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Abstract

Background

The online market is getting popular today, and consumers’ preferences about products are

revealed differently in online and offline markets. Especially, fresh food purchasing online is

very different from non-food products due to its unique features such as perishability, low

cost and frequent purchases, low value-volume ratio, and highly relevance to safety and

health. However, studies on online fresh food are rather few, and this study will fill the gap

by investigating consumers’ preferences for fresh food online purchasing.

Methods

Using unique data observed from online stores, we conduct a hedonic analysis of fresh pro-

duce online market using apple market in China, avoiding hypothetical bias. Propensity

Score Matching is used to check the online promotion effects. The data are apples transac-

tions from Jingdong JD e-commerce platform with sample size 8,200, observed across six

weeks from 11/26/2018 to 12/31/2018. Variables used include prices, promotions, varieties,

places of origin, fruit size, labeled as organic or green food, watercore label, and customer

reviews for the products as well as for the venders.

Results

We found place of origin, food safety and eco-certificates, and sensory features all influence

apple prices which reflect consumer preferences. In addition to product features, store fea-

tures such as former customers’ review for the store, a video post of the product, and other

latent product features through former customers’ review for the product quality also influ-

ence consumers’ preference reflected by price.
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Conclusions

In additional to product intrinsic features, consumer show preferences and valuation for

online market special features.

Introduction

Shopping online has become increasingly popular in recent years in the world. There are some

fundamental differences between shopping fresh food products online or offline. While origi-

nally stated with non-food products such as books and CDs, E-commerce has also expanded

to various food products, among which fresh foods are relatively new and challenged because

of their nature of perishability and low value-to-volume ratio. Unlike buying non-food prod-

ucts that verbal and visual description can usually give sufficient information about the prod-

uct quality, the touch-and-feel experience for consumers to select food product, which is

common in offline stores, is not available in online stores [1]. In spite of the lack of the touch-

and-feel experience, online consumers can get access to more comprehensive information

about products, both price and non-price attributes [2]. In addition, online consumers can

also obtain explicit information about the online stores’ characteristics, such as the ratings and

reviews from former consumers, in addition to its convenience over shopping at offline stores

[1,3].

China is the biggest online market among all countries. According to China’s National

Bureau of Statistics [4], online retail sales in China reached a record high of 7.18 trillion

yuan in 2017, or $1.07T, an annual increase of 32.2% from the previous year. This dra-

matic growth is benefited from China’s fast adoption of smartphones, high residence den-

sity, efficient logistics for delivery with low cost and Chinese e-commerce giants’ efforts to

promote e-commerce [5–7]. Currently, the Chinese e-commerce market is dominated by

Alibaba and JD.com Inc., with market shares of 58.2% and 16.3%, respectively [8]. Studies

on Chinese fresh food online markets are rather limited [9]. With tremendous differences

between shopping food products online and offline, consumers’ preferences perceived by

sellers and reflected on the pricing of the products in the two forms of shopping is differ-

ent. Among the limited studies on online markets, they mostly focus on the product-

related attributes: one study on olive oil sold online found significant effects of extrinsic

attributes on the price [10]; and another recent study using hedonic pricing model found

a price premium of green food certificate in online stores but not in offline stores suggest-

ing a difference in pricing mechanism between online and offline markets [11]; also a

study reveals there is a significant and positive impact of place-of-origin on price pre-

mium for agricultural products sold online [12]. However, these studies did not include

store-related attributes, which can also play a role in the pricing of the products [13–15].

Another gap in the literature for consumer preference of online fresh food shopping is

that most existing studies are based on stated preference using survey data [16,17], or

using home scan data [9] without any store attributes. Further, there exist many studies

on consumers’ willingness-to-pay (WTP) for food attribute labels that are of healthy food,

food-safety and eco- relevance such as green food and organic food certificates [18–23].

However, their survey-based methods in eliciting these WTPs may have hypothetical bias,

a severe disadvantage over revealed preference using actual sales data [24,25].

Because of the large transaction volume with numerous varieties and relatively stable

88-day shelf lives, apple is a good example to study the fresh food online market in China.
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China is the world’s largest apple producer, with 41.39 million tons in 2017 [26]. There are

all kinds of varieties of apples, such as Fuji, Gala, Red delicious, Golden delicious, etc., as

well as established places of origins and geographical indication, such as Tianshui in

Gansu province, and Aksu in Xinjiang province [26]. In addition to domestic production,

China also imported about 68,000 tons of apples in 2017, mainly from the United States,

New Zealand and Chile [26]. Both intrinsic and extrinsic attributes for apples have been

extensively studied by food scientists, such as Endrizzi et al. [27], Gatti et al. [28], and

economists such as Manalo [29], Baker [30], Fotopoulos and Krystallis [31], Kim et al.

[32], and Ceschi et al. [33]. The pricing strategy for Chinese online market is also studied

[34]. These studies give us good guidelines in the valuation of apple attributes, although

none of them addresses the online market issues.

The objective of this paper is to study factors affecting consumer online fresh food prefer-

ences reflected through the price. More specifically, we investigate factors affecting the price of

fresh produce in online markets incorporating both product-related attributes and store-

related attributes in a hedonic pricing model, using apple as an example and using market

revealed preferences instead of stated preferences.

Materials and method

Attribute choice

Vast literature exists for studying the attributes of fresh fruits, especially apples. Attributes of

fresh fruits can be divided into search attributes, experience attributes and credence attributes.

Search attributes refer to attributes which can be known before purchasing, including price,

size and package, related studies are often conducted by economists in a survey setting mim-

icking market purchasing situations [29–33]. Experience attributes refer to those who can only

be known after purchasing or tasting, for apples, many lab-based consumer test results show

that sweetness, juiciness, and crispiness significantly influence consumer’s preferences [27,28].

Credence attributes refer to attributes that can’t be known even after consumption, a typical

example is organic labels, numerous literatures have shown importance of credence attributes

in consumption behavior, Wang et al. [35], Massey et al. [36], Liu et al. [37], Rang and Paul

[38] have reviewed motivations behind.

In this study, we use actual data observed from the online market that no quantifiable mea-

surements about intrinsic attributes such as sweetness or crispiness are available. However,

particular apple variety has unique intrinsic attributes, and we use this observable variable to

represent them. Water core is another indicating a special physiological condition of apples

produced in a certain environment resulting in sweeter taste than the same variety without

this condition. As in most studies we also have the place of origin, with several apple producing

provinces in China and importing source countries. Fruit size is also considered. Another

important variable has the government certified green food or organic label. This label repre-

sents both food safety and ecofriendly, because overuse of pesticide and other chemicals is seri-

ous food safety concern in China, is shown make significant difference for consumption

choice [39].

Additional store factors are also considered. Unique to online stores, previous consumer

reviews provide good references to current consumers. Those scores represent reputations

which is known to have significant influence on consumer’s willingness to pay [40,41]. In our

data, we can observe scores for the specific product quality, for individual stores, for the ser-

vice, and the logistics. Further, the web publishes the total count of written reviews that are

separated into good reviews and bad reviews.
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Regression model

This study uses a hedonic pricing model to estimate the implicit price of each attribute of

apples. A hedonic pricing model is a great tool to study the pricing of products with various

attributes. A hedonic analysis is based on the hypothesis that consumers derive utilities from

the qualities and characteristics of the goods they consume, and therefore the market price is

the function of the implicit price of each attribute of the goods and thus reflects consumers’

preference [42]. Numerous studies have used the hedonic pricing model to study the pricing

of food attributes [43–45]. However, the vast majority of them are about goods in traditional

offline markets [46,47]. Only a few studies focus on the online food markets [48,49].

In our case, where apples are sold in online markets, the hedonic price function is the fol-

lowing:

Price ¼ xβþ ε

¼ b0 þ
P15

k¼1
b1kOrigink þ b2Watercoreþ

P7

k¼1
b3kVarietyk

þ b4Greenororganicþ b5 � Sizeþ b6 � Productscoreþ b7 � Goodreviewþ b8 � Badreviewþ b9 � Videoþ b10

� Storescoreþ b11 � Servicescoreþ b12 � Logisticscoreþ
P2

k¼1
b13k � Biweeklyk

þ
P7

k¼1
b14kVarietyk � Videoþ ε

Where Price is the unit price of each apple product (yuan/kg); Origink is a series of binary vari-

ables for different places of origin using Xinjiang province as the base; Watercore is a binary

variable taking value 1 when the apple is water corn and 0 otherwise; Varietyk is a series of

binary variables indicating varieties of apples using Fuji as the base; Greenororganic is a binary

variable indicating whether the product has the special government certified green or organic

label; Size is a continuous variable for the average size of the apple measured by the fruit diam-

eter in millimeters (many stores don’t provide this measurement); Goodreview and Badreview
are continuous variables representing the percentages of customer reviews for this product

that are good and bad, respectively; Storescore, Productscore, Servicescore and Logisticscore are

continuous variables representing the average of historical scores given by former buyers

about the store, the product, the service, and the logistics, respectively; Video is a binary vari-

able indicating whether the product has a video description online; and Biweeklyk is a series of

biweekly dummies using the first two week period of our multi-period data as the base.

Some variables may have interactive effects on each other. For example, the Goodreview
and Badreview may interact with the productscore because they both are about products. Also,

the video may have different impact on different varieties, because each variety has its unique

visual attributes in shape and color and video can highlight those and generate different effects

to consumers. On the other hand, there is no economic and intuitive reasons to justify the

interactive effects between the place of origin and those variables from customer reviews. For

example, for the same size an variety, there is no reason for us to expect the goodreview effect is

different for apples from Shandong versus from Hebei. Therefore, we have added the video
and variety interactions as well as the reviews and product score interaction, but the latter was

dropped because they are consistently insignificant for all model settings.

It is hypothesized that varieties and places of origins will have significant effect on the price;

apples with water core feature and green or organic certificate have a price premium; observa-

tions with higher store score, product score, service score and logistic score will have higher

prices; apple products with video description will have higher prices; good review will have

positive effect on the price while bad review will have the opposite effect.

Promotion and discount are very common in the online market. It is often a strategy used

by sellers to raise the price of the product and give a discount in order to attract customers

(1)
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without hurting the profit margin. If so, the promotion will have an effect on the price. How-

ever, promotion and listed price may be determined simultaneously, or joint endogenous. As a

result, promotion cannot be used as an explanatory variable in the regression, otherwise all the

regression results will be biased. In order to estimate the effect of the promotion on the price, a

propensity score matching method will be used.

Due to missing value issues in empirical studies, especially using market observed data

instead of surveyed data as in this study, there will be a tradeoff between the included number

of explanatory variables and the size of observations. Hoping to see the large sample results

and include more explanatory variables, we fitted three models to the regression equation.

Model 1 includes the greatest number of explanatory variables but with the smallest dataset,

whereas Model 3 uses the largest dataset while drops several variables that have too many miss-

ing values. Model 2 is in between. We will explain this in more details in the result section

when we interpret the results from the three regressions.

Propensity score matching method

The propensity score matching is a statistic technique developed by Rosenbaum and Rubin

[50] to estimate a treatment effect by accounting for the covariates that predict receiving the

treatment. This technique can reduce the bias due to confounding variables by comparing out-

comes of observations that received the treatment and the ones that did not. Studies have used

the propensity matching method to analyze market prices of essentials and food [51–53].

Because in observational studies the assignment of the treatment is not random, the estimation

of the treatment is subject to selection bias. Matching is to use some criteria to mimic the ran-

domization by creating comparable treatment and control groups on all observed covariates.

Propensity score matching is to match by the probability of an observation belonging to the

treatment group. In our model, Pi ¼ Probðpromotion ¼ 1jXiÞ ¼ expðXibÞ=½1þ expðXibÞ�,

where Xi are the explanatory variables in the hedonic pricing function above. The propensity

score is the log odds: log[Pi/(Pi+1)]. After matching the propensity score across treatment and

control groups, we can estimate the average treatment effect of promotion on the prices:

ATE ¼ Average Priceðpromotion ¼ 1Þ � Average Priceðpromotion ¼ 0Þ: ð2Þ

Data

Data of this study were collected via web crawler using Python from Jingdong (JD) E-com-

merce platform. We chose JD as the source of data because JD is the second largest e-com-

merce platform in China, and it has a good user interface that is relatively easy to extract

information. The raw dataset had store pages observations across 6 weeks from 11/26/2018 to

12/31/2018. We have dropped those webpages that are not fresh apples for regular consump-

tion, do not have a unique variety or place of origin, and those with missing important variable

values. The final sample size is 8,200.

Table 1 shows descriptive statistics of selected variables. For price attributes, the average

unit price is 34.58 yuan per kilogram, and about 25% of the observations have promotions; the

average of the discount rate provided is about 3%. For product-related attributes, about 33% of

the observations have the water core feature; and only 2.3% have a certified green or organic

label. The average of the product score is 9.56 out of 10. Among locational variables, Shandong

province, Shaanxi province, Gansu province, Xinjiang province and Sichuan province provide

the most apple products, with 20%, 19%, 10%, 9%, and 9% shares, respectively, while imported

apples from Chile, United States, Japan, New Zealand and France have small but visible shares

of 1%, 1.5%, 0.45%, 2.8% and 0.18%, respectively. Among varieties, the vast majority, 60% of

the observations are Fuji apples; and the second-largest apple variety is Red Delicious, with
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about 8.8% share. For store-related attributes, store score, service score, and logistic score are

on average 9.68, 9.61, and 9.61, respectively. 44% of observations provided video description

for the product. The average percentage of good reviews is 97%, and the average of bad reviews

accounts for about 3%.

Table 1. Descriptive statistics of selected variables.

Variable Description Mean Std

Price attributes

Price Unit price (yuan/kg) 34.58 52.24

Promo Promotion = 1, no promotion = 0 25% 43%

Maxdiscount Maximum discount rate if promotion = 1 31% 7.1%

Product attributes

Size Average size in mm 78.19 6.72

Productscore Historical average score for the product 9.56 0.23

Watercore Watercore = 1, not watercore = 0 0.33 0.47

Greenororganic With green or organic certificate = 1, without certificate = 0 2.3% 15%

Origin Series of binary variables for place of origin

Xinjiang = 1 if from Xinjiang province, otherwise = 0 9.3% 29%

Sichuan = 1 if from Sichuan province, otherwise = 0 9.1% 29%

Shandong = 1 if from Shandong province, otherwise = 0 20% 40%

Shaanxi = 1 if from Shaanxi province, otherwise = 0 19% 39%

Gansu = 1 if from Gansu province, otherwise = 0 10% 31%

Yunnan = 1 if from Yunnan province, otherwise = 0 6.6% 25%

Liaoning = 1 if from Liaoning province, otherwise = 0 1.3% 11%

Henan = 1 if from Henan province, otherwise = 0 0.32% 5.6%

Hebei = 1 if from Hebei province, otherwise = 0 0.13% 3.7%

Shanxi = 1 if from Shanxi province, otherwise = 0 3.0% 17%

Chile = 1 if from Chile, otherwise = 0 1.0% 10%

U.S. = 1 if from U.S., otherwise = 0 1.5% 12%

Japan = 1 if from Japan, otherwise = 0 0.45% 6.7%

NewZealand = 1 if from NewZealand, otherwise = 0 2.8% 17%

France = 1 if from France, otherwise = 0 0.18% 4.3%

Other areas = 1 if from Other areas, otherwise = 0 15% 36%

Variety Series of binary variables for variety

Fuji = 1 if Fuji apples, otherwise = 0 60% 49%

Reddelicious = 1 if Red Delicious apples, otherwise = 0 8.8% 28%

Goldendelicious = 1 if Golden Delicious apples, otherwise = 0 5.1% 22%

Gala = 1 if Gala apples, otherwise = 0 2.0% 14%

Greenapple = 1 Green apples, otherwise = 0 2.1% 14%

Jonagold = 1 Jonagold apples, otherwise = 0 0.16% 4.0%

RallsJanet = 1 Ralls Janet apples, otherwise = 0 2.3% 15%

Other varieties = 1 other apple varieties, otherwise = 0 20% 40%

Store attributes

Storescore Historical average score for the store 9.68 0.12

Servicescore Historical average score for service of the store 9.61 0.15

Logisticscore Historical average score for the logistic speed 9.61 0.16

Video = 1 if store web has video, otherwise = 0 44% 50%

Goodreview Percentage of good reviews 97% 4.3%

Badreview Percentage of bad reviews 2.8% 7.7%

https://doi.org/10.1371/journal.pone.0270257.t001
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Results

The estimation is executed in STATA. Data in this study are obtained from online sales on JD

platform with 8,200 total observations used in Model 3. However, each vendor on the platform

may report different information on their store website, which results in the missing value of

many variables. For example, are about half of the observations have missing values for the var-

iables of store reviews. So, in Model 2 when we include the goodreview and badreview variables,

we can only use 4,178 observations. Similarly, another half of these transactions that have store

reviews don’t report fruit size, and we can only use the remaining 2.090 observations in Model

1 when we include all fruit size and store review variables.

The Breusch–Pagan test for heteroscedasticity is used which reported a p-value less than

0.0001, thus we rejected the null hypothesis of homoscedasticity. Therefore, we used heterosce-

dasticity-robust standard errors in our estimation instead.

The regression results are shown in Table 2. In the following, we will focus on results with

at least 5% significance level. First, consumers have a clear preference on the place of origin.

Table 2. Regression coefficients of hedonic price analysis.

Model 1

(With all variables,

sample size 2,090)

Model 2

(Without Size, Sample

size 4,178)

Model 3

(Without Size, Good-review &

Badreview, Sample size 8,200)

Sichuan -10.55���

(2.04)

-12.09���

(1.21)

-13.94���

(1.27)

Shandong 0.44

(3.15)

-.66

(2.64)

-1.91

(1.90)

Shaanxi 11.58���

(3.38)

8.96��

(3.54)

6.60��

(2.64)

Gansu 5.23

(3.54)

-.77

(2.40)

-4.74��

(2.27)

Yunnan -2.61�

(1.73)

-7.99���

(1.45)

-8.89���

(1.79)

Liaoning NA -.52

(3.71)

-2.79

(2.91)

Henan 3.43

(5.17)

1.69

(3.65)

-2.91

(2.39)

Hebei NA 7.74�

(3.98)

-7.70

(5.49)

Shanxi -0.95

(3.59)

-5.89���

(2.25)

-6.38���

(1.62)

Chile NA 59.71���

(9.52)

48.62���

(7.09)

US 26.90���

(8.09)

49.67���

(7.32)

40.31���

(5.18)

Japan NA 67.88���

(9.14)

93.63���

(16.13)

New Zealand 90.71���

(29.56)

178.02���

(13.65)

150.17���

(9.22)

France NA 52.09���

(11.78)

46.86���

(8.45)

Other areas 13.36��

(6.64)

6.15�

(3.29)

8.11���

(2.08)

Watercore 5.51�

(3.18)

4.73�

(2.76)

2.74

(1.98)

Red delicious -3.91��

(1.69)

-5.25

(1.76)

3.57��

(3.74)

Golden delicious -8.59���

(2.73)

1.19

(1.18)

1.32

(1.23)

(Continued)
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Table 2. (Continued)

Model 1

(With all variables,

sample size 2,090)

Model 2

(Without Size, Sample

size 4,178)

Model 3

(Without Size, Good-review &

Badreview, Sample size 8,200)

Gala -3.55

(5.45)

-45.17���

(10.65)

-32.85���

(6.69)

Green apple -8.96���

(3.17)

-12.71���

(2.55)

-2.47

(3.59)

Jonagold -10.51���

(5.08)

-4.76

(4.86)

-5.24

(3.88)

Ralls Janet 18.70���

(1.97)

-6.03

(2.07)

-5.75���

(1.60)

Other variety 4.76���

(1.90)

8.53���

(1.99)

16.19���

(1.85)

Green or organic 8.80���

(2.71)

7.26���

(2.02)

8.34���

(1.57)

Size 0.38���

(0.08)

Productscore -6.96��

(2.99)

4.24

(4.98)

-3.90

(2.75)

Good review -0.12

(13.43)

0.35��

(0.14)

Bad review 0.17�

(0.098)

0.12

(0.073)

Video 1.94�

(1.09)

0.47

(1.44)

0.57

(1.14)

Video�Red Delicious 14.79���

(4.03)

6.40�

(3.43)

Video�Golden

Delicious

11.45���

(4.17)

Video�Greenapple 19.09���

(3.64)

55.77���

(12.30)

Video�RallsJanet 9.90���

(2.76)

9.78���

(2.97)

Video�Other 13.19��

(5.29)

Storescore 32.72���

(7.53)

29.05���

(10.54)

43.05���

(8.63)

Servicescore -0.10

(6.83)

-8.12

(10.20)

-38.78���

(8.97)

Logisticscore -4.86

(5.43)

-3.57

(8.20)

16.62���

(7.25)

Biweekly 2 3.62��

(1.51)

2.84��

(1.46)

0.75

(1.24)

Biweekly 3 4.32��

(1.81)

5.68���

(1.75)

4.04���

(1.22)

Constant -218.02���

(47.32)

-226.51���

(46.29)

-143.77���

(35.59)

R-squared 0.0848 0.3597 0.3046

F 47.66��� 34.06��� 31.10���

Observations 2,090 4,178 8,200

Note: Heteroscedasticity robust standard errors are reported in the parenthesis.

�, �� and ��� denote the significant levels at 10%, 5% and 1%, respectively. NA’s are used for origin dummies of

Liaoning, Hebei, Chile, Japan and France, as they have no apple transactions in the smaller sample used in model 1.

https://doi.org/10.1371/journal.pone.0270257.t002

PLOS ONE Revealed consumers’ preferences for fresh produce attributes in online markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0270257 June 24, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0270257.t002
https://doi.org/10.1371/journal.pone.0270257


They prefer apples from some regions over others, because of the long-established reputation

of quality from particular regions that are not measurable by any specific attributes. Among

places of origins, in model 1, compared to Xinjiang province, on average, the price of apples

from Sichuan and Yunnan provinces are 9.39 and 3.41 yuan lower, respectively, and the price

of apples from Shaanxi province is 11.46 yuan higher. For imported apples, those from the

United States, New Zealand are both significantly more expensive with 26.39 yuan and 92.28

yuan price premiums, respectively. In model 2, apples from Sichuan, Yunnan, and Shanxi

provinces are 12.09 yuan, 7.99 yuan, and 5.89 yuan cheaper, respectively. Apples from Shaanxi

and Hebei are 8.96 and 7.74 yuan more expensive, respectively. The prices of imported apples

are all becoming significantly more expensive, with 178.02 yuan, 67.88 yuan, 59.71 yuan, 52.09

yuan and 49.67 yuan higher for New Zealand, Japan, Chile, France, and United States, respec-

tively. The results in model 3 are similar to model 2: Hebei, Sichuan, Yunnan, Shanxi, and

Gansu province have lower prices with 17.88 yuan, 14.22 yuan, 8.94 yuan, 6.60 yuan, and 4.66

yuan, respectively. Apples from Shaanxi province are still more expensive with 5.97 yuan price

premium, and all imported countries have higher prices as in model 2. Overall, all imported

apples are strongly preferred and can be sold with a large price premium over domestic apples.

This is because apples have been grown widely in China as a traditional fruit, and only apples

with superior quality embedded in newer varieties are imported, which can gain the price pre-

mium to justify the transportation and other transaction costs. New Zealand apples are the

most popular ones in Chinese online market, not only for they receive the largest number of

online purchases, 2.8% share from Table 1, but also the highest price premium among all

imported apples. Among domestic apples, Shaanxi ranks on top, Xinjiang ranks next similar

to Shandong and Liaoning, while Sichuan ranks at the bottom after Yunnan and Shanxi. These

are consistent to the traditionally established regional reputation. Shaanxi has the best agro-

nomic condition for apples and it is also the first region that Fuji apples were introduced to

replace the indigenous varieties. Xinjiang and Shandong have similar climate suitable for apple

production. However, Sichuan and Yunnan are warmer and wetter regions and their apple

production are mostly on mountainous regions without homogenous quality.

Some measurable qualities are also found important for consumers, and their preferences

are reflected on prices. In models 1 and 2, on average, apples that are watercore are 5.96 and

4.6 yuan more expensive than apples without watercore feature, showing it is a desirable attri-

bute. It becomes insignificant in model 3, which can be a result of missing variable caused

biases. There is also a green or organic certificate price premium of 7 to 9 yuan across the three

model specifications. This food safety and ecofriendly labels are an important positive feature

that consumers prefer, which is consistent with [10]. Larger apples are also preferred as

expected. On average, the price of apple increases by 0.37 yuan if the size of the apple increases

by 1 millimeter in diameter, or 3.7 yuan per centimeter.

Apples of different varieties are quite different in taste and texture and also appeal to con-

sumers differently. Compared to Fuji apple as the base, other variety and Ralls Janet have a

consistent price advantage. This is because small varieties pooled into the category of others

tend to be new and high quality varieties, so is Ralls Janet. This finding is supported by the

arguments that consumers’ tastes are evolving overtime and that newer varieties emerged in

market catch their updated preferences and so WTP [54,55]. Golden delicious has a similar

price as Fuji. Gala price tends to be lower, with significant measures in models 2 and 3. Jona-

gold also tends to be cheaper than Fuji. Red Delicious and Green apple show inconsistent

signs in different models. This change in signs is because the number of observations for these

varieties depends on the variables that we exclude in models 2 and 3 due to missing observa-

tions. If we trust model 1, these two varieties are less preferred than Fuji, which is consistent

with observations in the world because they are the oldest varieties [55].
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Other than their own intrinsic attributes, apples sold online have special attributes that are

not available for apples sold offline. These attributes also provide particular value to consumers

and causing them to pay higher price premiums to apples with these attributes. Observations

with video description are 4.42 yuan higher than ones without video description in model 1,

suggesting that having a video description of the product, Fuji variety by default, has positive

effect on the price. Unlike busy shoppers in grocery stores, online shoppers have more time to

watch such videos as they do online shopping and see videos as a value-added service.

Although we see significant positive effects of video interaction with different varieties in dif-

ferent model specifications, its interaction with Gala, and Jonagold is consistently insignificant

in all models. This means video works well for apples with unique visual characteristics, such

as green color for Green apple, yellow color for Golden delicious, dark red color for Red deli-

cious, but not for general looking apples.

Reviews left by previous customers are valuable to future customers [56,57], which is a

unique feature for online stores. Studies [57–59] have shown that customer reviews about the

product and deliver service can influence shoppers’ shopping choices, and are reflected to the

price. In our study, store score shows a significant positive effect on the price with 30.15, 27.31

and 37.91 yuan higher for each additional store score in models 1,2 and 3, respectively. These

are rather high marginal values for apples, and they provide strong incentives to online store

to improve their services to earn higher store scores given by customers. The ratio of good

reviews shows a positive impact only in model 2. Logistic score also shows a positive effect

only in model 3.

The higher biweekly dummies for the latter two periods are because it gets closer to the

Christmas and New Year season and shows an overall seasonality, not related to product or

store attributes.

We also estimated the average treatment effect (ATE) of promotion on the prices using the

propensity score matching method (Table 3). The density distributions of prices are plotted in

Fig 1 for alternative models. They consistently show that the matched dataset has treated

groups and control groups are much more similar than the unmatched data. In model 1, the

price of apple products with promotion is about 4.41 yuan cheaper than ones without promo-

tion. However, the effect of the promotion is not significant in model 2 and model 3 when

large datasets are used. This means the apples that are sold under discount promotions tend to

have similar listed prices with those that are not under discount promotions with our large

sized observations. For the subset of observations, the former shows lower listed prices that the

latter, or we can say those lower prices apples correlated with running price discount promo-

tions. Combining the two, this does not support the suspicion that stores first raise the price to

a high level and run a discount creating a false impression of low price to attract consumers.

Instead, the higher priced apples do not tend to run such discount promotions while the low-

ered priced apples do, showing a fiercer price competition among the low-end apples.

Discussion and conclusion

Our study uses hedonic pricing models to analyze the implicit prices of apple attributes in

online markets. Unlike many food attribute valuation studies using survey-based stated

Table 3. Average treatment effect of promotion on the prices.

Model Number of Observations Mean Difference P-value

Model 1 2,090 -4.41 0.000

Model 2 4,178 -.85 0.652

Model 3 8,200 .95 0.538

https://doi.org/10.1371/journal.pone.0270257.t003
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Fig 1. Propensity score before and after matching.

https://doi.org/10.1371/journal.pone.0270257.g001
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preference data, we use actual online sale data with detailed attributes to show the revealed

preference that effectively avoids hypothetical bias. As price is the indicator of the market sup-

ply and demand equilibrium, for a widely available product in market with some attribute dif-

ferences, a higher price means the corresponding attribute is preferred by consumers and is in

high demand not perfectly substitutable by the same product without that attribute.

Using fresh apple sold on JD platform in China as an example, we found that consumers

show preferences on both intrinsic food attributes and online market attributes through the

fact that both product-related and store-related attributes affect price in online markets. Such

findings will provide the food industry useful information to deal with the new and fast-grow-

ing online market channels.

Varieties and places of origins are both important factors affecting the price. Our Ralls

Janet, Fuji, and other smaller varieties have the highest price, which is supported by literature

[53,54] because newer varieties emerged in market catch consumer’s updated preferences.

There are also significant price premiums for imported apples and for apples that are produced

from certain domestic regions with established reputations. In particular, apples from New

Zealand are the most popular apples among all imported ones and enjoy the highest price pre-

miums. Two reasons can explain these. Firstly, because apples have been grown widely in

China as a traditional fruit, consumers are quite discerning about apples, and thus only apples

with superior quality grown under ideal conditions can receive consumers’ recognition and

gain the price premium. Foreign exporting countries with different climate and Shaanxi and

Xinjiang provinces having the best agronomic condition yield apples of higher quality. Sec-

ondly, these countries have advanced production technologies that ensure the homogenous

the apple qualities, so do the two Chinese regions that are outside the traditional apple areas

and established more recently with newer commercial technologies.

Organic or green certificates have a significant price premium, resulting from consumers’

concerns of food safety and the food-environment interaction. Chinese consumers are espe-

cially concerned about excess chemical use in food production, in particular pesticide residuals

in apples [60], because there is in general lack of reinforcement on the safe level of chemical

applications. Thus, they turn to food with official certifications of organic or green labels [61].

Price discount is a common promotion method used by sellers. Our results shows that this

method is used more by lower priced apples than by higher prices apples. This shows a fiercer

price competition among low-end products than high-end products. It does not support the

suspicion that stores first raise the price and run a discount causing a false impression of low

price to attract consumers.

Price discount promotion is not a tool adopted by higher-priced apple sellers. The results

can shed lights to online market price scheme, for example, by comparing the cost of produc-

ing green or organic food product with the price premium they can bring. This finding pro-

vides long term incentives for small venders to sell good products and provide sound services.

Online video and reviews about the stores and products from previous customers are a dif-

ferent set of factors to affect the price. These factors are only available for online market, and

are missing in existing fresh food market literature. The use of video descriptions for apples

can generate price premiums for apples that have unique appearances. Especially, Red Deli-

cious, Golden Delicious, Green Apples have unique color, and stores showing a video online

can receive higher price than stores selling the same apples without a video. This new finding

tells online vendors to make best use video and other new web visual tools to promote their rel-

evant products. Our study also show that reviews left by previous customers are valuable to

future customers, which is consistent to existing in non-food market studies [57–59]. They

show that previous customer reviews about the product and deliver service can influence shop-

pers’ shopping choices. In our study, store and logistic scores show a significant positive effect
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on the price. This provides strong incentives to online store to improve their services to earn

higher store scores given by customers.

There exist some limitations of this study. Although using actual market data can

completely avoid hypothetical bias, we don’t have individual shopper’s characteristic informa-

tion and thus cannot explore any heterogeneity in consumer preference nor its causal factors.

The shorter data period also missed the seasonal cycle and storability attribute of different vari-

eties of apples. These weaknesses call for future studies using data with longer period and com-

bined survey with actual online sales.
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