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Abstract

Multi-view clustering has received substantial research because of its ability to discover het-
erogeneous information in the data. The weight distribution of each view of data has always
been difficult problem in multi-view clustering. In order to solve this problem and improve
computational efficiency at the same time, in this paper, Reweighted multi-view clustering
with tissue-like P system (RMVCP) algorithm is proposed. RMVCP performs a two-step
operation on data. Firstly, each similarity matrix is constructed by self-representation
method, and each view is fused to obtain a unified similarity matrix and the updated similarity
matrix of each view. Subsequently, the updated similarity matrix of each view obtained in
the first step is taken as the input, and then the view fusion operation is carried out to obtain
the final similarity matrix. At the same time, Constrained Laplacian Rank (CLR) is applied to
the final matrix, so that the clustering result is directly obtained without additional clustering
steps. In addition, in order to improve the computational efficiency of the RMVCP algorithm,
the algorithm is embedded in the framework of the tissue-like P system, and the computa-
tional efficiency can be improved through the computational parallelism of the tissue-like P
system. Finally, experiments verify that the effectiveness of the RMVCP algorithm is better
than existing state-of-the-art algorithms.

1. Introduction

Membrane computing [1-5], as a branch of natural computing, aims to abstract computa-
tional models from the structure and function of biological cells and from the collaboration of
cell groups such as organs and tissues. Membrane computing has been developed so far, and it
mainly includes three basic computing models: cell-like P system [6], tissue-like P system [7,
8] and neuro-like P system [9, 10]. In the process of calculation, each cell acts as an indepen-
dent unit, and each unit runs independently without interfering with each other [11]. The
entire membrane system runs in extremely parallel mode. The tissue-like P system consists of
cells and environment containing objects and rules. The movement of objects from cell to cell
or cell to environment is carried out through the rules in extremely parallel execution. The tis-
sue-like P system can be combined with other algorithms to improve the computational effi-
ciency of the algorithm thanks to the computational parallelism of the tissue-like P system.
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Clustering [12-15] is a tool of machine learning and artificial intelligence, which divides a
group of data points into corresponding clusters, so that the similarity of data points in clusters
is high, and lower similarity between clusters. It is an unsupervised learning technique. a great
deal of single-view clustering methods have been proposed, such as spectral clustering [16-
18], graph clustering [19, 20], subspace clustering [21], k-means clustering [22] and so on.
With the deep research of clustering, the combination of clustering and deep learning methods
and the application of clustering have been widely studied and achieved good clustering per-
formance. Network clustering is related to many real applications, such as social community
detection [23]; and disease module identification [24]. Wang et al. [25] proposed a single-cell
clustering model based on denoising autoencoder and graph convolution network.

With the development of science and technology, more and more data are represented by
multiple views, which are known as multi-view data. [26]. Compared with single-view cluster-
ing, multi-view clustering [27-32] has received extensive attention due to its better clustering
performance. So far, a variety of multi-view clustering methods have been proposed. Multi-
view clustering methods can be roughly divided into the following categories: multi-view k-
means clustering [33], multi-view spectral clustering [34], multi-view subspace clustering [28,
30, 35], multi-view graph clustering [36, 37], multi-task multi-view clustering [38], etc. Multi-
view subspace clustering and multi-view graph clustering have been widely studied owing to
their satisfactory clustering performance. Self-representation model has achieved com-
mendable progress in the study of single-view subspace clustering, which regards each data
point as a linear combination of data. The subspace representation matrix S, which is also
regarded as the similarity matrix, can be obtained as follows:

min [| X — XS ||z +o || S I} (1)

where X is the original data matrix. Guo et al. [39] extended the single-view self-representation
model to multi-view clustering, which assumes that samples from different categories are
embedded in independent subspaces. Therefore, the fused multi-view self-representation fea-
ture should be a block diagonal. The noise information in the data has always been the main
factor affecting the clustering performance. In order to alleviate the impact of noise informa-
tion on the clustering performance and make better use of the information of each view, schol-
ars have proposed many methods. For example, Yin et al. [40] used a more direct and intuitive
block diagonal regularization to preserve the underlying structure of each view, and at the
same time introduced the Cauchy loss function to deal with noise information. The underlying
public structure of multi-view data can be effectively retained by the derived consistency repre-
sentation matrix, and is robust to noise information and data damage. In addition, the cluster-
ing performance will also be affected by the process of fusing the similarity matrix. Kang et al.
[41] proposed a new multi-view clustering model in which the fusion graph approximates the
original graph of each individual view but maintains an explicit cluster structure. The existing
multi-view subspace clustering method still has a problem. After getting the similarity matrix
of each view and the final uniform matrix, the second operation is implemented, that is, apply-
ing additional clustering algorithms (usually spectral clustering algorithms) to the uniform
matrix, which will affect the clustering performance. Zhang et al. [42] proposed a Consensus
One-step Multi-view Subspace Clustering model, which can solve the defect of poor clustering
performance caused by the two-step operation.

Graph-based multi-view clustering method is one of the most popular multi-view clustering
methods. In this method, the similarity matrix of each view is first constructed and merged
into a unified matrix, and then an additional clustering algorithm or other methods are applied
to the unified matrix to acquire clustering results. The construction of the similarity matrix of
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each view is a very significant step, the reason is that the quality of the similarity matrix of each
view has a great impact on the final clustering performance. Many scholars have proposed
some methods for constructing similarity matrix, such as k-nearest neighbor algorithm(k-
NN), Clustering with Adaptive Neighbors [12], etc. The construction of similarity matrix is
affected by many factors, such as noise information and outliers, similarity metrics, etc. Huang
et al. [43] proposed a new model that simultaneously performs multi-view clustering tasks and
learns similar relationships in the kernel space. If there are ¢ clusters, the target optimal graph
can be directly divided into precise ¢ connected components. In addition, the model can auto-
matically assign appropriate weights to each view without additional parameters. The alloca-
tion of weights is an important topic in machine learning. For example, Liu et al. [44]
proposed a new weight initialization method. Weight allocation in multi-view clustering is
also significant, and the method in this paper will focus on the weight allocation of each view.

In the above-mentioned multi-view clustering algorithms, the weight distribution of each
view and the weakening of noise data have not been effectively processed. Therefore, inspired
by multi-view subspace clustering and graph-based multi-view clustering, in order to more
effectively assign the weight of each view, Reweighted multi-view clustering with tissue-like P
system (RMVCP) algorithm is proposed in this paper. RMVCP performs two fusion opera-
tions on each view. In the first fusion process, the self-representation matrix of each view is
first constructed by the self-representation method, which can also be regarded as the similar-
ity matrix of each view. Then assign appropriate weights to each view to fuse the similarity
matrix of each view into a unified matrix. This operation is an iterative operation. Finally, the
updated unified matrix and the updated similarity matrix of each view are generated. In the
second fusion operation, the updated similarity matrix of each view generated in the first oper-
ation is used as input, and the appropriate weights are assigned to each view again to generate
the final matrix. At the same time, Constrained Laplacian Rank (CLR) [45] is applied to the
final matrix to directly generate clustering results without additional clustering steps (such as
K-means). In addition, in order to improve the computational efficiency of the RMVCP algo-
rithm, the RMVCP algorithm is integrated with the tissue-like P system. Fig 1 shows the
RMVCP process without tissue-like P system. Fig 2 shows the RMVCP algorithm process in
the framework of the tissue-like P system.

In summary, the contributions of our work are listed as follows:

o In order to assign weights to each view more reasonably, all views will be merged twice. The
two fusion operations are iterative processes, which can assign more reasonable weights to
each view.

o Constrained Laplacian Rank (CLR) are imposed on the unified matrix after the second
fusion. Therefore, the clustering results can be directly output without applying additional
clustering algorithms, avoiding the suboptimal solution of the existing two-step method.

o The RMVCP algorithm is integrated with the tissue-like P system, and use the computa-
tional parallelism of the tissue-like P system to improve the computational efficiency of the
algorithm.

« The RMVCP algorithm integrates multiple processes into one framework. Experiments on
several datasets prove that the clustering performance of our algorithm is better than other
state-of-the-art algorithms.

The rest of this paper is organized as follows. The related research on multi-view clustering
and the basic definition of the tissue-like P system are introduced in Section 2; In Section 3,
RMVCP method is proposed; Comparative experiments were conducted to verify the
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Fig 2. The RMVCP algorithm process in the framework of the tissue-like P system.
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effectiveness of the RMVCP algorithm in Section 4; At the end of the paper, we conclude in
Section 5 and point out what we can do in the future.

2. Related work
2.1 Multi-view clustering

Currently, the most researched multi-view clustering methods are multi-view subspace clus-
tering and graph-based multi-view clustering. Both multi-view subspace clustering and graph-
based multi-view clustering have good clustering performance. Our RMVCP algorithm is also
inspired by these two clustering methods. Multi-view subspace clustering uses multiple low-
dimensional subspaces to represent high-dimensional data. Wang et al. [46] proposed Exclu-
sivity-Consistency Regularity Multi-view Subspace Clustering (ECMSC). Many methods focus
on the fusion of multiple views, without considering the direct consistency and difference
information of the views. ECMSC considers a kind of exclusive information between views, so
as to achieve information complementarity, which is helpful to improve the clustering perfor-
mance. With the study of the potential representation of the data, Zhang et al. [47] proposed
Latent Multi-view Subspace Clustering (LMSC). LMSC explores a latent representation of
multi-view data, and then constructs a subspace representation from the latent representation.
Zhang et al. integrated these two processes into an algorithm framework, while also reducing
the impact of noise. High-dimensional data has always been a challenge for multi-view cluster-
ing. In order to cluster high-dimensional data more effectively, Wang et al. [48] proposed
Multi-view Subspace Clustering with Intactness-Aware Similarity (MSC_IAS). MSC_IAS
reduces the data dimension while preserving the data information, integrates it into a complete
space, and constructs the similarity matrix. Then apply a clustering algorithm to the similarity
matrix. This method can effectively process high-dimensional data. In order to more efficiently
use the information across multiple views, Kang et al. [41] proposed Multi-graph Fusion for
Multi-view Spectral Clustering (GFSC). GFSC can explore heterogeneous information
between views, construct a similarity matrix with a self-representation method, and perform
views fusion and spectral clustering at the same time. The noise information in the data greatly
affects the clustering performance. In order to be able to reduce the noise information, Zhang
et al. [42] proposed Consensus One-step Multi-view Subspace Clustering (COMVSC),
COMVSC optimally integrates discriminative partition-level information, which can effec-
tively reduce the impact of noise information. These state-of-the-art algorithms show good
clustering performance, but the common defect is that only one fusion operation is performed
on each view.

The graph-based multi-view clustering method first constructs the similarity matrix of each
view, then merges each view into a unified matrix, and finally applies additional clustering
algorithms or other methods to the unified matrix to obtain the clustering results. The con-
struction of the similarity graph of each view is a very important step. Many scholars have pro-
posed some methods for constructing similarity graphs, such as k-nearest neighbor algorithm
(k-NN), Clustering with Adaptive Neighbors (CAN) [12], etc. On the other hand, the method
of fusing each similarity graph is also very important. But similarly, the existing multi-view
graph clustering method only merges each view once, so it does not achieve good clustering
performance. Nie et al. [49] proposed the Parameter-Free Auto-Weighted Multiple Graph
Learning (AMGL). AMGL solves the problem of multiple parameters in the fusion process,
and automatically assigns the weight of each view on the basis of modifying the traditional
spectral clustering method. Graph-based multi-view clustering methods need to apply addi-
tional clustering algorithms to obtain clustering results, and the two-step operation will affect
the clustering performance. Nie et al. [50] proposed Self-weighted Multiview Clustering
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(SWMC). SWMC automatically assigns weights to each view without prior knowledge. At the
same time, the clustering results are directly obtained without additional clustering algorithms.
In addition, the quality of the similarity graph is affected by noisy data, which in turn affects
the clustering results. Nie et al. [51] proposed Multi-View Clustering and Semi-Supervised
Classification with Adaptive Neighbours (MLAN). MLAN obtains the final graph for cluster-
ing by learning the local manifold structure to alleviate the noise problem. Wang et al. [37]
proposed GMC: Graph-Based Multi-View Clustering (GMC). GMC jointly builds multiple
view graphs and fusion graph, and automatically assign weights to each view. Obviously, these
state-of-the-art multi-view graph clustering algorithms only perform one fusion operation.

2.2 Tissue-like P system

The tissue-like P system is similar to a graph structure. In the tissue-like P system, each cell
and environment are equivalent to the nodes of the graph, and the communication channels
between cell to cell and cell to environment are equivalent to the edge of the graph. The calcu-
lation process of the tissue-like P system is to perform calculation operations in cells through
rules, and then apply certain rules to transfer objects between cells and cells or between cells
and the environment through communication channels. The basic definition of the tissue-like
P system is as follows:

IT= (07 K7 Wypyeev s Wy E> Ch7 (S(i,j))(i.j)Ech7 (R(i.j))(i,j)ECh’ io) (2)

(1) O represents a finite multiset of objects;
(2) K represents the states of the alphabet;

(3) w;, 1 <i < mrepresents the finite multiset of objects in the initial state of cells 1, . . .,m;
(4) E C O represents a copy of any number of symbolic objects in the environment;
(5) ch CH{(i, j)|i,j € {0, 1, ..., m}, i # j} represents the communication channel between cells

and cells and between cells and the environment;

(6) s, j) is the initial state of the channel (i, j);

(7) R, jisa finite co/inverse transportation rule of the form (s, x/y, s'), where s, s’ € K, x,
ye 0%

(8) ip € {1, . . ., m}is the output cell.

3. Reweighted multi-view clustering with tissue-like P system
(RMVCP)

Different from exploring the local information of data, the exploration of global information
of data can better grasp the relationship between data points, which is the motivation for us to
use the self-representation method to construct the similarity matrix of each view. Moreover,
the quality of each view is uneven, and it is undesirable to treat each view equally. This
prompted us to assign weight to each view. Nevertheless, twice weighting each view is neces-
sary to improve clustering accuracy. In addition, the improved multi-view clustering algorithm
is combined with tissue-like P system to improve the computational efficiency of the algo-
rithm, which is due to the parallel computing ability of tissue-like P system. Therefore, we pro-
pose Reweighted multi-view clustering with tissue-like P system (RMVCP) in this paper,
where RMVCP-1 refers to the first weight allocation process and RMVCP-2 is the second
weight allocation for each view.
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3.1 The first fusion process of the RMVCP model (RMVCP-1)

In the RMVCP-1 process, the similarity matrix of each view is constructed by a self-representa-
tion method [41]. Self-representation method treats each data point as a linear combination of
the data itself. Given data matrix X € R™™. The similarity matrix $ can be obtained by solving:

min || X — X8 |2 +a||S|: st $>0 (2)
where a is a trade-off parameter. Then we extend it to multi-view clustering:

min} | X' XS [ 2 |||} st 8 >0 3)

v=1

where m is the number of the views. The similarity matrix of each view obtained by this for-
mula reflects different aspects of the original data. On the basis of this formula, the construc-
tion of the unified matrix U, is as follows:

28 (4)

Obviously, the construction of the unified matrix is simply adding the similarity matrix of
each view and dividing by the number of views without considering the weight of each view.
This will lead to poor clustering performance. Therefore, we calculate the weight of each view
in the process of graph fusion. The formula is as follows:

mind ", | 8"~ U, [ ©
v=1

where w, is the weight of each view. In this way, the unified matrix can better reflect the char-
acteristics of the data with good views are given large weights and bad views are given small
weights. The expression of weight is:

1

W =0T 1
2[|8" = U,

(6)

Then the goal formula is proposed by combining Eqs 3 and 5:

m

min > X XS 2| S 4w, | S U
T =1

(7)

s.t. >0

By solving Eq 7, we can learn the similarity matrix of each view and the final unified matrix
after weighting by an iterative algorithm. Finally, the unified matrix is fed to the spectral clus-
tering algorithm.

For clustering, an ideal situation is that the number of connected components of the simi-
larity matrix is equal to the number of clusters. When this situation is met, that is, the number
of connected components of the similarity matrix is equal to k, the data point can be exactly
divided into k clusters. So here we introduce Theorem 1 [52, 53].

Theorem 1. The multiplicity of the eigenvalue 0 of the Laplacian matrix of the similarity
matrix is equal to the number of connected components in the graph of the similarity matrix.
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According to Theorem 1, we know that when the number of eigenvalues 0 of the similarity
matrix is k, the number of connected components is exactly k. From the Ky Fan’s Theory [54],
we get the final expression of Eq 7 as follows(The specific process is shown in the RMVCP-2
process):

: v Qv |2 v |12 v 2 T
Juin, ; X" = X8 [[; 4o || 8" [z +Bw, [| 8" = Uy [ +9Tr(Fy Ly Fy))

(8)
st. 8" >0,F; Fy =1
where Fy; is the spectral embedding matrix, Ly, is the Laplacian matrix of the unified matrix,
and a, f, y are regularization parameters.
Next, we optimize Eq 8:

We optimize each variable through an iterative method.
Updating S, when F;; and Uj are fixed. So Eq 7 becomes:

mind | X'~ X'S" [} 4o || 8" |7 +pw, | 8"~ U, |7 ©)
v=1

It can be seen from Eq 9 that each view is independent. So, we only consider one view at a
time. In order to update S,, we perform the derivative operation on Eq 9 to obtain:

(Eq9)" = —2(X")" (X" — X'S") + 208" + 2pw,(S' — U)) (10)
Then we make Eq 10 equal to zero and we get:
§ = (X)X +al + pw,1) (w,U, + (X)'X) (11)

where I is the identity matrix.
Updating U, when F; and §, are fixed. We obtain:

msin;ﬁwv ” §' - U1 || +VTr(FITJlLU1FU1) (12)

After deriving [41], we can obtain:

Vi, _&
S - )
>,

where q; € R with the j-th entry q9; =|l By,;. — F

Uyiy Uyj,: || :

Ul(:ﬂ i) -

2

Updating F; when S, and U, are fixed. We need to solve the following problems:

min Tr(Fy Ly By ) st By 'y =1 (14)
1

F,, is composed of the eigenvectors corresponding to the first k smallest eigenvalues of the
Laplacian matrix. We terminate algorithm 1 when the number of iterations is greater than 200
or the relative change of U; is less than 0.001. So far, we have calculated the similarity matrix
of each view that will be input to the next algorithm after the first iteration. The RMVCP-1
process is summarized in Algorithm 1.

Algorithm 1 RMVCP-1
Input: Data matrices: Xl,..., X", parameters o > 0, B8 >0, y > 0.

output: Similarity matrices: S',..., 8", Unified matrix U, Fy .
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Initialize: Random matrices U; and FUI, w, = 1/m.
repeat
1: Update S, by Egq 11 for each view.
: For each element §; = max(S},0).
: Update U; by Eqg 13.
: Update Fy by Eq 14.
: Update w, by Egq 6.
until stopping criterion is met.

g w N

3.2 The second fusion process of the RMVCP model (RMVCP-2)

RMVCP-1 continuously updates S',. . ., $” in an iterative manner until the algorithm con-
verges. We perform another fusion process again, and constantly update S,. . ., §” so that the
similarity matrix S,. . ., $” can better represent the characteristics of each view. We use the
updated S',. . ., $” obtained from RMVCP-1 as the input of RMVCP-2. The objective function
[50] is:

Ui >0,ug;1,=1

min Za(v) | U, —S" |2 (15)
v=1

where U, is the unified matrix, and o’ is the weight of the v-th view:

=1 (16)
2 H Uz - S(V)HF

In this case, the unified matrix U, is obtained after fusion, and additional clustering algo-
rithms are applied to the unified matrix U,, which will affect the final clustering performance.
Here we introduce the Constrained Laplacian Rank (CLR) method to avoid additional cluster-
ing algorithms and directly output the clustering results.

It can be seen from Theorem 1 that when the rank of the Laplacian matrix of the unified
matrix U, is L, = n — ¢, where c is the multiplicity of the eigenvalue 0 of L, , the data points
can be directly divided into c clusters. So, Eq 15 becomes:

i ) ) |2
min o U,—-S 17
uZijZU.MQ,-I,‘:Lmnk(LUQ):nfc; || 2 ||F ( )

It is very difficult to solve Eq 17. Let ¢;(Ly, ) denote the i-th smallest eigenvalue of

Ly,-¢(Ly,) > Osince Ly, is positive semi-definite. Then, rank(Ly, ) = n — ¢ can be achieved if

> &(Ly,) = 0. From the Ky Fan’s Theory, we know:
i=1

c

D &ly,) = min  Tr(Fj Ly Fy) (18)

P FeRm¢ By, TRy, =1
So, Eq 17 becomes:

min » o || U, — 8" ||} +20Tr(Fy Ly Fy)
R =" ) (19)

st oty > 0,u1, =1,F, € R™F; Fy =1

The optimization of this formula is as follows:
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Updating F; when U,, a™ is fixed. Eq 18 becomes:

min Tr(FITJQLUZFUZ) (20)

nxc gT —
FU2 €R ,FUZ FU2 =I

Fy, is formed by the c eigenvectors corresponding to the first c smallest eigenvalues of Ly, .

Updating U, when Fy , o' is fixed. Eq 19 becomes:

min Y 0y (g —5) A | oy oy 115y (21)

u9;i>0,u9;1,=1
HETRIT 2 =1 ij=1

It is obvious that Eq 21 is independent for each i, so we consider each i separately:

n m

n
. Z v 2 Z
uz..>rglulgr-11 =1 4 )(uQif o SEJ’V)) + 2 ” fUQi - fUzj Hg Usij (22)

U= =1 =1 j=1

We denote r,; =|| f,, — fy; |5 for the purpose of avoiding Eq 22 that are too complicated.

So, Eq 22 can be written in vector form as:

. N .
min ” w,; — (fo< )SE )~ 51'1)/20‘( ) Hg (23)
v=1 v=1

u9;>0,up;1,=1

The problem can be solved by an iterative algorithm. Algorithm 1 shows the process of the
second fusion.

Algorithm 2 RMVCP-2
Input: S',..., S™ € R™*” obtained by algorithm 1, number of clusters c.

output: U, € R”"” with c connected components.

Initialize: the weight for each view a® :i, FU,Z is composed of the

eigenvectors corresponding to the first ¢ smallest eigenvalues of
T
LUz = DUz 7@'
repeat
repeat
1: Calculate and update U, by Eqg 23.
2: Update Fy, by Eq 20
untill converge Update o' by Eq 16.
untill converge

RMVCP takes the similarity matrix S',. . ., " of each view generated by the iterative update
process of Algorithm 1 as input into Algorithm 1, and can directly output the clustering
results.

3.3 Initial configuration of the tissue-like P system

In this paper, in order to improve the computational efficiency of the RMVCP algorithm, we
combine RMVCP with the tissue-like P system. We first set up the initial configuration of the
tissue-like P system in this paper.

o celli, 1 <i < m: Multiset of objects , = X', w;, By , Uy
Ry: Rule R; uses Eq 11 to generate S*, 1 < v < m and send it to the cell (m+1);
Ry¢: Rule Ry sends copies of &, 3, I in the environment to cell m-1.

o cell (m+1): Multiset of objects w1 = Wi, - . ., Wy, Fy 5
R,: Rule R, uses Eq 13 to generate the updated U, and send it to the cell (m+2);
Ryp: Rule Ry, sends copies of § in the environment to the cell (m+1).
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o cell (m+2): Multiset of objects wm,> =X, .., X" Wy, ..., Wy
Ry: Rule R, uses Eq 11 to generate the updated S”, 1 < v < m and send it to the cell (m+1);
Ryo: Rule Ry sends copies of &, f, I in the environment to cell m-1.
R;: Rule R; uses Eq 6 to generate the weight wy, . . ., w,, for each view;
Ry: Rule R, uses Eq 14 to generate the updated object Fy ;
Ryo: Rule Ryg sends the §%, 1 < v < m in the cell (m+2) to the cell (m+3). Rule Ryy can only
be triggered when the relative change of Uj is less than 0.001.

o cell (M+3): wmsz=a's ... Ay Fy,;
Rs: Rule Rs uses Eq 26 to generate U, and send it to the cell (m+4). At the same time, rule Rs
calculates the relative change of Eq 19.

o cell (m+4): Rq: Rule Rq uses Eq 20 to generate the updated object Fy ;
R;: Rule R; uses Eq 16 to generate updated object o', .. ., &

o Environment:E = a, 5,7, L.

Fig 3 shows the initial configuration of the tissue-like P system.

cell 1-m

cell(m+1) cell(m+3)
‘ )
ﬂ\ cell(m+4)

A 4

RZ’ RZO / \
5 Won,s Rs
R,Ry 1 R, Ry ol 550,
X w,..Fy,. o )lz?, Rgl;:o | Fy, |, | Re RiRy
! Wl’,..'.v.’,wm,

U, | S

Environment
K E=0,B,7v,1

Fig 3. The initial configuration of the tissue-like P system.
https://doi.org/10.1371/journal.pone.0269878.g003
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3.4 Computational process

o Step 1: In cells 1 to m, we first simultaneously apply the rule Ry, to transfer the copies of o, 3,
I in the environment to the membrane, and then apply the rule R, to generate ', 1 <v <m
and send it to the cell (m+1).

o Step 2: In cell (m+1), the rule R, is applied to transfer the copy of § in the environment to
the membrane, and then the rule R, is applied to generate U, and send it to cell (m+2).

o Step 3: In this step, first apply the rule R; to generate the updated weight wy, ..., w,,, and
then the rule Ry is applied to generate the updated Fy; . Next the rule Ry, is applied to transfer
the copies of o, §, I in the environment to the cell (m+2), and then apply the rule R, to pro-
duce the updated S”, 1 < v < m and send it to the cell (m+1). Then apply the rules in the cell
(m+1) again.

Steps 2 to 3 are a cyclic process.

« Step 4: When the conditions of triggering rule Ry are met, rule Ry, is triggered, and the
updated S", 1 < v < m is generated and sent to the cell (m+3). In the cell (m+3), after receiv-
ing the updated S”, 1 < v < m from the cell (m+2), the rule R; is applied to generate U, and
send it to the cell (m+4).

« Step 5: When the cell (m+4) receives the U, sent from the cell (m+3), the rules R and R; are
applied to generate updated F;, and a', ..., a", which are sent back to the cell (m+3). Then

apply rule R in the cell (m+3) again.
Steps 4 to 5 are a cyclic process.

o Step 6(Termination of calculation): The calculation is terminated when the relative change
of Eq 18 does not exceed 10~°. Then the updated U, is output. The specific process is shown
by Algorithm 3.

Algorithm 3 RMVCP
Input: Data matrices: X', ..., X", parameters o > 0, 8 >0, y > 0, I.
output: Unified matrix U, Fy, U, € R™" with ¢ connected components,
F

U, *
Initialize: Random matrices U; and FUI, w, = 1/m, random a”, 1 < v < m.
1: cell 1-m: Rip, Ri: Generate 8Y, 1 < v < m and send it to the cell
(m+1) ;
repeat
2: cell (m+1l): Ryp, Ry: The updated U, is generated and sent to the
cell (m+2);
3: cell (mt2): R3: The updated w;, ..., w, are generated and sent to
the cell (m+1l);
Ry;: The updated FUl is generated and sent to the cell (m+l);
Rip, Ri: The updated 8", 1 < v < m are generated and sent to the
cell (m+1).
untill Rule Ry is triggered, and the updated 8Y, 1 < v < m are gener-
ated and sent to the cell (m+3).
repeat
4: cell (m+3): Rs: The updated U, is generated and sent to the cell
(m+4) ;
5: cell (m+4): Re: Fy — cell (m+3);
R;: The updated ozl, ..., o are generated and sent to the cell (m+3);
untill The condition for termination of calculation is met. Output U;.

PLOS ONE | https://doi.org/10.1371/journal.pone.0269878  February 10, 2023 12/26


https://doi.org/10.1371/journal.pone.0269878

PLOS ONE Reweighted multi-view clustering with tissue-like P system

3.5 Convergence analysis of RMVCP-2

In this section we prove the convergence of RMVCP-2.
Lemma 1. For any positive numbers a and b, inequality 23 holds:

a——<b-—— (24)

Proof. We use U, to represent the updated U, after each iteration. After the first iteration of
the loop, we get:

U, = argmin Zoc(v) | U, — 8" |2 (25)

ug;i>0,up;1,=1,rank(Ly, )=n—c ,—1

(v) — 1 in-
Because of o) = 20,5 We obtain:
m - _ (v) 112 m _ (v) 112
SIS N LT )
=2 U, =SV, T =2 (U, -8,

From Lemma 1, we obtain:

ol 10, —s" |I?
| 0, —8Y ;
; ’ ' 22||U S
- |0, — IIF
<> U, -8, - Z2H U=
v=1 F

(27)

After deduction, we obtain:
Z || I~J2 - S(V)HF < Z ” U2 - S(V)HF (28)
v=1 v=1

Therefore, it can be seen that the value of the objective function of each iteration will
decrease, and finally meet the KKT condition of the objective function, and converge to the
local optimal solution.

3.6 Complexity analysis
RMVCP-1:

The complexity of RMVCP-1 mainly comes from the update of $” and Fy, . When updat-
ing S™, it costs O(n”) due to matrix multiplication and matrix inversion. In the process of
updating Fy; , the operation of singular value decomposition takes o).

RMVCP-2:

The complexity of RMVCP-2 mainly comes from the process of updating the weights o"*’
and F . The complexity of updating weight o is O(mn?). When updating Fy,, it is necessary
to calculate the eigenvector of the Laplacian matrix of Uy, so the complexity of updating Fy_ is
O(cn?).
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4. Experiments
4.1 Datasets

In order to verify the clustering performance of our proposed RMVCP algorithm, we conduct
comparative experiments on five public datasets. The five datasets include ORL, MSRC, HW,
Yale, Wikipedia Article. The specific information of the five datasets is as follows:

o ORL: ORL [55] is an image dataset, which contains 400 images from 40 people. Each person
has 10 different images. ORL has four views, namely GIST (512), LBP (59), HOG (864) and
CENTRIST (254) (the dimensions of each view are in parentheses).

o MSRC: MSRC [56] is an image dataset. It contains 210 samples of 7 types. The 7 categories
are bicycle, tree, car, airplane, building, cow, face. There are 30 images in each category.
There are six views in MSRC, namely CENTRIST (1302), CMT (48), GIST (512), HOG
(100), LBP (256), SIFT (210).

o HW: HW [57] is an image dataset. It contains 2000 images in 10 categories. These 10 catego-
ries respectively show one of the 10 numbers “0-9”. There are 200 images in each category.
HW has 6 views, namely FAC (216), FOU (76), KAR (64), MOR (6), PIX (240), ZER (47).

« Yale: The Yale dataset [56] is an image dataset. It contains 165 samples in 15 categories. Each
category shows a different person, and each person has 11 different states, wearing glasses
and not wearing glasses, and so on. Yale has three views, namely Intensity (4096), LBP
(3304), Gabor (6750).

» Wikipedia Article: Wikipedia Article [58] is a dataset composed of featured articles selected
from Wikipedia. It contains 693 samples in 10 categories. There are two views in Wikipedia
Article, with feature dimensions of 128 and 10 respectively.

The specific information of these five datasets is shown in Table 1, where d1, d2, d3, d4, d5,
d6 is the number of features in each view, n is the number of samples, and ¢ is the number of
clusters.

4.2 Comparison algorithms and evaluation indicators

In this paper, in order to prove the effectiveness of our proposed RMVCP algorithm, we com-
pare the RMVCP algorithm with some other state-of-the-art algorithms. These algorithms
include single-view spectral clustering (SC), connected feature methods (CF), Auto-weighted
Multiple Graph Learning (AMGL) [49], One-step Multi-view Spectral Clustering (OMSC)
[34], Multi-view Concept Clustering (MVCC) [59], Multi-View Clustering via Deep Matrix
Factorization (MVC-DMF) [60], Deep Matrix Factorization based Solution (DMFClusts) [61],
Binary Multi-view Clustering (BMVC) [62], Multi-graph Fusion for Multi-view Spectral Clus-
tering (GFSC) [41], Multi-View Clustering in Latent Embedding Space (MCLES) [63], Multi-
view clustering via deep concept factorization (MCDCEF) [64].

Table 1. The specific details of the five datasets ORL, MSRC, HW, Yale, Wikipedia Article.

d1 d2 d3 d4 d5 de n c
ORL 512 59 864 254 400 40
MSRC 1302 48 512 100 256 210 210 7
HW 216 76 64 6 240 47 2000 10
Yale 4096 3304 6750 165 15
Wikipedia Article 128 10 693 10

https://doi.org/10.1371/journal.pone.0269878.t001
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In order to verify the clustering performance of each algorithm, the evaluation criteria we
adopt in this paper are Accuracy (Acc), Normalized Mutual Information (NMI), Purity
[65]. The calculation methods of these performance metrics are as follows:

Acc is used to verify whether the obtained label is consistent with the real label provided by
the data:

n

> (&, map(o)))
Acc=-~24
N
where Z' is the label after clustering, o, is the true label, n is the total number of data points, 7 is
the indicator function.
NMLI: First define A and B as two random variables, H(A) and H(B) are their corresponding
entropy respectively, then use the following formula to calculate NMI:

I(A, B)

where I(A, B) represents the mutual information between A and B. The larger the value, the
better the performance.

Purity: Purity is defined as the proportion of documents that are correctly clustered to the
total documents. The formula is as follows:

1 &
purity = NZmaxH?i Nngl
i—1

b; represents the i-th cluster and g; represents the classification that has the maximum count
for cluster b;.

4.3 Evaluation of experimental results

We conduct experiments on five datasets ORL, MSRC, HW, Yale and Wikipedia Article, and
the compared algorithms are SC, CF, AMGL, OMSC, MVCC, MVC-DMF, DMFClusts,
BMVC, GFSC, MCLES, MCDCEF. Tables 2-4 respectively shows the comparison of the Acc,
NM]I, and Purity results of the RMVCP algorithm and other algorithms on the five data sets.
The best results are highlighted in bold and the second-best results are underlined. Figs 4-6
shows the histogram comparison of the Acc, NMI, and Purity results of all algorithms on the
five data sets.

o It can be seen from the experimental results that compared to multi-view clustering, the clus-
tering performance of single-view clustering is worse than that of multi-view clustering. In
these five data sets, the clustering performance of the spectral clustering algorithm for each
view is not very satisfactory. From the Acc results, for ORL, MSRC, HW, Yale, Wikipedia
Article data sets, the best spectral clustering results are 25.87%, 22.66%, 7.26%, 24.02%,
2.78% lower than RMVCP, respectively. This fully shows that the RMVCP algorithm is bet-
ter than the single-view spectral clustering algorithm.

o For the feature connection method, all the features are connected together and single-view
spectral clustering is performed on them. This method simply superimposes the features
together, and the Acc results on the five data sets are 26,3%, 36.85%, 20.33%, 38.62%, 1.24%
lower than the RMVCP algorithm respectively. This fully illustrates the importance of
assigning weights to views.
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Table 2. Comparison of algorithms on five datasets for Acc.

ORL MSRC HW Yale Wikipedia Article
SC (1) 53.28 33.00 73.44 24.14 17.36
SC(2) 44.93 56.00 71.23 37.80 52.63
SC(3) 54.63 50.00 63.49 25.25 -
SC (4) 39.60 57.86 10.84 - -
SC (5) - 28.33 63.44 - -
SC (6) - 60.67 75.49 - -
CF 54.20 46.48 62.42 23.20 54.17
AMGL 54.00 72.86 71.13 41.98 38.23
OMSC 39.00 31.43 12.35 16.15 22.08
MVCC 67.75 75.71 84.11 21.77 58.66
MVC-DMF 41.16 36.27 42.07 47.23 43.72
DMFClusts 41.75 46.71 50.93 15.37 23.13
BMVC 56.93 39.90 27.18 29.25 19.29
GFSC 63.68 56.43 70.48 55.88 49.61
MCLES 76.25 74.29 ~1 6.67 54.11
MCDCF 70.25 82.76 ~1 59.94 45.80
RMVCP 80.50 83.33 82.75 61.82 55.41

1

‘~’ indicates that the running time of the algorithm exceeds one hour, and the following is the same.

https://doi.org/10.1371/journal.pone.0269878.t002

« Compared with these multi-view clustering algorithms, in general, the RMVCP algorithm is
better than other multi-view clustering algorithms. From the Acc results, the MVCC algo-
rithm is second only to the RMVCP algorithm, which shows that the multi-view conceptual
clustering method has good clustering performance in the multi-view clustering, and the

RMVCP algorithm is superior to the conceptual clustering method.

Table 3. Comparison of algorithms on five datasets for NMI.

ORL MSRC HW Yale Wikipedia Article
SC(1) 74.14 21.46 77.62 18.12 5.33
SC(2) 67.28 46.17 72.12 37.62 49.81
SC(3) 74.31 43.45 63.05 20.64 -
SC (4) 57.15 58.23 1.06 - -
SC (5) - 15.14 67.03 - -
SC (6) - 52.19 80.67 - -
CF 74.57 41.26 64.92 17.61 51.09
AMGL 7591 73.20 78.69 43.61 26.60
OMSC 53.93 20.74 22.32 6.87 35.78
MVCC 84.35 65.25 78.81 11.92 51.49
MVC-DMF 60.81 19.55 46.48 45.51 44.75
DMFClusts 63.66 32.81 46.20 3.41 17.32
BMVC 73.91 21.23 13.96 21.75 7.84
GFSC 81.83 51.05 74.19 60.67 43.15
MCLES 88.58 70.40 ~ 0 46.90
MCDCF 85.30 76.06 ~ 64.22 34.82
RMVCP 89.07 84.25 87.62 64.42 51.58

https://doi.org/10.1371/journal.pone.0269878.t003
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Table 4. Comparison of algorithms on five datasets for Purity.

ORL MSRC HW Yale Wikipedia Article
SC (1) 61.63 35.95 77.93 25.08 19.51
SC(2) 50.55 58.00 72.51 41.35 56.46
SC(3) 60.80 54.14 66.15 26.88 -
SC (4) 44.15 63.57 11.13 - -
SC (5) - 30.76 66.73 - -
SC (6) - 64.19 78.99 - -
CF 61.03 48.48 65.74 24.68 58.86
AMGL 62.50 78.57 74.88 44.08 41.00
OMSC 49.00 34.29 29.75 16.92 44.16
MVCC 72.25 75.71 85.00 23.09 61.31
MVC-DMF 43.38 39.51 52.88 50.99 51.00
DMFClusts 47.20 50.71 55.58 19.12 28.24
BMVC 59.40 40.10 28.46 29.95 21.31
GFSC 78.38 74.71 82.27 69.70 62.29
MCLES 81.25 79.52 ~ 6.67 56.13
MCDCF 75.73 82.76 ~ 61.39 48.60
RMVCP 85.00 83.81 86.90 61.82 59.88

https://doi.org/10.1371/journal.pone.0269878.t004

« The GFSC algorithm uses a self-representation method to generate the similarity matrix of
each view, without performing the second fusion, and finally uses an additional spectral clus-
tering step to generate the final clustering result. It can be seen from the results that the clus-
tering performance of the GFSC algorithm is worse than that of the RMVCP algorithm,
which indicates that the secondary fusion can allocate the weight of views more reasonably

and reduce the influence of noise information. At the same time, in terms of accuracy, the
performance of directly generating clustering results is better than using additional cluster-

ing steps.

o AMGL is a self-weighted graph learning method with good clustering performance, but only

one weight assignment is performed in the clustering process. It can be seen from the results
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Fig 4. A histogram comparison of the Acc results of all algorithms on the five datasets.

https://doi.org/10.1371/journal.pone.0269878.g004
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Fig 5. A histogram comparison of the NMI results of all algorithms on the five datasets.
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Fig 6. A histogram comparison of the Purity results of all algorithms on the five datasets.
https://doi.org/10.1371/journal.pone.0269878.g006

that the RMVCP algorithm is superior to the AMGL algorithm in all aspects, which illus-
trates the importance of the secondary distribution of weights.

o MCLES searches for the potential embedding space of data to explore the global information
of data. Concept decomposition and deep learning are applied to multi-view clustering by
MCDCEF. The experimental results reveal that the running time of MCLES and MCDCEF on
the HW dataset with 2000 data points is more than an hour, which indicates that the two
algorithms cannot deal with a slightly larger dataset, and RMVCP can deal with this kind of
dataset.

4.4 Weight distribution analysis and convergence speed in the process of
RMVCP-2

The weight distribution of each view plays a vital role in the clustering performance of multi-
view clustering. The RMVCP algorithm will assign the weight of each view twice, which will
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Fig 7. The change of the weight w of each view on the five datasets in the RMVCP-1 process.
https://doi.org/10.1371/journal.pone.0269878.g007

make up for the defect of unreasonable weight assignment that may be caused by assigning the
weight once. Fig 7 shows the change of the weight w of each view on the five datasets in the
RMVCP-1 process. Fig 8 demonstrates the change of the weight a""’ of each view on the five
datasets in the RMVCP-2 process.

In the RMVCP-1 process, most of the views of the four datasets ORL, MSRC, HW, and
Wikipedia Article are assigned weights with higher discrimination. In the RMVCP-2 process,
MSRC, HW, and Wikipedia Article also assign a higher discrimination weight to each view,
which indicates that on these three data sets, it is not enough to assign weights once to them. A
second weight assignment process is needed to achieve a more reasonable weight assignment.
In Yale’s two weight assignment processes, the weights of the three views are not much differ-
ent, which shows that the quality of the three views may be similar. For the ORL data set, the
weight distribution in the RMVCP-2 process is not much different, indicating that the data set
may be easier to distinguish without the need for two weight distribution processes.

Fig 9 shows the change of the objective function value of RMVCP-2 on five data sets of
ORL, MSRC, HW, Yale, and Wikipedia Article. Obviously, the convergence speed of the
objective function on the five data sets is very fast. The four data sets of ORL, HW, Yale, and
Wikipedia Article all converged within five iterations. The MSRC data set has a relatively slow
convergence rate, converging around 15 iterations.

4.5 Visual analysis of unified matrices U; and U,

To verify the effectiveness of double fusion for weight assignment, we visualize the U, pro-
duced by the RMVCP-1 process and the U, produced by the RMVCP-2 process, respectively.
Since both U, and U, are subjected to the Constrained Laplacian Rank operation, the better
the clustering performance, the clearer the block structure of U; and U,. Figs 10 and 11 shows
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Fig 10. Visual analysis of unified matrices U, and U, on HW.
https://doi.org/10.1371/journal.pone.0269878.g010

Fig 11. Visual analysis of unified matrices U; and U, on ORL.
https://doi.org/10.1371/journal.pone.0269878.9011

the block structure of U; and U, on HW and ORL. It is obvious from Figs 10 and 11 that U,
has a clearer block structure and less noisy data than U;. This shows that RMVCP-2 is a neces-
sary and effective step to improve clustering performance due to its better weight assignment
of views and reduction of noisy data.

4.6 Parameter analysis

There are three hyperparameters in the RMVCP algorithm, namely @, 5, and , all of which
need to be set in advance before the experiment. The value of y will not change the clustering
results in the actual experiment. We set y to 0.01 in the experiment. Fig 12 shows the influence
of the changes of hyperparameters @, 3, and ¥ on the results of Acc on the five datasets. After
doing a lot of experiments, we found that the best hyperparameters ¢, B, and y on ORL are set
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ORL MSRC HW

Wikipedia Article

Fig 12. The influence of the changes of hyperparameters &, §, and y on the results of Acc on the five datasets.

https://doi.org/10.1371/journal.pone.0269878.9012

to 100, 1000, and 0.01. On MSRC, the parameters are set to 0.1, 0.1, 0.1. The parameter setting
on HW is 1,100,0.01. The parameter is set to 1, 10, 0.01 on Yale. The parameters on Wikipedia
Article are setto 1, 1, 0.01.

5. Discussion

Extensive experiments have verified that the clustering performance of RMVCP algorithm is
better than that of other state-of-the-art algorithms, indicating the effectiveness of twice weight
allocation for each view and combination with tissue-like P system. The quality of each view is
irregularity, and RMVCP performs two weight assignment operations on each view. The
results and effects are revealed in the experiment to verify its effectiveness. In addition to the
better accuracy of the RMVCP algorithm, RMVCP can also handle a slightly larger dataset
rather than MCLES and MCDCEF. However, three parameters need to be set in advance in
RMVCP algorithm. It can be seen from parameter sensitivity experiment that RMVCP algo-
rithm is sensitive to @ and 8 on some datasets, which is the deficiency of RMVCP algorithm.
Therefore, we will focus on the parameter problem of the algorithm in the future, and strive to
reduce the number of parameters and weaken the influence of different parameter values on
clustering performance.

6. Conclusion and future research

In this paper, in order to solve the problem of view weight distribution and noise reduction in
multi-view clustering, Reweighted multi-view clustering with tissue-like P system (RMVCP)
are proposed. Inspired by multi-view subspace clustering and graph-based multi-view cluster-
ing, RMVCP performs a two-step operation. In the first step (RMVCP-1), the self-representa-
tion method is used to construct the similarity matrix of each view, and then the fusion
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operation is performed. In the second step (RMVCP-2), the updated similarity matrix of each
view generated in the process of RMVCP-1 is used as input for the second fusion operation.

Correspondingly, the weight of each view has been allocated more reasonably. At the same
time, we combine the RMVCP algorithm with the tissue-like P system, and use the computa-
tional parallelism of the tissue-like P system to improve the computational efficiency of the
RMVCP algorithm. In the future, we can use the idea of secondary fusion in some other state-

of-the-art multi-view clustering algorithms, and at the same time, we can combine multiple

models in membrane computing with clustering algorithms.
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