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Abstract

Objectives

There has been a steady increase in the number of studies of the complex relationship

between glucose and electrical cardiac activity which use simultaneous continuous glucose

monitors (CGM) and continuous electrocardiogram (ECG). However, data collected on the

same individual tend to be similar (yielding correlated or dependent data) and require analy-

ses that take into account that correlation. Many opt for simplified techniques such as calcu-

lating one measure from the data collected and analyse one observation per subject. These

simplified methods may yield inconsistent and biased results in some instances. In this

systematic review, we aim to examine the adequacy of the statistical analyses performed in

such studies and make recommendations for future studies.

Research questions

What are the objectives of studies collecting simultaneous CGM and ECG data? Do meth-

ods used in analysing CGM and continuous ECG data fully optimise the data collected?

Design

Systematic review.

Data sources

PubMed and Web of Science.
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Methods

A comprehensive search of the PubMed and Web of Science databases to June 2022 was

performed. Studies utilising CGM and continuous ECG simultaneously in people with diabe-

tes were included. We extracted information about study objectives, technologies used to

collect data and statistical analysis methods used for analysis. Reporting was done following

PRISMA guidelines.

Results

Out of 118 publications screened, a total of 31 studies met the inclusion criteria. There was

a diverse array of study objectives, with only two studies exploring the same exposure-out-

come relationship, allowing only qualitative analysis. Only seven studies (23%) incorporated

methods which fully utilised the study data using methods that yield the correct power and

minimize type I error rate. The rest (77%) used analyses that summarise the data first before

analysis and/or totally ignored data dependency. Of those who applied more advanced

methods, one study performed both simple and correct analyses and found that ignoring

data structure resulted in no association whilst controlling for repeated measures yielded a

significant relationship.

Conclusion

Most studies underutilised statistical methods suitable for analysis of dynamic continuous

data, potentially attenuating their statistical power and overall conclusions. We recommend

that aggregated data be used only as exploratory analysis, while primary analysis should

use methods applied to the raw data such as mixed models or functional data analyses.

These methods are widely available in many free, open source software applications.

Introduction

Technological developments in recent years have allowed researchers and clinicians active in

the field of endocrinology to use monitors to collect glucose measurements regularly over

time. Continuous glucose monitors (CGM) measure interstitial glucose (IG) at regular inter-

vals (e.g. every 5 minutes) giving superior granularity of data to traditional finger stick blood

glucose measurement. With the introduction of economically friendly and accurate continu-

ous electrocardiogram (ECG) monitors, data can now be collected on CGM and ECG simulta-

neously to study the relationship between glucose and the electrical activity of the heart.

Studies utilising concomitant CGM and ECG data are becoming more prevalent, parallel to

the increasing uptake of these technologies among people with diabetes, in particular, the

CGM, which has been shown to be beneficial compared to self-monitoring of blood glucose

[1–6].

Studies using these monitors usually increase the precision of estimating the relationship

between glucose and electrocardiographic measurements, thus increasing the power to detect

any association [7]. However, data collected on the same individual tend to be similar (yielding

correlated or dependent data) and require analyses that take into account that correlation.

These data can be analysed in three ways; i) analysing the raw data, using methods that take

into account the complex structure of the data (Fig 1b), ii) ignoring the repeated nature of the
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data and treating all data as independent (Fig 1c), iii) calculating summary statistics per indi-

vidual and use these aggregate measures in the primary analysis (Fig 1d).

The advantage of (i), i.e. summary statistics, is that the techniques and results are easily

understood in the absence of advanced statistical knowledge [7] and they resolve the issue of

dependency in the data [8]. However, temporal trends cannot be established from aggregate

data and an enormous information loss occurs in calculating these summaries [9]. This will

lead to p-values which are too high, confidence intervals which are too wide, and a high false

negative rate. For example an individual wearing a CGM for 24 hours provides 288 measure-

ments of glucose (if measured every 5 minutes), but using aggregate data only provides one

summary data point for example, glucose variability measure such as standard deviation. This

loss of information results in a loss of power to detect experimental effects [10]. Fig 1d shows

the results by calculating averages for both the response and predictor which even give differ-

ent direction of effect (slope = 0.79, p-value <0.00001).

The issue with (ii), i.e. analysing the data as independent, is that it may produce misleading

results if there are meaningful individual differences, as illustrated by Bakdash et al. [8]. The

results will have p-values which are too small, confidence intervals which are too narrow, and

produce many false positive findings. This will in turn waste future research efforts to replicate

associations which are not true. Failure to take into account the dependency may even give an

effect in the opposite direction (slope = 0.02, p-value0.014) as shown in Fig 1c.

Fig 1. Analyses ignoring and taking into account repeated measures. a) The actual data from 20 individuals (coloured by person),

b) Mixed model taking into account subject effects yielding desired results, c) Linear regression model ignoring subject effects leading

to inaccurate results with wrong direction of effect and d) Linear regression considering averages per individual giving different

direction for the relationship.

https://doi.org/10.1371/journal.pone.0269968.g001
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Approach (iii) including mixed models [11] and functional data analysis (FDA) [12]

take into account the individual correlation in the data hence giving more reliable results

(slope = -1.92, p-value<0.00001) as illustrated by Fig 1b. From a simple dataset, it can be

clearly seen that the methods can pick the true direction of the effect compared to the other

two methods. These methods lead to results with more statistical power and minimize type I

error rate [10]. However, the methods may need advanced statistical skills to be applied prop-

erly and understood.

In this systematic review, we aim to examine the methods of data collection and statistical

analyses of identified studies by outlining (a) the settings and objectives of studies; (b) the tech-

nologies used for data collection and (c) the methods utilised for data analysis. In particular,

we assessed whether the proposed analyses included careful consideration of the statistical

complexities arising from nonlinear patterns and both between and within-subject variability.

Research questions

• What are the objectives of studies collecting simultaneous CGM and ECG data?

• Do methods used in analysing CGM and continuous ECG data fully optimise the data

collected?

Materials and methods

Eligibility criteria

Studies were included if they met all the following four inclusion criteria: 1) both CGM and

continuous ECG were measured simultaneously on human participants; 2) the methods used

and analysis results were described; 3) inclusion of participants with either type 1 diabetes mel-

litus (T1DM), type 2 diabetes mellitus (T2DM) or a mixture of T1DM and T2DM; and 4) stud-

ies were reported in English. Studies were excluded if: 1) only of CGM or continuous ECG was

used, instead of both, 2) ECG and CGM data were not obtained simultaneously; 3) CGM and

continuous ECG were used in participants without diabetes or in animals.

Information sources

Relevant studies were searched using the PubMed and Web of Science platforms from incep-

tion of their databases up to 31st May 2021. The search terms used for both databases are

shown in S1 Table. Additional studies were searched using reference tracking. Reference lists

of included articles were searched for additional citations.

Selection process

Initial search and checking were performed by BC according to the inclusion and exclusion

criteria, subsequently checked independently by AJS. Reporting was in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

[13] as shown in S2 Table. No protocol was published for this research.

Data collection process

From each article, we extracted the study objectives, design, population, sample size, age and

gender profile of participants, duration, variables collected, outcomes, statistical methods and

technology used to collect data. Data were extracted by BC and verified by AJS.
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Data items

The outcomes of interest for this review are:

1. the study objectives,

2. technologies used and

3. statistical methods used.

Study risk of bias assessment

Risk of bias was performed based on the Cochrane Collaboration’s tool [14] for assessing risk

of bias in randomised trials as shown in S3 Table. In addition, a critical appraisal was also done

using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist [15] for analytical cross-sec-

tional studies.

Certainty of evidence

Certainty of evidence was performed following Grading of Recommendations, Assessment,

Development and Evaluations (GRADE) domains (16).

Synthesis methods

A post-hoc meta-analysis would have been performed, if three or more studies provided any

relevant meta-analysable data or outcome (e.g. a regression of heart rate on glucose), and if

appropriately analysed. A list of available results from the studies is created otherwise. Mea-

sures used and their estimates and confidence intervals were recorded.

Patient and public involvement

No patients were involved in this study.

Results

From the literature search and filtering based on the inclusion criteria, we identified 31 articles

published from 2003 to 2021. Fig 2 shows a PRISMA flow chart of the screening and selection

results for this review. Fig 3 shows the cumulative number of articles published over time. A

qualitative analysis was performed using 28 studies (i.e. some studies published multiple

papers on the same data) with a total of 1099 participants, as summarised in S5 Table.

Study risk of bias assessment

Study risk of bias assessment is shown in S4 Table. Overall, risk of bias was low across included

studies. Almost all studies clearly defined the inclusion and exclusion and some randomised

trials were blinded. In addition, the data collection tools minimise occurrence of missing data

which may happen due to device failure.

Certainty of evidence

Precision and consistency were low as the studies report different outcomes and hence incom-

parable confidence intervals. Indirectness was low as the majority of the study participants rep-

resent the intended population of interest, that is, diabetic patients. Publication bias is high as

majority of the studies aggregate the data and perform simplified analysis which may lead to

either false positive or false negative findings.
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Fig 2. PRISMA flow chart [13].

https://doi.org/10.1371/journal.pone.0269968.g002

PLOS ONE Statistical techniques used in analysing simultaneous CGM and ECG data: A systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0269968 February 24, 2023 6 / 11

https://doi.org/10.1371/journal.pone.0269968.g002
https://doi.org/10.1371/journal.pone.0269968


Study population, design and objectives

Twelve studies focused on T1DM, 13 on T2DM and three studies included patients with either

T1DM or T2DM. Sample sizes ranged from 10 to 102. Duration of CGM and ECG monitoring

ranged from 20 hours to 10 days. Participant’s age ranged from 17 to 90 years.

Fourteen studies aimed at finding the effect of hypoglycaemia on heart rate and ECG

changes, six evaluated glucose variability (GV) and ECG, three compared CGM and ECG

between treatment and control groups, three determined the full relationship between sensor

glucose and ECG and evaluated the association between heart rate variability and interstitial

glucose variations and two attempted to predict glucose levels from ECG and CGM data.

Technologies used and variables of interest

Quite a number of technologies were used for both CGM and Holter monitoring. The most

commonly used CGM was the Medtronic iPro2 (ten studies), followed by the Dexcom G4 and

FreeStyle Navigator II (four studies each), then GlucoDay, guardian real time CGMS and the

MMT-7002 sensor (three studies each). Other CGM systems used were the Medtronic Mini-

med Gold and an unspecified Medtronic Minimed which were used in two studies each. Each

study used a different ECG monitor except those done by same investigators [16, 17].

All studies collected sensor glucose from the CGM which they aggregated according to

their research question. For example, those interested in GV, calculated GV measures such as

the standard deviation, and those interested in hypoglycaemia recorded the count and dura-

tion hypoglycaemic episodes. Commonly recorded ECG variables were the heart rate, QT, RR,

and QRS intervals, which were then aggregated for analysis, e.g. by calculating heart rate vari-

ability for each participant in order to estimate cardiac autonomic activity [18].

Fig 3. Cumulative number of publications by year.

https://doi.org/10.1371/journal.pone.0269968.g003
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Statistical analysis

Of the 31 articles included in this systematic review, 23(74%) studies calculated summary mea-

sures from the data, three (10%) ignored dependency and 7(23%) correctly analysed their data.

Seven studies (23%) considered the repeated nature of the data and fitted hierarchical models.

Of these, five did not perform simple analysis (ignoring dependency) for the variables which

they applied the advanced analysis (taking into account individual correlation). Kubiak et al.

[19] applied both simple and advanced analysis and found no association without controlling

for individual correlation and a significant relationship between QT corrected for heart rate

(QTc) and glucose after controlling for subject effects. We also performed both simple and

advanced and both approaches gave similar conclusions [20]. One study (3%) FDA taking into

account the trajectory of the data over time. It should be noted that, of the seven articles who

took into account the repeated nature of the data, four articles have overlapping authors, leav-

ing four distinct articles that used advanced analyses.

The quantitative results of included studies are presented in S6 Table. Unfortunately, due to

the diversity of variables, study designs and statistical methods, no post-hoc meta-analysis of

these results is possible. Moreover, most statistical analyses methods employed underutilised

the information collected and used methods that may give appropriate results hence discour-

aging the pooling of results.

Discussion

We performed a systematic review and critically appraised 31 articles (28 studies) which col-

lected ECG and glucose continuously over time extracting information about study objectives,

technologies used to collect data and statistical analysis performed. It was found that the most

common analysis of such data is calculating summary metrics per individual and applying

simplified analysis, others performed analysis ignoring data dependency and some used meth-

ods controlling for the dependency. The most commonly used CGM was the Minimed iPro2

and we found no study that has looked at which of the CGM systems is most suitable and why.

The main objective for many studies was to determine the relationship hypoglycaemia and

ECG changes.

Seven studies have applied analyses that take into account the individual correlation. Of

these, two analysed data by employing both simplified analyses (summary measures or treating

data as independent) and advanced analysis (mixed models and FDA). One study found differ-

ent results from the two methods, that is, ignoring dependency resulted in no association

between QTc and glucose whilst controlling for correlation yielded a significant relationship

[19]. We found similar results using both simplified and using the raw data [20]. Our study

finds that QTc increases with an increase in glucose, which contradicted other studies that

used summarised data. These results have shown that in some cases, the results may or may

not be different between the simple analysis and the one accounting for dependency in the

data, but the magnitude of the effect will be different. It is therefore important to do both

analyses.

We saw huge uptake in simplified statistical analysis which may be due to their simplicity in

interpretation compared to the advanced analysis which model all individual data. In addition,

some summary measures calculated for example, heartrate variability show the stability of the

heart better compared to the raw data. Therefore, depending on the objective of the study,

some metrics can be useful for interpretation, however other metrics such as area under a

curve are simple but not easy to interpret.

The previous barriers to the widespread implementation of CGM include issues with accu-

racy and user friendliness which have been largely resolved with newer and more advanced

PLOS ONE Statistical techniques used in analysing simultaneous CGM and ECG data: A systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0269968 February 24, 2023 8 / 11

https://doi.org/10.1371/journal.pone.0269968


technology [21]. Furthermore, better accessibility and increased advocacy for people with dia-

betes also resulted in the increased uptake of CGM [22]. This is also mirrored by the easier

access to continuous cardiac monitoring.

Many systematic reviews have been published in cardiology and diabetes. Most investigated

the relationship between biomarkers and risk factors between diabetes and cardiology. For

example, Selvin et al. 2004 [23] performed a meta-analysis of observational studies on the asso-

ciation between glycosylated hemoglobin and cardiovascular disease in diabetics. Zelniker

et al. 2019 [24] performed a systematic review and meta-analysis on cardiovascular outcome

trials of SGLT2 in patients with type II diabetes. In terms of statistical methods in diabetes and

cardiology, Kavakiotis et al. [25] and others [26, 27] looked at data mining and statistical meth-

ods used in diabetes mellitus diagnosis in general, without a link to ECG data. This study

looked at modelling using regression models for CGM and ECG data. The strength of this sys-

tematic review is that it is the first to examine the methods of data collection, technology used

and statistical analyses in studies combining simultaneous CGM with ECG monitoring in peo-

ple with diabetes. It allows us to examine the transparency and the adequacy of the analyses in

these studies and inform future recommendations. The limitation of this systematic review is

that we were unable to perform a formal meta-analysis of the included studies due to their

diversity in design and statistical methods used since some of the methods applied may not

yield desired results. However, this did not alter the overall conclusion of our systematic

review.

We recommend the use of statistical methods that can use the data with as little aggregat-

ing as possible in order to prevent loss of important information from the data. The methods

should control for the within and between subject variability. The analysis of such data

should take into account the individual changes over time. For such data we recommend

summary measures and simple analysis as exploratory analysis and methods such as mixed

models [9, 28] and generalised estimating equations (GEE) [28] to take into account the data

dependency whenever the subjects have repeated measurements. We further recommend the

use of functional data analysis [12, 29] that is more flexible to the trajectory of the data.

These approaches will lead to increased statistical power and better evidence in this area of

growing interest.
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