the distribution of vertical ground reaction forces
between the medial and lateral sides of the foot.

The overall vertical ground reaction forces generated by our simulations exhibit the charac-
teristic double-peak profile of human gait (see Fig 9). They were plotted as the sum of vertical
forces recorded by the five contact spheres on each foot model. In the arched foot simulation,
the first peak in vertical ground reaction force occurs at 29.7% stance phase with a magnitude
of 1.14 times body weight. In the flatfoot simulation, the first peak occurs at 30.8% stance
phase with a magnitude of 1.09 times body weight. The second peak for the arched foot simu-
lation appears with a magnitude of 1.07 times body weight at 73.0% stance phase, while the sec-
ond peak in the flatfoot simulation appears with a magnitude of 1.16 times body weight at
72.3% stance phase. The minimum between the two peaks occurs at approximately 50% stance
phase for both foot models at magnitudes of 0.900 times body weight for the arched foot and
0.905 times body weight for the flatfoot. These results are in close agreement with experimental
studies from the literature [27, 49-55].

The distribution of vertical ground reaction forces between the medial and lateral sides of
the arched foot and flatfoot models are displayed in Fig 10. These force curves are separated
into pairs of measurements: medial and lateral vertical ground reaction forces for each foot
model. The medial split of vertical ground reaction forces was plotted as a sum of the vertical
forces generated by the contact spheres on the head of the first metatarsal and the hallux. The
lateral split of vertical ground reaction forces was plotted as a sum of the vertical forces gener-
ated by the contact spheres on the head of the fifth metatarsal and the fifth toe. The forces
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Fig 9. Vertical ground reaction forces. The vertical ground reaction forces generated by simulations of the stance
phase of gait with an arched foot (black) and a flatfoot (blue) model.

https://doi.org/10.1371/journal.pone.0270638.g009

generated by the contact sphere on the heel were identical across the models and matched the
magnitude and timing seen in a previous study [56].

In the arched foot simulation, the medial and lateral vertical ground reaction forces peaked
at 0.397 and 0.603 times body weight, respectively, which results in a 39.7%/60.3% medial/lat-
eral split in peak vertical ground reaction forces. The flatfoot model generated peak medial
and lateral vertical ground reaction forces of 0.493 and 0.507 times body weight, respectively,
resulting in a 49.3%/50.7% medial/lateral split in peak vertical ground reaction forces. These
medial/lateral splits in vertical ground reaction forces for the arched foot and flatfoot models
were similar to those found in previous work [56-59]. Furthermore, these results indicate a
9.6% medial shift in peak vertical ground reaction forces between the arched foot model and
the flatfoot model during the stance phase of gait, which agrees well with the 9.1% medial shift
reported in an experimental study by Neville et al. with similar methodology [60].

Treatment comparison

Fig 10 also displays the medial/lateral split of vertical ground reaction forces over the stance
phase of gait for the flatfoot with tendon transfer surgery and the flatfoot with implant-modi-
fied tendon transfer surgery models. Medial and lateral forces for the two treatment models
were calculated in the same manner as described for the arched foot and flatfoot models.

In the simulation using the flatfoot model with tendon transfer surgery, a 44.4%/55.6%
medial/lateral split in peak vertical ground reaction forces was observed over the stance phase
of gait. This distribution of vertical ground reaction forces indicates that the traditional tendon
transfer surgery shifts foot plantar forces laterally by 3.9% when compared to no treatment
(48.3%/51.7% medial/lateral split). The extent of restoration was calculated by dividing the lat-
eral shift of ground reaction force found in the treatment model (3.9%) by the total medial
shift of ground reaction force between the arched foot model and the flatfoot model (8.6%).
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Fig 10. Medial-lateral split of vertical ground reaction forces. The medial/lateral split of vertical ground reaction forces generated by gait
simulations using an arched foot (arched; black), flatfoot (FF; red), flatfoot with tendon transfer (FF+TT; blue), and flatfoot with implant-modified
tendon transfer (FF+TT+I; green) model. The results are normalized by body weight (BW).
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Equivalently, these results represent a 45.3% restoration of the physiological medial/lateral dis-
tribution of vertical ground reaction forces generated by our arched foot model (39.7%/60.3%
medial/lateral split).

In the gait simulation using the flatfoot model with implant-based tendon transfer surgery,
a40.2%/59.8% medial/lateral split in peak vertical ground reaction forces was recorded. This
8.1% lateral shift in the distribution of vertical ground reaction forces from the untreated flat-
foot model represents a 94.2% restoration of the physiologic medial/lateral distribution of ver-
tical ground reaction forces generated by our arched foot model. Compared to the traditional
tendon transfer model, the implant-based model provided 2.1X the restoration of the physio-
logical vertical ground reaction force distribution. In the previous human cadaver experiment
with the Robotic Gait Simulator, the center of pressure at the same percent stance phase (75%)
was shifted laterally by 5.3% in the implant-based tendon transfer condition when compared
to the flatfoot condition [11]. The increased restoration of the medial/lateral distribution of
vertical ground reaction forces observed in our simulations compared to the experimental
results can be attributed to the lack of soft tissue interactions and tendon friction in our ideal-
ized foot models.
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Discussion

In this study, we created simplified biomechanical models in OpenSim of an arched foot, a flat-
foot, a flatfoot with tendon transfer surgery, and a flatfoot with implant-modified tendon
transfer surgery. Using a fixed-tibia and moving ground-plane simulation methodology, we
evaluated the vertical ground reaction forces produced by each model on five contact points of
the foot. The arched foot and flatfoot models have demonstrated the capability of reproducing
the characteristic double-peak profile of vertical ground reaction forces during the stance
phase of gait and each exhibit an appropriate medial/lateral distribution of these forces. The
implant-modified tendon transfer model produced an 8.1% lateral shift in peak vertical ground
reaction forces, resulting in a 94.2% restoration of the physiological medial/lateral distribution
of vertical ground reaction forces observed in the arched foot model. This represents a 2.1X
greater lateral shift of vertical ground reaction forces when compared to the traditional tendon
transfer model (3.9% lateral shift).

Adult acquired flatfoot deformity currently requires both a tendon transfer surgery and
osteotomy to be fully corrective, with the primary purpose of correcting anatomical deformity
and returning supporting forces to the foot arch, thereby restoring a physiological distribution
of vertical ground reaction forces [1, 5-7, 11]. The long-term objective of this study is to
develop a force-amplifying implant that provides additional surgical treatment options for
patients with stage IT adult acquired flatfoot deformity while maintaining or improving upon
current patient outcomes. The 8.1% lateral shift of vertical ground reaction forces predicted by
our implant-modified flatfoot model is promising when compared with computational models
developed by Spratley et al. of surgical treatment for adult acquired flatfoot deformity [59].
Using complex rigid body models that incorporate soft tissue interactions, FDL tendon trans-
fer surgery with medializing calcaneal osteotomy was simulated in flatfoot models, which
found that the combined treatment provided a 9.0% increase in lateral forefoot loading force
when compared to the untreated flatfoot model. Based on these results, the pulley-like implant
used in this work demonstrates potential for amplifying the force produced by the transferred
FDL and significantly shifting the distribution of vertical ground reaction forces more laterally
when compared to current FDL tendon transfer surgeries without requiring an additional
bony procedure. Thus, if a pulley-like implant could be used to create a FDL tendon network
to better replicate physiological PT tendon forces, an additional osteotomy procedure may not
be required to appropriately restore the foot arch in all cases of adult acquired flatfoot defor-
mity requiring surgical intervention. A simpler surgery that does not require an additional
bony procedure may help to provide additional surgical treatment options for adult acquired
flatfoot deformity with stage II PT tendon dysfunction where a standard has yet to be estab-
lished [5, 6, 61, 62].

The models developed in this work are differentiated from previous gait models because
they preserve enough biomechanical and anatomical complexity to study how surgical treat-
ments and varying pathology affect the distribution of vertical ground reaction forces during
the stance phase of gait. While other models of human gait have been developed, they typically
use ground reaction forces as an input to inverse dynamic simulation rather than generate it as
an output. Many models are either too complex to dynamically simulate gait or too simple to
enable anatomical modifications. More complex models that incorporate soft tissue interac-
tions and passive ligaments of the foot are typically simulated with a static load rather than in
dynamic gait due to the computational and time expense of doing so [23-25, 59]. Conversely,
simple models can accurately reproduce ground reaction forces are often abstracted to the
point that they lose anatomical definition [26-30].
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The same simulation methodology presented here for adult acquired flatfoot deformity
could also be modified and applied to other models of foot pathology, such as clubfoot, plantar
fasciitis, and planovalgus [12, 55, 63-65], to evaluate treatment effectiveness through the
ground reaction forces produced during gait. When compared with cadaveric or clinical stud-
ies, the time and effort efficiencies of biomechanical simulation provide an attractive alterna-
tive for initially evaluating the biomechanics of novel treatment options.

Limitations

While computational simulations can provide valuable information for evaluating the bio-
mechanical feasibility of surgical treatment options, they also have inherent limitations. Specif-
ically in biomechanics-focused simulations, certain critical biological processes cannot be
modeled and accounted for. For example, we are not able to evaluate how scar tissue formation
and tendon abrasion affect the long-term success of a translating pulley-like implant in tendon
transfer surgery. Furthermore, the compensatory adaptations of muscles, tendons, and other
tissues to adult acquired flatfoot deformity are not easily analyzed in simulation and were not
included in this study. The differences in muscle force generation and excursion may ulti-
mately have substantial impact on the efficacy of our implant-based tendon transfer procedure.
To properly address these concerns, human cadaver studies of soft tissue interaction and live
animal implantation studies of healing effects, rehabilitation, and implant biocompatibility
must be conducted.

Biomechanical simulations are also limited by computational complexity. Simplifying
assumptions and model modifications must be made to run time-efficient simulations. How-
ever, the trade-off is that portions of complex human anatomy are oversimplified in the mod-
els, which limits the scope to which simulation results can be extrapolated to clinical settings.
In our simplified foot models, implant interaction with soft tissue was completely neglected.
Thus, while we may be able to describe a theoretical maximum force-amplification efficacy for
our proposed implant, the definitive functional improvement provided by the implant in a
clinical setting is still unclear. The contact between our foot models and the ground plane was
also greatly simplified to enable reasonable simulation times and model complexity. Our foot
models only have five distinct spheres of contact with the ground plane when in actuality the
foot is in continuous contact with the ground during gait with infinite points of contact. Fur-
thermore, the contact spheres retained a constant size and location between all four foot mod-
els even though medio-lateral plantar pressure distributions are expected to change before and
after surgical intervention and due to anatomical variations [16, 56]. We also use a simplified
arch joint in our foot models that removes significant complexity from the ligaments, muscles,
and bones that form the actual medial longitudinal arch. These simplifications result in low-
resolution foot-ground pressure data and potentially unrealistic arch interactions that prevent
immediate claims of surgical treatment effectiveness. However, when solely comparing
between the four models developed in this study that all use the same methodology, we can
still make reasonable estimations on trends of medial/lateral vertical ground reaction force
shifts between the different foot conditions and surgical treatment options.

Other aspects of the proposed implant-based surgery can be examined in biomechanical
simulation but were not explored in this work. Since we simulated the transferred FDL muscle
path using the original routing of the PT, we assumed perfect tendon routing in tendon trans-
fer surgery, which in reality has varying effects on tendon tensioning, tendon routing, and the
active portion of the muscle force-length curve. We also used low resolution muscle force data,
which makes it more difficult to accurately evaluate the continuous impact of surgical treat-
ment on shifting the distribution of vertical ground reaction forces between the provided data
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points. Finally, we only evaluated a single, optimal configuration of the implant-based proce-
dure. In reality, surgical decisions for the proposed implant-based procedure, such as the FDL
tendon anchoring location and anchoring angle, must be made to optimize the effectiveness of
the proposed treatment. These additional parameters can be explored in more detail in future
biomechanical simulations.

Conclusions

The implant-based tendon transfer model and simulation developed in this work have demon-
strated the biomechanical feasibility of a pulley-like implant to amplify the force produced by
the the FDL in tendon transfer surgery for treatment of stage II adult acquired flatfoot defor-
mity. If successfully developed, such an implant could potentially be applied to many other
tendon transfer surgeries where muscle weakness is an issue, such as spinal cord injury, volu-
metric muscle loss, and peripheral nerve injury [9, 10, 66-70]. This implant has the potential
to not only improve post-surgical outcomes for patients with muscle weakness but also to
increase the patient population eligible for tendon transfer surgery. Since a grade of muscle
strength is typically lost in tendon transfer procedures [71], donor muscles must meet mini-
mum strength grade requirements to be considered for transfer. By effectively amplifying the
muscle strength grade of the donor muscle, the implant could be indicated for patients with
weaker candidate donor muscles to qualify for tendon transfer surgery.

While these preliminary findings and potential applications are encouraging, there are
many aspects of the proposed surgical procedure that need to be explored further to determine
clinical feasibility of such a device. The implant must undergo additional evaluation both in
biomechanical simulation and experimentally. Computational simulation can be utilzied to
examine the unexplored biomechanical effects of suboptimal tendon routing, higher resolu-
tion muscle activation data, and variability in surgical technique. Studies in human cadavers
and live animals will also be required to fully explore the effects of scar tissue formation, soft
tissue interaction, and tendon abrasion on efficacy of the implant.
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