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Abstract

As classical soil analysis is time-consuming and expensive, there is a growing demand for

visible, near-infrared, and short-wave infrared (Vis-NIR-SWIR, wavelength 350–2500 nm)

spectroscopy to predict soil properties. The objectives of this study were to investigate the

effects of soil bunds on key soil properties and to develop regression models based on the

Vis-NIR-SWIR spectral reflectance of soils in Aba Gerima, Ethiopia. Soil samples were col-

lected from the 0–30 cm soil layer in 48 experimental teff (Eragrostis tef) plots and analysed

for soil texture, pH, organic carbon (OC), total nitrogen (TN), available phosphorus (av. P),

and potassium (av. K). We measured reflectance from air-dried, ground, and sieved soils

with a FieldSpec 4 Spectroradiometer. We used regression models to identify and predict

soil properties, as assessed by the coefficient of determination (R2), root mean square error

(RMSE), bias, and ratio of performance to deviation (RPD). The results showed high vari-

ability (CV� 35%) and substantial variation (P < 0.05 to P < 0.001) in soil texture, OC, and

av. P in the catchment. Soil reflectance was lower from bunded plots. The pre-processing

techniques, including multiplicative scatter correction, median filter, and Gaussian filter for

OC, clay, and sand, respectively were used to transform the soil reflectance. Statistical

results were: R2 = 0.71, RPD = 8.13 and bias = 0.12 for OC; R2 = 0.93, RPD = 2.21, bias =

0.94 for clay; and R2 = 0.85 with RPD = 7.54 and bias = 0.0.31 for sand with validation data-

set. However, care is essential before applying the models to other regions. In conclusion,

the findings of this study suggest spectroradiometry can supplement classical soil analysis.

However, more research is needed to increase the prediction performance of Vis-NIR-

SWIR reflectance spectroscopy to advance soil management interventions.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0270629 July 21, 2022 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tiruneh GA, Meshesha DT, Adgo E,

Tsunekawa A, Haregeweyn N, Fenta AA, et al.

(2022) Use of soil spectral reflectance to estimate

texture and fertility affected by land management

practices in Ethiopian tropical highland. PLoS ONE

17(7): e0270629. https://doi.org/10.1371/journal.

pone.0270629

Editor: Chun Liu, Jinan University, CHINA

Received: March 16, 2022

Accepted: June 15, 2022

Published: July 21, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0270629

Copyright: © 2022 Tiruneh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data required for this

study are within the paper and/or supplementary

files.

https://orcid.org/0000-0001-9374-8138
https://orcid.org/0000-0001-6824-5037
https://orcid.org/0000-0002-7690-0633
https://doi.org/10.1371/journal.pone.0270629
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270629&domain=pdf&date_stamp=2022-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270629&domain=pdf&date_stamp=2022-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270629&domain=pdf&date_stamp=2022-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270629&domain=pdf&date_stamp=2022-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270629&domain=pdf&date_stamp=2022-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270629&domain=pdf&date_stamp=2022-07-21
https://doi.org/10.1371/journal.pone.0270629
https://doi.org/10.1371/journal.pone.0270629
https://doi.org/10.1371/journal.pone.0270629
http://creativecommons.org/licenses/by/4.0/


Introduction

Ethiopia has a wide spatial diversity of soil properties [1]. Improved sustainable land manage-

ment (SLM) practices including soil bunding may alter key soil qualities [2,3] and control soil

loss [4,5], and thereby soil functions [6,7]. SLM activities influence soil physicochemical prop-

erties and minimize soil degradation while improving yields [8,9] and they improve people’s

livelihoods [10]. However, livelihoods are at risk because of soil fertility depletion [11]. Hence,

increasing crop production to feed the population is a challenge.

Understanding soil quality requires characterization and assessing spatial variation of soil

properties related to crop growth and development [12,13]. Information on soil fertility is

needed for site-specific crop and fertilizer management [14,15]. Crop production and yield,

plant indicators, and soil texture and colour are widely used to measure soil fertility [16]. The

lack of an up-to-date soil database impedes government efforts to boost agricultural produc-

tion in Ethiopia. Most soil guidelines are not site-specific and soil fertility interventions tend

to be blanket recommendations [17,18]. Failing to use soil data can result in nutrient depletion

[19], compaction, flooding, and low crop yields [20]. Thus, detailed soil data are essential.

Knowledge of soil resources is essential for developing effective land-use planning and

implementing SLM practices. Little information is available for the Upper Blue Nile Basin of

Ethiopia, where soils and land-use types patterns fluctuate within small distances [21,22]. Rea-

sons include unavailability and inflated costs of soil laboratory tests, particularly for many soil

samples gathered over time and in large areas.

To determine soil properties, Ethiopia has relied on costly and time-consuming traditional

analytical methods. However, it faces a crucial difficulty in using these methods owing to the

high cost of chemicals and the poor performance of laboratories. As a result, rapid sampling

and analysis of soil properties in the field and laboratory are unavailable.

Laboratory soil spectrometry in the visible, near-infrared, and short-wave infrared (Vis-

NIR-SWIR, 350–2500 nm) range provides an option for physical and chemical soil studies

[23]. Contents of soil OC [24,25], clay [26], TN [27], and soil texture [28] have been well esti-

mated from Vis-NIR-SWIR spectra.

Land-use and management strategies highly influence soil properties [8,29,30]. Under-

standing variations in soil properties across fields is critical for assessing crop growth and

development restrictions related to soil nutrients and to proposing corrective steps for optimal

development and effective land-use management [8]. SLM activities, including soil bunds,

should address increased human demands and maintain environmental sustainability [31].

Bunds are slope-side embankments made of soil, stone, or a combination of the two. Soil

eroded between two bunds is dumped behind the lower bund, which is then lifted to create a

bench terrace is formed [32]. Bunds improve soil fertility by reducing runoff and soil loss

[33,34].

Furthermore, implementing effective soil bunding can be beneficial in restoring degraded

soil quality and functions while ensuring sustainable production. Consequently, understand-

ing how soil properties change as a result of various land management practices is vital to pro-

posing optimal management practices. This research would also help farmers and local

planners in developing successful land conservation strategies.

Soil erosion and depleted soil productivity have been major issues in the Aba Gerima catch-

ment, resulting in low crop yields. It would also be useful to replace traditional laboratory soil

analysis with more accurate and low-cost methods. Spectroradiometry performed well in mea-

suring soil carbon in different agroecologies, soil forms, and land management activities of

Ethiopia [34], but spectroradiometric evidence of the effects of soil bunding on soil character-

istics is lacking in the catchment, Ethiopia, and Africa as a whole. Thus, the objectives of this
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study were to develop regression models from Vis-NIR-SWIR spectral reflectance data and

assess the effects of soil bunding on soil texture, pH, OC, TN, av. P, and av. K by using spectro-

radiometric evidence.

Materials and methods

Description of the study area

The study was carried out at Aba Gerima (11˚3900@N– 11˚40030@N and 37˚29030@E– 37˚

31030@E), a tropical highland of Ethiopia (Fig 1B). By the Köppen–Geiger classification, the site

represents midland, [35], with altitudes varying from 1,900 to 2,000 m above sea level.

Records from 1994 to 2021 at nearby meteorological stations show that the study area

receives an average annual rainfall of 1,076 to 1,953 mm and has an average monthly maxi-

mum temperature of 27.0˚C and an average monthly minimum temperature of 12.6˚C (Fig 2;

S1 Table). The main rainfall occurs from June to August, and the rest of the year is dry [36].

Methods

Soil sampling approaches

Cultivated lands were considered in 2019 according to land-use/land-cover information [37].

The catchment having an area of 426 hectare was categorized into three topographic classes,

namely gently (2%–5%), moderately (5%–10%), and strongly sloping (10%–15%). There were

24 plots without soil bunds (WB) and 24 plots with soil bunds (SB) reinforced with grass and

stone. The soil bunds were built all over the catchment [38,39]. The stone bunds and soil

bunds are commonly used on steep slopes (Fig 3A) and moderate slopes (Fig 3B), respectively.

The bunds are five years old, have bottom width of 0.8 m and a height of 0.5 m, as described by

[40]. Bahir Dar University permitted the work, field site access, and soil sampling in the catch-

ment. Forty-eight representative soil-sampling plots were identified, with a minimum size of

40 m × 40 m (1600 m2) each. All plots were intentionally distributed (Fig 1E). Each plot was

geo-referenced with a handheld GPS device (GPSMAP64, Garmin, Olathe, Kansas, USA). In

each plot, five soil samples were collected at the top (0–30 cm depth) with an Edelman auger

and mixed well in a bucket to make a 1-kg composite soil sample.

Fig 1. Locations of study catchment and soil sampling plots: (a) Ethiopia, (b) Aba Gerima land-use/land-cover (LULC) types, and

(c) Soil sampling plots.

https://doi.org/10.1371/journal.pone.0270629.g001
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Physicochemical soil analysis

Composite soil samples (n = 48) were air-dried, ground, and sieved to 2 mm. Later, they were

analysed for soil texture, pH, OC, TN, av. P, and av. K at Amhara Design and Supervision

Works Enterprise. After the annihilation of organic matter (OM) and soil dispersion, soil tex-

ture (sand, silt, and clay) was determined by the hydrometer method [41]. Silt and clay were

determined from hydrometer readings after 40 s and clay particles in suspension after 2 h, and

the percentage of sand was estimated subtracting by 100 from (clay (%) + sand (%)). Finally,

we calculated soil textural classes using the textural triangle of the USDA system [42,43].

Soil pH was determined potentiometrically with a digital pH meter in a 1:2.5 (soil:water) super-

natant suspension [44]. Into 100-mL beakers, we poured 10 g of air-dried soil and 25 mL of puri-

fied water, stirred it for 1 min with a glass rod and allowed it to equilibrate for 1 h before we

measured the pH of the supernatant. Soil OC content was analysed with the wet digestion method,

which entails digesting the OC with potassium dichromate in a sulphuric acid solution [45].

Soil TN was determined by the Kjeldahl process, which involves oxidizing OM with con-

densed sulfuric acid and converting the organic N into ammonia. We weighed 1 g of air-dried

soil (<0.5 mm sieve) into a digestion tube; added 2 g of catalyst mixture and a couple of carbo-

rundum boiling stones, then stirred the mixture; added 7 mL of concentrated H2SO4; and

digested the mixture on a block digester preheated to 300˚C until the digest was white. After it

cooled, we added 50 mL of distilled water, transferred the digest into macro Kjeldahl flasks,

and rinsed it with distilled water. We weighed 20 mL of boric acid into a receiver flask, added

two drops of indicator solution, and placed the flask under the condenser. Then 75 mL of 40%

Fig 2. Long-term (1994–2021) monthly rainfall (RF), maximum temperature (Tmax), and minimum temperature (Tmin) in the study area.

https://doi.org/10.1371/journal.pone.0270629.g002
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NaOH was carefully squeezed down the neck of each distillation flask containing the digest,

and the mixture was gently stirred. The digests were placed in Kjeldahl distillation flasks, fitted

to the appropriate holders, and heated to begin the distillation. The receiver flask was removed

when about 80 mL of distillate was obtained. The solution in the receiver flask was stirred with

a magnetic stirrer bar and titrated with 0.1 N H2SO4 from green to pink.

Available P was quantified by the Bray II approach, shaking the soil sample with 0.3 N

ammonium fluoride in 0.1 N hydrochloric acid, as described by [46]. The av. P was then mea-

sured by spectrophotometer [47]. Available K was analysed by extracting the soil sample with

Morgan’s solution and measured with a flame photometer [48].

Soil spectra collection and pre-processing

Each air-dried and ground soil sample (Fig 4D) was placed on a table covered with black geo-

membrane. The soil reflectance data in the Vis-NIR-SWIR (350–2500 nm) range were collected

with an ASD FieldSpec 4 spectroradiometer (Analytical Spectral Devices [ASD] Inc., Boulder, CO,

USA; Fig 4D). Reflectance was measured between 10:30 and 11:00 in direct sunlight. The field of

view was set at 25˚, and the distance between the trigger of the spectroradiometer’s fibre optic

cable and the soil specimen was held at 10 cm for all observations. The spectroradiometer was

recalibrated against a white Spectralon (Labsphere Inc., North Sutton, NH, USA) every 10 min.

The radiometer was placed on a table at 1 m above the ground. To avoid unwanted scatter-

ing, the table was covered with black geo-membrane. Each scan took 22 s, and a reading was

done on each sample. The reflected spectra were recorded and processed in Remote Sensing 3

v.6.4, View Spec Pro v.6.2 software (ASD Inc.). The pre-processing techniques, such as

Fig 3. Treated with stone-faced soil bunds (a) and with soil bunds (b) at the upper and lower slopes in Aba Gerima

catchment.

https://doi.org/10.1371/journal.pone.0270629.g003

PLOS ONE Use of soil spectral reflectance to estimate texture and fertility in Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0270629 July 21, 2022 5 / 20

https://doi.org/10.1371/journal.pone.0270629.g003
https://doi.org/10.1371/journal.pone.0270629


multiplicative scatter correction, median filter, and Gaussian filter for OC, clay, and sand,

respectively were used to transform the spectrum using licensed Unscrambler v.10.5 software

(CAMO, Inc., Oslo, Norway). The analysis omitted the noisy spectral regions between 1,340–

1,459 nm 1,802–1,971 nm, and 2402–2500 nm [49,50] before spectral modeling.

Data analysis

Before analysis, we verified the soil dataset (n = 48) for normality assumption by the skewness,

kurtosis, and Shapiro–Wilk tests (P< 0.05). The data were tested by Pearson’s linear correla-

tion analysis in SAS v. 9.4 and SPSS v. 24.0 (SPSS Inc., Chicago, IL, USA) software.

We analysed variance and regression in SAS v. 9.4 and separated the means by the least sig-

nificant difference test (P< 0.05). The datasets were divided randomly into 65% of datasets for

calibration (31 samples) and 35% of datasets for validation (17 samples). We calculated the

coefficient of determination (R2; [51]), root mean square error (RMSE), bias, and ratio of per-

formance to deviation (RPD) [52] (McDowell et al., 2012).) for calibration (31 soil samples)

and validation (17 soil samples) as:

R2 ¼

Pn
i¼1
ðŷi � ӯiÞ

2

Pn
i¼1
ðyi � ӯiÞ

2
Eq1

Fig 4. Soil spectral measurement: (a) soil samples, (b) FieldSpec Pro spectroradiometer with battery, (c) a close-up of

fiber optic cable, and (d) soil reflectance measurement with the sensor.

https://doi.org/10.1371/journal.pone.0270629.g004
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðŷi � yiÞ

2

n

s

Eq2

Bias ¼
Pn

1
ðŷi � yiÞ
n

Eq3

RPD ¼
SD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i¼1
ðŷi� yiÞ

2
q Eq4

where n is the number of observations, ŷ is the predicted value, ӯ is the mean observed value, y
is the observed (measured) value, and SD is the standard deviation of observed values.

When R2 approaches 1, RPD > 2 RMSE and bias approaches 0, a model improves as a pre-

dictor and becomes more efficient [53]. According to [54], models with RPD > 2 are consid-

ered “excellent” models with RPD ranging from 1.4 to 2 are considered “acceptable,” and

models with RPD < 1.4 are considered “poor.”

Results and discussion

General statistics for measured soil properties

Soil OC, TN, and av. P had high variability (CV � 35%), but soil pH had low variability

(CV � 15%) ([55]; Table 1). The high variability in soil properties might be due to soil

erosion [56]. The low variability of soil pH corroborates findings of pH varies slightly

[6].

The skewness, kurtosis, and Shapiro–Wilk (P< 0.05) tests indicated that soil texture, pH,

and av. K (Table 1; S1–S3 Figs) met the assumption of homogeneity of variance [57]. However,

soil OC, TN, and av. P tended to be logarithmically distributed owing to their positive skew-

ness and slightly asymmetrical distribution (Figs 5 and S1). Similar results are presented in the

literature [58].

Table 1. Descriptive statistics and Shapiro–Wilk probability test of soil parameters in Aba Gerima catchment, Blue Nile basin.

Statistic

Soil parameter

Mean (μ) ± SEM SD (σ) CV (%) Minimum Maximum Skewness Kurtosis Shapiro–Wilk

P-value

pH 5.6 ± 0.04 0.25 4.52 4.7 6.01 −1 1.94 0.01

Sand (%) 27.6 ± 1.97 13.6 49.28 5 66 0.88 0.74 0.03

Silt (%) 28.2 ± 1.03 7.11 25.21 13 41 −0.44 −0.48 0.12

Clay (%) 44.3 ± 2.56 17.7 39.95 11 80 −0.05 −0.74 0.43

OC (%) 1.65 ± 0.13 0.92 55.52 0.479 4.9 1.51 2.75 <0.001

log OC (%) 0.161 ± 0.03 0.23 139.75 −0.32 0.69 0.1 −0.16 0.99

TN (%) 0.15 ± 0.01 0.08 49.87 0.05 0.44 1.54 3.36 <0.001

log TN (%) −0.86 ± 0.03 0.2 −23.49 −1.3 −0.36 0.12 −0.04 0.98

Av. P (ppm) 12.2 ± 1.11 7.67 62.87 4.07 38 1.98 3.92 <0.001

Log Av. P (ppm) 1.02 ± 0.03 0.23 22.25 0.61 1.58 0.59 0.31 0.08

Av. K (g/kg) 104 ± 3.78 26.2 25.19 41.8 150 −0.51 0.03 0.14

CV (%) = σ/μ × 100, where CV = coefficient of variation; σ = standard deviation (SD), μ = mean; SEM, standard error of the mean; OC, organic carbon; TN, total

nitrogen; Log, logarithmic; av. P, available phosphorus; av. K, available potassium.

https://doi.org/10.1371/journal.pone.0270629.t001
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Correlation and regression analyses

Soil pH exhibited a weak relationship with av. K and clay content with av. P (Fig 4; [59]). Soil

OC had no relation with av. P or av. K. Similarly (except pH vs. av. K), soil pH and OC did not

correlate with K or P contents in Ethiopia [60], Morocco [61], and China [62]. However, the

increased soil OC, pH, and clay content might contribute to higher av. P and av. K contents.

As the strong positive correlation between soil OC and TN indicated collinearity, we elimi-

nated TN from the variance and spectral analyses. In contrast, [63] found a close relationship

between soil OC and TN, as most of the TN was bound in the soil OM.

Influences of soil bunding on changes in soil properties

Soil texture, OC, and av. P contents varied substantially (P< 0.05 to P< 0.001) between

bunded and non-bunded plots in the three slope classes (Table 2). Soil pH in the Aba Gerima

Fig 5. Pearson’s correlation matrix among soil variables in the 0–30 cm soil layer. Correlation values are colour-coded. OC, organic carbon; TN, total

nitrogen; av. P, available phosphorus; av. K, available potassium. Asterisks indicate significant differences: �P< 0.05 and ��P< 0.01.

https://doi.org/10.1371/journal.pone.0270629.g005

Table 2. Analysis of variance in the effect of bunding on soil properties in Aba Gerima.

Soil parameters

Treatments

pH Sand (%) Silt (%) Clay (%) OC (%) Av. P (ppm) Av. K

(mg kg–1)

Bunded plots

(n = 24)

S1B 5.62a 18.75c 20.25c 61.00b 2.30b 13.72b 116.55a

S2B 5.72a 22.38ac 31.00ab 46.63ab 1.51ab 10.23ab 97.35a

S3B 5.60a 18.88c 25.75ac 55.38b 1.57ab 11.03b 106.71a

Non-bunded plots

(n = 24)

S1W 5.54a 33.25ab 31.25ab 35.50ac 1.22ac 10.41b 106.73a

S2W 5.63a 35.50b 33.25b 31.25c 1.54ab 13.03b 101.30a

S3W 5.52a 36.75b 27.50ab 35.75ac 0.90c 6.37a 94.61a

Mean 5.61 27.58 28.17 44.25 1.45 10.5 103.88

CV (%) 4.61 42.84 21.05 32.98 123.4 20.6 25.65

LSD 0.26 11.92 5.98 14.73 0.2 0.21 26.89

Significance ns �� ��� ��� ��� � ns

OC, soil organic carbon; av. P, available phosphorus; av. K, available potassium. S1, 2%–5%; S2, 5%–10%; S3, 10%–15%; B, soil bund reinforced with stone and grass; W,

without soil bund; CV, coefficient of variation; LSD, least significant difference; ns, not significant. n = 48. Values followed by the same letter are not significantly

different.

https://doi.org/10.1371/journal.pone.0270629.t002

PLOS ONE Use of soil spectral reflectance to estimate texture and fertility in Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0270629 July 21, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0270629.g005
https://doi.org/10.1371/journal.pone.0270629.t002
https://doi.org/10.1371/journal.pone.0270629


catchment varied from strongly (<5.5) to moderately acidic (5.6–6.5) [64]. In bunded plots,

higher soil pH values could be attributed to clay and OM, which retain more basic cations.

Lower pH values obtained at non-bunded plots might be due to the inappropriate use of

ammonium-based fertilizers and pesticides [65], increased leaching of basic cations, and nitri-

fication ([34,66]. Consequently, the soils of the study area could be affected by acidity prob-

lems. Thus, soil pH is a key parameter to monitor the influences of SLM practices on soil

quality and crop growth in the region.

The Aba Gerima catchment’s soils range from clayey to sandy loam [S4 Fig; 41]. The domi-

nance of silt and clay particles in bunded plots in all three slope classes (S1B, S2B, S3B;

Table 2) could be due to the control of soil erosion by bunding. Conversely, the dominance of

sand in non-bunded plots on strong slopes (S2W and S3W) might be related to the erosion of

finer soil particles [67]. Similarly, bunded soils have higher silt and clay content and lower

sand content than non-bunded soils [68,69].

Contents of OC (excluding S1B), av. P, and av. K were low [64], lower than values reported

in the same catchment [6] and the Uwite Catchment, Ethiopia [70]. However, the OC concen-

tration of the soil in S1B was within the recommended range for plant growth.

Low levels of OC and av. K could be ascribed to higher rates of erosion due to rainfall, inappro-

priate cultivation, removal of crop remains and animal dung, a high rate of mineralization

through increased temperature, and leaching [71,72]. The highest contents of clay (61%), OC

(2.30%), av. P (13.72 ppm), and av. K (116.55 mg/kg) were found in bunded plots on gentle slopes

(S1B), possibly due to the accumulation of fine soil particles and available nutrients. These find-

ings support reports that bunding improves soil fertility [6,73] and indicate that it improved clay

and silt accumulation, soil OC, av. P, and av. K contents 5 years after implementation.

The pH, OC, av. P, and av. K values were lower than critical levels, explaining reduced soil

quality in the Aba Gerima catchment. Thus, enhancing the quality of Ethiopian soils requires

increasing soil OM content through the implementation of SLM methods and biomass accu-

mulation [8,74].

Reflectance characteristics of soils

The mean spectral reflectance of the 48 soil samples tended to increase between 350 and 1100

nm (visible and near-infrared regions) (Fig 6). The lower reflectance of soils from bunded

plots could be due to higher soil OM content and smaller particle size [75,76] or to intensive

mineral fertilization, higher microbial activity, and lower soil pH [77]. As evidenced by the

absorption peaks in Fig 6 [78,79], it could potentially be attributable to the Fe-OH or Mg-OH

in the soils.

The soils of the catchment vary from clayey to sandy loam soils (S2 Fig). Reflectance was high-

est from sandy loam soils throughout the spectrum, lowest from clay soils at 400–1000 nm and

loam soils at 1000–2400 nm (Fig 7). As a result, smaller soil particles have higher reflectance. This

finding is consistent the results [80] that sandy soils had higher reflectance and clay soils had

lower reflectance. As particle size decreases, multiple scattering increases, thus increasing reflec-

tance [81]. Furthermore, the soil spectral reflectance curve showed different trends at different

wavelengths, rising rapidly at 400–600 nm and more steadily at 800–2450 nm.

Soils with higher OC content are darker and have lower spectral reflectance than soils with

lower OC content (Fig 8) [82]. The presence of OM strongly influences soil reflectance, which

decreases as OM content increases [83]. Similarly, as soil moisture increases, the reflectance of

incoming visible light falls consistently, making soils look darker [84]. In comparison to dark

soils, red soils have less OM and more iron oxides. As a result, soils rich in iron have greater

reflectance than soils rich in soil OC [85].

PLOS ONE Use of soil spectral reflectance to estimate texture and fertility in Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0270629 July 21, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0270629


Modeling of soil properties

Fig 9 shows the results of the PLSR analysis calibrated to predict OC, clay, and sand content

using pre-processed soil reflectance. For each visible band (400–700 nm), near-infrared band

(701–1300 nm), and short-wave infrared band (1301–2500 nm), the red box shows the high

loading and influential wavelengths associated with soil properties Higher loading values

could indicate which portions of the wavelengths are the most influential in the calibration.

In the visible range, wavelengths with the highest correlation loading values are 355 and

570 nm for organic carbon, and 568 and 570 nm for clay content; 568 and 570 nm for sand

content prediction. Thus, the visible spectrum was the most influential in the OC, clay, and

sand prediction models. This behavior could owing be to the soil color, which is dominated by

free iron oxides [86,87]. The authors [88] also reported 480–600 nm and 720–820 nm as key

spectral regions for the OC prediction model.

In the NIR region, the band found at 845 and 850 nm for organic carbon and clay and

1290 nm for sand can be related to the chromophorous components mainly hematite and

goethite [89] and the OC content [90]. Furthermore, high correlation loading values were

observed at 1592 and 1595 nm for clay and organic carbon content detection at 2293 and

2300 nm. This response could be due to clay, soil water content, and OM content [91,92].

In general, different wavelengths were discovered to be significant for the different soil

properties.

As [93] indicated combining the optimum spectral bands was recommended for soil OC

detection. The equation for the optimal band combination equations to predict soil OC with

the highest R2 (0.92) and the lowest RMSE (0.27) was:

OC ð%Þ ¼ 2:47� 174:45�l355 nm � 25:21�l570 nm � 623:61�l845 nm
þ 647:64�l850 nm � 6:89�l2293 nmþ 10:45�l2300 nm

Fig 6. Soil reflectance spectra with and without bunding.

https://doi.org/10.1371/journal.pone.0270629.g006
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Fig 7. Influence of soil texture on soil spectral signatures.

https://doi.org/10.1371/journal.pone.0270629.g007

Fig 8. Effects of soil organic carbon content on soil spectral reflectance.

https://doi.org/10.1371/journal.pone.0270629.g008
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For clay content, the best fit (R2 = 0.86, RMSE = 0.60) was:

Clay ð%Þ ¼ 191:14 � 809:96�l568 nm � 674:25�l570 nmþ 2:15�l845 nm
� 70:94�l850 nmþ 1536:8�l1592 nm � 1421:2�l1595

For sand, the best fit (R2 = 0.94, RMSE = 0.74) was:

Sand ð%Þ ¼ � 63:12 � 628:9�l568 nmþ 1477�l570 nmþ 1105:7�l1290 nm
� 1479:5�l1295 nmþ 925:35�l1302 nm � 572:87l1305 nm

Fig 9. Loading (contribution) of relevant wavelength for modeling soil properties. (a) Clay, (b) Sand, and (c)

organic carbon contents.

https://doi.org/10.1371/journal.pone.0270629.g009
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Based on the regression coefficients, the most influential wavelengths for OC, clay, and sand

content prediction were λ850, λ1592, and λ1295 nm, respectively.

We plotted the measured soil properties (%) against the predicted soil properties (%) to val-

idate the model (Fig 10). The simple regression analyses were used the pre-processed dataset

(S2 Table) to test the accuracy of prediction of the soil properties. For clay content, the R2,

bias, and RPDfor validation dataset were (0.93, 0.94, and 2.21, respectively (Fig 10), better than

values reported by 0.70 [94], [95] (0.64), and 0.66 [96], and more accurately than values

reported in the literature: R2 = 0.73 with RMSE = 5.40 [28], R2 = 0.83 with RMSE = 0.34 [97],

R2 = 0.62 with RMSE = 2.06 [98], and R2 = 0.71–84 [99].

For sand content, we achieved R2 = 0.94 with RMSE = 0.74 for calibration and R2 = 0.85

with bias = 0.31 and RPD = 7.54 for validation (Fig 10). The sand model was considered excel-

lent according to the R2, RPD threshold values [54] (Chang et al. (2001), acceptable bias levels

[53] (Bellon-Maurel et al., 2010). Similar values were reported: R2 = 0.80 with RMSE = 3.28

[28], R2 = 0.81 with RMSE = 3.84 [26], R2 = 0.90 with RMSE = 11.66 [98], and R2 = 0.56 to 0.71

[99]. Our predictions of sand content were more accurate than in the literature: R2 = 0.76 with

RMSE = 0.92 [97] and R2 = 0.77 [100]. This information could be used to develop and monitor

soil management scenarios [26].

For soil OC, we achieved R2 = 0.92 with RMSE = 0.27 for calibration and R2 of 0.71 with

bias = 0.12 and RPD = 8.13; bias = 0.12 for validation (Fig 10), which are considered good by

R2 threshold values of [101], fair by the RPD threshold values [54] (Chang et al. (2001), and

acceptable by bias values [53].

The OC model’s performance is similar to earlier findings: R2 = 0.84–0.93 [102], R2 = 0.63–

0.90 with RMSE = 6.40–0.78 [103], R2 = 0.91 [104], R2 = 0.85 with RMSE = 3.77 [105], R2 =

0.57–0.7 [106], R2 = 0.77–0.83 [107,108]; and R2 = 0.764 with RMSE = 0.344 for validation

[109,110]. However [111,112], found lower prediction performance (R2 values varying from

0.57 to 0.73 and RPD values ranging from 1.80 to 1.93) for soil OC models. In general, regres-

sion models based on Vis-NIR-SWIR reflectance spectroscopy could be used to predict soil

properties in the study area.

Conclusions

Soil bunding in the Aba Gerima catchment, Ethiopia, positively influenced clay, silt, OC, and

av. K contents of soils. Soil physicochemical properties (texture, OC, and av. P) varied widely

between bunded and non-bunded plots in different slope classes. In contrast, soil pH and con-

tents of clay, silt, sand, OC, av. P, and av. K were all higher in soils on lower slopes than on

Fig 10. Scatterplots of the model validation results for soil organic carbon (a), clay content (b), and sand content (c). R2, coefficient of determination and

RPD, ratio of performance to deviation.

https://doi.org/10.1371/journal.pone.0270629.g010
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higher slopes. These findings suggest that site-specific information could inform land manage-

ment interventions, such as soil bunding, for sustainable soil management. The reflectance of

soils from bunded plots was lower, which improved soil fertility.

This study looked at how Vis-NIR-SWIR (350–2500 nm) soil spectral data could be used to

determine some soil physical and chemical parameters. The use of regressive functions to esti-

mate the calibrated soil attributes with their pretreatment spectral reflectance data was pro-

posed due to high correlation loading and regression coefficients. Regression models were

developed for predicting the clay, sand, and OC contents with acceptable accuracy (R2 > 0.70,

RPD> 2, and bias values< 0).

Our findings suggest that Vis-NIR-SWIR reflectance spectroscopy might be utilized for soil

characterization, evaluation, and monitoring in a quick and non-destructive manner. The

findings have implications for spatial management and monitoring of soil physicochemical

properties across the catchment. Soil prediction models based on spectroradiometry will help

land-users and policymakers by contributing to the development of sustainable and site-spe-

cific soil management strategies.

As the tempo-spatial variation of soil properties between regions would influence the accuracy of

the estimation model, caution should be vital before applying the models to other areas. Nonethe-

less, further research is required to identify which portions of the spectrum contribute to the models,

improve the predictive capacity of Vis-NIR-SWIR spectroscopy, support land management inter-

ventions, and explore their effects on other soil parameters such as biological properties.
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