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Abstract

Multi-view clustering has received substantial research because of its ability to discover het-

erogeneous information in the data. The weight distribution of each view of data has always

been difficult problem in multi-view clustering. In order to solve this problem and improve

computational efficiency at the same time, in this paper, Reweighted multi-view clustering

with tissue-like P system (RMVCP) algorithm is proposed. RMVCP performs a two-step

operation on data. Firstly, each similarity matrix is constructed by self-representation

method, and each view is fused to obtain a unified similarity matrix and the updated similarity

matrix of each view. Subsequently, the updated similarity matrix of each view obtained in

the first step is taken as the input, and then the view fusion operation is carried out to obtain

the final similarity matrix. At the same time, Constrained Laplacian Rank (CLR) is applied to

the final matrix, so that the clustering result is directly obtained without additional clustering

steps. In addition, in order to improve the computational efficiency of the RMVCP algorithm,

the algorithm is embedded in the framework of the tissue-like P system, and the computa-

tional efficiency can be improved through the computational parallelism of the tissue-like P

system. Finally, experiments verify that the effectiveness of the RMVCP algorithm is better

than existing state-of-the-art algorithms.

1. Introduction

Membrane computing [1–5], as a branch of natural computing, aims to abstract computa-

tional models from the structure and function of biological cells and from the collaboration of

cell groups such as organs and tissues. Membrane computing has been developed so far, and it

mainly includes three basic computing models: cell-like P system [6], tissue-like P system [7,

8] and neuro-like P system [9, 10]. In the process of calculation, each cell acts as an indepen-

dent unit, and each unit runs independently without interfering with each other [11]. The

entire membrane system runs in extremely parallel mode. The tissue-like P system consists of

cells and environment containing objects and rules. The movement of objects from cell to cell

or cell to environment is carried out through the rules in extremely parallel execution. The tis-

sue-like P system can be combined with other algorithms to improve the computational effi-

ciency of the algorithm thanks to the computational parallelism of the tissue-like P system.
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Clustering [12–15] is a tool of machine learning and artificial intelligence, which divides a

group of data points into corresponding clusters, so that the similarity of data points in clusters

is high, and lower similarity between clusters. It is an unsupervised learning technique. a great

deal of single-view clustering methods have been proposed, such as spectral clustering [16–

18], graph clustering [19, 20], subspace clustering [21], k-means clustering [22] and so on.

With the deep research of clustering, the combination of clustering and deep learning methods

and the application of clustering have been widely studied and achieved good clustering per-

formance. Network clustering is related to many real applications, such as social community

detection [23]; and disease module identification [24]. Wang et al. [25] proposed a single-cell

clustering model based on denoising autoencoder and graph convolution network.

With the development of science and technology, more and more data are represented by

multiple views, which are known as multi-view data. [26]. Compared with single-view cluster-

ing, multi-view clustering [27–32] has received extensive attention due to its better clustering

performance. So far, a variety of multi-view clustering methods have been proposed. Multi-

view clustering methods can be roughly divided into the following categories: multi-view k-

means clustering [33], multi-view spectral clustering [34], multi-view subspace clustering [28,

30, 35], multi-view graph clustering [36, 37], multi-task multi-view clustering [38], etc. Multi-

view subspace clustering and multi-view graph clustering have been widely studied owing to

their satisfactory clustering performance. Self-representation model has achieved com-

mendable progress in the study of single-view subspace clustering, which regards each data

point as a linear combination of data. The subspace representation matrix S, which is also

regarded as the similarity matrix, can be obtained as follows:

min
S
k X � XS k2

F þa k S k
2

F ð1Þ

where X is the original data matrix. Guo et al. [39] extended the single-view self-representation

model to multi-view clustering, which assumes that samples from different categories are

embedded in independent subspaces. Therefore, the fused multi-view self-representation fea-

ture should be a block diagonal. The noise information in the data has always been the main

factor affecting the clustering performance. In order to alleviate the impact of noise informa-

tion on the clustering performance and make better use of the information of each view, schol-

ars have proposed many methods. For example, Yin et al. [40] used a more direct and intuitive

block diagonal regularization to preserve the underlying structure of each view, and at the

same time introduced the Cauchy loss function to deal with noise information. The underlying

public structure of multi-view data can be effectively retained by the derived consistency repre-

sentation matrix, and is robust to noise information and data damage. In addition, the cluster-

ing performance will also be affected by the process of fusing the similarity matrix. Kang et al.

[41] proposed a new multi-view clustering model in which the fusion graph approximates the

original graph of each individual view but maintains an explicit cluster structure. The existing

multi-view subspace clustering method still has a problem. After getting the similarity matrix

of each view and the final uniform matrix, the second operation is implemented, that is, apply-

ing additional clustering algorithms (usually spectral clustering algorithms) to the uniform

matrix, which will affect the clustering performance. Zhang et al. [42] proposed a Consensus

One-step Multi-view Subspace Clustering model, which can solve the defect of poor clustering

performance caused by the two-step operation.

Graph-based multi-view clustering method is one of the most popular multi-view clustering

methods. In this method, the similarity matrix of each view is first constructed and merged

into a unified matrix, and then an additional clustering algorithm or other methods are applied

to the unified matrix to acquire clustering results. The construction of the similarity matrix of
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each view is a very significant step, the reason is that the quality of the similarity matrix of each

view has a great impact on the final clustering performance. Many scholars have proposed

some methods for constructing similarity matrix, such as k-nearest neighbor algorithm(k-

NN), Clustering with Adaptive Neighbors [12], etc. The construction of similarity matrix is

affected by many factors, such as noise information and outliers, similarity metrics, etc. Huang

et al. [43] proposed a new model that simultaneously performs multi-view clustering tasks and

learns similar relationships in the kernel space. If there are c clusters, the target optimal graph

can be directly divided into precise c connected components. In addition, the model can auto-

matically assign appropriate weights to each view without additional parameters. The alloca-

tion of weights is an important topic in machine learning. For example, Liu et al. [44]

proposed a new weight initialization method. Weight allocation in multi-view clustering is

also significant, and the method in this paper will focus on the weight allocation of each view.

In the above-mentioned multi-view clustering algorithms, the weight distribution of each

view and the weakening of noise data have not been effectively processed. Therefore, inspired

by multi-view subspace clustering and graph-based multi-view clustering, in order to more

effectively assign the weight of each view, Reweighted multi-view clustering with tissue-like P

system (RMVCP) algorithm is proposed in this paper. RMVCP performs two fusion opera-

tions on each view. In the first fusion process, the self-representation matrix of each view is

first constructed by the self-representation method, which can also be regarded as the similar-

ity matrix of each view. Then assign appropriate weights to each view to fuse the similarity

matrix of each view into a unified matrix. This operation is an iterative operation. Finally, the

updated unified matrix and the updated similarity matrix of each view are generated. In the

second fusion operation, the updated similarity matrix of each view generated in the first oper-

ation is used as input, and the appropriate weights are assigned to each view again to generate

the final matrix. At the same time, Constrained Laplacian Rank (CLR) [45] is applied to the

final matrix to directly generate clustering results without additional clustering steps (such as

K-means). In addition, in order to improve the computational efficiency of the RMVCP algo-

rithm, the RMVCP algorithm is integrated with the tissue-like P system. Fig 1 shows the

RMVCP process without tissue-like P system. Fig 2 shows the RMVCP algorithm process in

the framework of the tissue-like P system.

In summary, the contributions of our work are listed as follows:

• In order to assign weights to each view more reasonably, all views will be merged twice. The

two fusion operations are iterative processes, which can assign more reasonable weights to

each view.

• Constrained Laplacian Rank (CLR) are imposed on the unified matrix after the second

fusion. Therefore, the clustering results can be directly output without applying additional

clustering algorithms, avoiding the suboptimal solution of the existing two-step method.

• The RMVCP algorithm is integrated with the tissue-like P system, and use the computa-

tional parallelism of the tissue-like P system to improve the computational efficiency of the

algorithm.

• The RMVCP algorithm integrates multiple processes into one framework. Experiments on

several datasets prove that the clustering performance of our algorithm is better than other

state-of-the-art algorithms.

The rest of this paper is organized as follows. The related research on multi-view clustering

and the basic definition of the tissue-like P system are introduced in Section 2; In Section 3,

RMVCP method is proposed; Comparative experiments were conducted to verify the
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Fig 1. The RMVCP process without tissue-like P system.

https://doi.org/10.1371/journal.pone.0269878.g001

Fig 2. The RMVCP algorithm process in the framework of the tissue-like P system.

https://doi.org/10.1371/journal.pone.0269878.g002
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effectiveness of the RMVCP algorithm in Section 4; At the end of the paper, we conclude in

Section 5 and point out what we can do in the future.

2. Related work

2.1 Multi-view clustering

Currently, the most researched multi-view clustering methods are multi-view subspace clus-

tering and graph-based multi-view clustering. Both multi-view subspace clustering and graph-

based multi-view clustering have good clustering performance. Our RMVCP algorithm is also

inspired by these two clustering methods. Multi-view subspace clustering uses multiple low-

dimensional subspaces to represent high-dimensional data. Wang et al. [46] proposed Exclu-

sivity-Consistency Regularity Multi-view Subspace Clustering (ECMSC). Many methods focus

on the fusion of multiple views, without considering the direct consistency and difference

information of the views. ECMSC considers a kind of exclusive information between views, so

as to achieve information complementarity, which is helpful to improve the clustering perfor-

mance. With the study of the potential representation of the data, Zhang et al. [47] proposed

Latent Multi-view Subspace Clustering (LMSC). LMSC explores a latent representation of

multi-view data, and then constructs a subspace representation from the latent representation.

Zhang et al. integrated these two processes into an algorithm framework, while also reducing

the impact of noise. High-dimensional data has always been a challenge for multi-view cluster-

ing. In order to cluster high-dimensional data more effectively, Wang et al. [48] proposed

Multi-view Subspace Clustering with Intactness-Aware Similarity (MSC_IAS). MSC_IAS

reduces the data dimension while preserving the data information, integrates it into a complete

space, and constructs the similarity matrix. Then apply a clustering algorithm to the similarity

matrix. This method can effectively process high-dimensional data. In order to more efficiently

use the information across multiple views, Kang et al. [41] proposed Multi-graph Fusion for

Multi-view Spectral Clustering (GFSC). GFSC can explore heterogeneous information

between views, construct a similarity matrix with a self-representation method, and perform

views fusion and spectral clustering at the same time. The noise information in the data greatly

affects the clustering performance. In order to be able to reduce the noise information, Zhang

et al. [42] proposed Consensus One-step Multi-view Subspace Clustering (COMVSC),

COMVSC optimally integrates discriminative partition-level information, which can effec-

tively reduce the impact of noise information. These state-of-the-art algorithms show good

clustering performance, but the common defect is that only one fusion operation is performed

on each view.

The graph-based multi-view clustering method first constructs the similarity matrix of each

view, then merges each view into a unified matrix, and finally applies additional clustering

algorithms or other methods to the unified matrix to obtain the clustering results. The con-

struction of the similarity graph of each view is a very important step. Many scholars have pro-

posed some methods for constructing similarity graphs, such as k-nearest neighbor algorithm

(k-NN), Clustering with Adaptive Neighbors (CAN) [12], etc. On the other hand, the method

of fusing each similarity graph is also very important. But similarly, the existing multi-view

graph clustering method only merges each view once, so it does not achieve good clustering

performance. Nie et al. [49] proposed the Parameter-Free Auto-Weighted Multiple Graph

Learning (AMGL). AMGL solves the problem of multiple parameters in the fusion process,

and automatically assigns the weight of each view on the basis of modifying the traditional

spectral clustering method. Graph-based multi-view clustering methods need to apply addi-

tional clustering algorithms to obtain clustering results, and the two-step operation will affect

the clustering performance. Nie et al. [50] proposed Self-weighted Multiview Clustering
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(SwMC). SwMC automatically assigns weights to each view without prior knowledge. At the

same time, the clustering results are directly obtained without additional clustering algorithms.

In addition, the quality of the similarity graph is affected by noisy data, which in turn affects

the clustering results. Nie et al. [51] proposed Multi-View Clustering and Semi-Supervised

Classification with Adaptive Neighbours (MLAN). MLAN obtains the final graph for cluster-

ing by learning the local manifold structure to alleviate the noise problem. Wang et al. [37]

proposed GMC: Graph-Based Multi-View Clustering (GMC). GMC jointly builds multiple

view graphs and fusion graph, and automatically assign weights to each view. Obviously, these

state-of-the-art multi-view graph clustering algorithms only perform one fusion operation.

2.2 Tissue-like P system

The tissue-like P system is similar to a graph structure. In the tissue-like P system, each cell

and environment are equivalent to the nodes of the graph, and the communication channels

between cell to cell and cell to environment are equivalent to the edge of the graph. The calcu-

lation process of the tissue-like P system is to perform calculation operations in cells through

rules, and then apply certain rules to transfer objects between cells and cells or between cells

and the environment through communication channels. The basic definition of the tissue-like

P system is as follows:

P ¼ ðO;K;o1; . . . ;om;E; ch; ðsði;jÞÞði;jÞ2ch; ðRði;jÞÞði;jÞ2ch; i0Þ ð2Þ

(1) O represents a finite multiset of objects;

(2) K represents the states of the alphabet;

(3) ωi, 1� i�m represents the finite multiset of objects in the initial state of cells 1, . . .,m;

(4) E� O represents a copy of any number of symbolic objects in the environment;

(5) ch� {(i, j)|i, j 2 {0, 1, . . ., m}, i 6¼ j} represents the communication channel between cells

and cells and between cells and the environment;

(6) s(i, j) is the initial state of the channel (i, j);
(7) R(i, j) is a finite co/inverse transportation rule of the form (s, x/y, s0), where s, s0 2 K, x,

y 2 O�;
(8) i0 2 {1, . . ., m}is the output cell.

3. Reweighted multi-view clustering with tissue-like P system

(RMVCP)

Different from exploring the local information of data, the exploration of global information

of data can better grasp the relationship between data points, which is the motivation for us to

use the self-representation method to construct the similarity matrix of each view. Moreover,

the quality of each view is uneven, and it is undesirable to treat each view equally. This

prompted us to assign weight to each view. Nevertheless, twice weighting each view is neces-

sary to improve clustering accuracy. In addition, the improved multi-view clustering algorithm

is combined with tissue-like P system to improve the computational efficiency of the algo-

rithm, which is due to the parallel computing ability of tissue-like P system. Therefore, we pro-

pose Reweighted multi-view clustering with tissue-like P system (RMVCP) in this paper,

where RMVCP-1 refers to the first weight allocation process and RMVCP-2 is the second

weight allocation for each view.
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3.1 The first fusion process of the RMVCP model (RMVCP-1)

In the RMVCP-1 process, the similarity matrix of each view is constructed by a self-representa-

tion method [41]. Self-representation method treats each data point as a linear combination of

the data itself. Given data matrix X 2 Rd×n. The similarity matrix S can be obtained by solving:

min
S
k X � XS k2

F þa k S k
2

F s:t: S � 0 ð2Þ

where α is a trade-off parameter. Then we extend it to multi-view clustering:

min
Sv

Xm

v¼1

k Xv � XvSv k2

F þa k S
v k2

F s:t: Sv � 0 ð3Þ

where m is the number of the views. The similarity matrix of each view obtained by this for-

mula reflects different aspects of the original data. On the basis of this formula, the construc-

tion of the unified matrix U1 is as follows:

U1 ¼

Xm

v¼1

Sv

m

ð4Þ

Obviously, the construction of the unified matrix is simply adding the similarity matrix of

each view and dividing by the number of views without considering the weight of each view.

This will lead to poor clustering performance. Therefore, we calculate the weight of each view

in the process of graph fusion. The formula is as follows:

min
U1

Xm

v¼1

wv k S
v � U1 k

2

F ð5Þ

where wv is the weight of each view. In this way, the unified matrix can better reflect the char-

acteristics of the data with good views are given large weights and bad views are given small

weights. The expression of weight is:

wv ¼
1

2 k Sv � U1kF
ð6Þ

Then the goal formula is proposed by combining Eqs 3 and 5:

min
Sv ;U1;F

Xm

v¼1

k Xv � XvSv k2

F þa k S
v k2

F þbwv k S
v � U1 k

2

F

s:t: Sv � 0

ð7Þ

By solving Eq 7, we can learn the similarity matrix of each view and the final unified matrix

after weighting by an iterative algorithm. Finally, the unified matrix is fed to the spectral clus-

tering algorithm.

For clustering, an ideal situation is that the number of connected components of the simi-

larity matrix is equal to the number of clusters. When this situation is met, that is, the number

of connected components of the similarity matrix is equal to k, the data point can be exactly

divided into k clusters. So here we introduce Theorem 1 [52, 53].

Theorem 1. The multiplicity of the eigenvalue 0 of the Laplacian matrix of the similarity
matrix is equal to the number of connected components in the graph of the similarity matrix.
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According to Theorem 1, we know that when the number of eigenvalues 0 of the similarity

matrix is k, the number of connected components is exactly k. From the Ky Fan’s Theory [54],

we get the final expression of Eq 7 as follows(The specific process is shown in the RMVCP-2

process):

min
Sv ;U1 ;F

Xm

v¼1

k Xv � XvSv k2

F þa k S
v k2

F þbwv k S
v � U1 k

2

F þgTrðF
T
U1
LU1

FU1
Þ

s:t: Sv � 0;FT
U1
FU1
¼ I

ð8Þ

where FU1
is the spectral embedding matrix, LU1

is the Laplacian matrix of the unified matrix,

and α, β, γ are regularization parameters.

Next, we optimize Eq 8:

We optimize each variable through an iterative method.

Updating Sv when FU1
and U1 are fixed. So Eq 7 becomes:

min
Sv

Xm

v¼1

k Xv � XvSv k2

F þa k S
v k2

F þbwv k S
v � U1 k

2

F ð9Þ

It can be seen from Eq 9 that each view is independent. So, we only consider one view at a

time. In order to update Sv, we perform the derivative operation on Eq 9 to obtain:

ðEq 9Þ
�
¼ � 2ðXvÞ

T
ðXv � XvSvÞ þ 2aSv þ 2bwvðS

v � U1Þ ð10Þ

Then we make Eq 10 equal to zero and we get:

Sv ¼ ððXvÞ
TXv þ aIþ bwvIÞ

� 1
ðbwvU1 þ ðX

vÞ
TXvÞ ð11Þ

where I is the identity matrix.

Updating U1 when FU1
and Sv are fixed. We obtain:

min
S

Xm

v¼1

bwv k S
v � U1 k þgTrðF

T
U1
LU1

FU1
Þ ð12Þ

After deriving [41], we can obtain:

U1ð:; iÞ ¼

P

v
wvS

vð:; iÞ �
gqi

4b
P

v
wv

ð13Þ

where qi 2 Rn×1 with the j-th entry qij ¼k FU1 i;:
� FU1 j;:

k2.

Updating FU1
when Sv and U1 are fixed. We need to solve the following problems:

min
FU1

TrðFT
U1
LU1

FU1
Þ s:t: FU1

TFU1
¼ I ð14Þ

FU1
is composed of the eigenvectors corresponding to the first k smallest eigenvalues of the

Laplacian matrix. We terminate algorithm 1 when the number of iterations is greater than 200

or the relative change of U1 is less than 0.001. So far, we have calculated the similarity matrix

of each view that will be input to the next algorithm after the first iteration. The RMVCP-1

process is summarized in Algorithm 1.

Algorithm 1 RMVCP-1
Input: Data matrices: X1,. . ., Xm, parameters α > 0, β > 0, γ > 0.
output: Similarity matrices: S1,. . ., Sm, Unified matrix U1, FU1

.
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Initialize: Random matrices U1 and FU1
, wv = 1/m.

repeat
1: Update Sv by Eq 11 for each view.
2: For each element Svij ¼ maxðSvij; 0Þ.
3: Update U1 by Eq 13.
4: Update FU1

by Eq 14.
5: Update wv by Eq 6.

until stopping criterion is met.

3.2 The second fusion process of the RMVCP model (RMVCP-2)

RMVCP-1 continuously updates S1,. . ., Sm in an iterative manner until the algorithm con-

verges. We perform another fusion process again, and constantly update S1,. . ., Sm so that the

similarity matrix S1,. . ., Sm can better represent the characteristics of each view. We use the

updated S1,. . ., Sm obtained from RMVCP-1 as the input of RMVCP-2. The objective function

[50] is:

min
u2ij�0;u2i1n¼1

Xm

v¼1

aðvÞ k U2 � SðvÞ k2

F ð15Þ

where U2 is the unified matrix, and α(v) is the weight of the v-th view:

aðvÞ ¼
1

2 k U2 � SðvÞkF
ð16Þ

In this case, the unified matrix U2 is obtained after fusion, and additional clustering algo-

rithms are applied to the unified matrix U2, which will affect the final clustering performance.

Here we introduce the Constrained Laplacian Rank (CLR) method to avoid additional cluster-

ing algorithms and directly output the clustering results.

It can be seen from Theorem 1 that when the rank of the Laplacian matrix of the unified

matrix U2 is LU2
¼ n � c, where c is the multiplicity of the eigenvalue 0 of LU2

, the data points

can be directly divided into c clusters. So, Eq 15 becomes:

min
u2ij�0;u2i1n¼1;rankðLU2

Þ¼n� c

Xm

v¼1

aðvÞ k U2 � SðvÞ k2

F ð17Þ

It is very difficult to solve Eq 17. Let xiðLU2
Þ denote the i-th smallest eigenvalue of

LU2
:xiðLU2

Þ � 0 since LU2
is positive semi-definite. Then, rankðLU2

Þ ¼ n � c can be achieved if

Pc

i¼1

xiðLU2
Þ ¼ 0. From the Ky Fan’s Theory, we know:

Xc

i¼1

xiðLU2
Þ ¼ min

F2Rn�c ;FU2
TFU2

¼I
TrðFT

U2
LU2

FU2
Þ ð18Þ

So, Eq 17 becomes:

min
U2 ;FU2

Xm

v¼1

aðvÞ k U2 � SðvÞ k2

F þ2lTrðFT
U2
LU2

FU2
Þ

s:t: u2ij � 0; ui1n ¼ 1;FU2
2 Rn�c; FT

U2
FU2
¼ I

ð19Þ

The optimization of this formula is as follows:
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Updating FU2
when U2, α(v) is fixed. Eq 18 becomes:

min
FU2
2Rn�c;FTU2

FU2
¼I
TrðFT

U2
LU2

FU2
Þ

ð20Þ

FU2
is formed by the c eigenvectors corresponding to the first c smallest eigenvalues of LU2

.

Updating U2 when FU2
, α(v) is fixed. Eq 19 becomes:

min
u2ij�0;u2i1n¼1

Xm

v¼1

av
Xn

i;j¼1

ðu2ij � sðvÞij Þ
2
þ l
Xn

i;j¼1

k fU2 i
� fU2 j

k2

2
u2ij ð21Þ

It is obvious that Eq 21 is independent for each i, so we consider each i separately:

min
u2ij�0;u2i1n¼1

Xn

j¼1

Xm

v¼1

aðvÞðu2ij � sðvÞij Þ
2
þ l
Xn

j¼1

k fU2 i
� fU2 j

k2

2
u2ij ð22Þ

We denote rij ¼k fU2 i
� fU2 j

k2
2

for the purpose of avoiding Eq 22 that are too complicated.

So, Eq 22 can be written in vector form as:

min
u2i�0;u2i1n¼1

k u2i � ð
Xm

v¼1

aðvÞsðvÞi �
l

2
riÞ=
Xm

v¼1

aðvÞ k2

2 ð23Þ

The problem can be solved by an iterative algorithm. Algorithm 1 shows the process of the

second fusion.

Algorithm 2 RMVCP-2
Input: S1,. . ., Sm 2 Rn×n obtained by algorithm 1, number of clusters c.
output: U2 2 Rn×n with c connected components.
Initialize: the weight for each view aðvÞ ¼ 1

m, FU2
is composed of the

eigenvectors corresponding to the first c smallest eigenvalues of

LU2
¼ DU2

�
UT
2þU2

2
.

repeat
repeat
1: Calculate and update U2 by Eq 23.
2: Update FU2

by Eq 20
untill converge Update α(v) by Eq 16.

untill converge

RMVCP takes the similarity matrix S1,. . ., Sm of each view generated by the iterative update

process of Algorithm 1 as input into Algorithm 1, and can directly output the clustering

results.

3.3 Initial configuration of the tissue-like P system

In this paper, in order to improve the computational efficiency of the RMVCP algorithm, we

combine RMVCP with the tissue-like P system. We first set up the initial configuration of the

tissue-like P system in this paper.

• cell i, 1� i�m: Multiset of objects oi ¼ Xi;wi; FU1
;U1;

R1: Rule R1 uses Eq 11 to generate Sv, 1� v�m and send it to the cell (m+1);

R10: Rule R10 sends copies of α, β, I in the environment to cell m-1.

• cell (m+1): Multiset of objects ωm+1 = w1, . . ., wm, FU1
;

R2: Rule R2 uses Eq 13 to generate the updated U1 and send it to the cell (m+2);

R20: Rule R20 sends copies of β in the environment to the cell (m+1).
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• cell (m+2): Multiset of objects ωm+2 = X1, . . ., Xm w1, . . ., wm;

R1: Rule R1 uses Eq 11 to generate the updated Sv, 1� v�m and send it to the cell (m+1);

R10: Rule R10 sends copies of α, β, I in the environment to cell m-1.

R3: Rule R3 uses Eq 6 to generate the weight w1, . . ., wm for each view;

R4: Rule R4 uses Eq 14 to generate the updated object FU1
;

R40: Rule R40 sends the Sv, 1� v�m in the cell (m+2) to the cell (m+3). Rule R40 can only

be triggered when the relative change of U1 is less than 0.001.

• cell (m+3): ωm+3 = α1, . . . αm, FU2
;

R5: Rule R5 uses Eq 26 to generate U2 and send it to the cell (m+4). At the same time, rule R5

calculates the relative change of Eq 19.

• cell (m+4): R6: Rule R6 uses Eq 20 to generate the updated object FU2
;

R7: Rule R7 uses Eq 16 to generate updated object α1, . . ., αm;

• Environment:E ¼ a; b; g; I.

Fig 3 shows the initial configuration of the tissue-like P system.

Fig 3. The initial configuration of the tissue-like P system.

https://doi.org/10.1371/journal.pone.0269878.g003
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3.4 Computational process

• Step 1: In cells 1 to m, we first simultaneously apply the rule R10 to transfer the copies of α, β,

I in the environment to the membrane, and then apply the rule R1 to generate Sv, 1� v�m
and send it to the cell (m+1).

• Step 2: In cell (m+1), the rule R20 is applied to transfer the copy of β in the environment to

the membrane, and then the rule R2 is applied to generate U1 and send it to cell (m+2).

• Step 3: In this step, first apply the rule R3 to generate the updated weight w1, . . ., wm, and

then the rule R4 is applied to generate the updated FU1
. Next the rule R10 is applied to transfer

the copies of α, β, I in the environment to the cell (m+2), and then apply the rule R1 to pro-

duce the updated Sv, 1� v�m and send it to the cell (m+1). Then apply the rules in the cell

(m+1) again.

Steps 2 to 3 are a cyclic process.

• Step 4: When the conditions of triggering rule R40 are met, rule R40 is triggered, and the

updated Sv, 1� v�m is generated and sent to the cell (m+3). In the cell (m+3), after receiv-

ing the updated Sv, 1� v�m from the cell (m+2), the rule R5 is applied to generate U2 and

send it to the cell (m+4).

• Step 5: When the cell (m+4) receives the U2 sent from the cell (m+3), the rules R6 and R7 are

applied to generate updated FU2
and α1, . . ., αm, which are sent back to the cell (m+3). Then

apply rule R5 in the cell (m+3) again.

Steps 4 to 5 are a cyclic process.

• Step 6(Termination of calculation): The calculation is terminated when the relative change

of Eq 18 does not exceed 10−8. Then the updated U2 is output. The specific process is shown

by Algorithm 3.

Algorithm 3 RMVCP
Input: Data matrices: X1, . . ., Xm, parameters α > 0, β > 0, γ > 0, I.
output: Unified matrix U1, FU1

, U2 2 Rn×n with c connected components,
FU2

.
Initialize: Random matrices U1 and FU1

, wv = 1/m, random αv, 1 � v � m.
1: cell 1-m: R10, R1: Generate Sv, 1 � v � m and send it to the cell
(m+1);
repeat
2: cell (m+1): R20, R2: The updated U1 is generated and sent to the

cell (m+2);
3: cell (m+2): R3: The updated w1, . . ., wm are generated and sent to

the cell (m+1);
R4: The updated FU1

is generated and sent to the cell (m+1);
R10, R1: The updated Sv, 1 � v � m are generated and sent to the

cell (m+1).
untill Rule R40 is triggered, and the updated Sv, 1 � v � m are gener-
ated and sent to the cell (m+3).
repeat
4: cell (m+3): R5: The updated U1 is generated and sent to the cell

(m+4);
5: cell (m+4): R6: FU2

! cell (m+3);
R7: The updated α1, . . ., αm are generated and sent to the cell (m+3);

untill The condition for termination of calculation is met. Output U1.
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3.5 Convergence analysis of RMVCP-2

In this section we prove the convergence of RMVCP-2.

Lemma 1. For any positive numbers a and b, inequality 23 holds:

a �
a2

2b
� b �

b2

2b
ð24Þ

Proof. We use ~U2 to represent the updated U2 after each iteration. After the first iteration of

the loop, we get:

~U2 ¼ argmin
u2ij�0;u2i1n¼1;rankðLU2 Þ¼n� c

Xm

v¼1

aðvÞ k U2 � SðvÞ k2

F ð25Þ

Because of aðvÞ ¼ 1

2kU2 � SðvÞkF
, we obtain:

Xm

v¼1

k ~U2 � SðvÞ k2
F

2 k U2 � SðvÞkF
�
Xm

v¼1

k U2 � SðvÞ k2
F

2 k U2 � SðvÞkF
ð26Þ

From Lemma 1, we obtain:

Xm

v¼1

k ~U2 � SðvÞkF �
Xm

v¼1

k ~U2 � SðvÞ k2
F

2 k U2 � SðvÞkF

�
Xm

v¼1

k U2 � SðvÞkF �
Xm

v¼1

k U2 � SðvÞ k2
F

2 k U2 � SðvÞkF

ð27Þ

After deduction, we obtain:

Xm

v¼1

k ~U2 � SðvÞkF �
Xm

v¼1

k U2 � SðvÞkF ð28Þ

Therefore, it can be seen that the value of the objective function of each iteration will

decrease, and finally meet the KKT condition of the objective function, and converge to the

local optimal solution.

3.6 Complexity analysis

RMVCP-1:

The complexity of RMVCP-1 mainly comes from the update of S(v) and FU1
. When updat-

ing S(v), it costs O(n3) due to matrix multiplication and matrix inversion. In the process of

updating FU1
, the operation of singular value decomposition takes O(n3).

RMVCP-2:

The complexity of RMVCP-2 mainly comes from the process of updating the weights α(v)

and FU2
. The complexity of updating weight α(v) is O(mn2). When updating FU2

, it is necessary

to calculate the eigenvector of the Laplacian matrix of U2, so the complexity of updating FU2
is

O(cn2).
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4. Experiments

4.1 Datasets

In order to verify the clustering performance of our proposed RMVCP algorithm, we conduct

comparative experiments on five public datasets. The five datasets include ORL, MSRC, HW,

Yale, Wikipedia Article. The specific information of the five datasets is as follows:

• ORL: ORL [55] is an image dataset, which contains 400 images from 40 people. Each person

has 10 different images. ORL has four views, namely GIST (512), LBP (59), HOG (864) and

CENTRIST (254) (the dimensions of each view are in parentheses).

• MSRC: MSRC [56] is an image dataset. It contains 210 samples of 7 types. The 7 categories

are bicycle, tree, car, airplane, building, cow, face. There are 30 images in each category.

There are six views in MSRC, namely CENTRIST (1302), CMT (48), GIST (512), HOG

(100), LBP (256), SIFT (210).

• HW: HW [57] is an image dataset. It contains 2000 images in 10 categories. These 10 catego-

ries respectively show one of the 10 numbers “0–9”. There are 200 images in each category.

HW has 6 views, namely FAC (216), FOU (76), KAR (64), MOR (6), PIX (240), ZER (47).

• Yale: The Yale dataset [56] is an image dataset. It contains 165 samples in 15 categories. Each

category shows a different person, and each person has 11 different states, wearing glasses

and not wearing glasses, and so on. Yale has three views, namely Intensity (4096), LBP

(3304), Gabor (6750).

• Wikipedia Article: Wikipedia Article [58] is a dataset composed of featured articles selected

from Wikipedia. It contains 693 samples in 10 categories. There are two views in Wikipedia

Article, with feature dimensions of 128 and 10 respectively.

The specific information of these five datasets is shown in Table 1, where d1, d2, d3, d4, d5,

d6 is the number of features in each view, n is the number of samples, and c is the number of

clusters.

4.2 Comparison algorithms and evaluation indicators

In this paper, in order to prove the effectiveness of our proposed RMVCP algorithm, we com-

pare the RMVCP algorithm with some other state-of-the-art algorithms. These algorithms

include single-view spectral clustering (SC), connected feature methods (CF), Auto-weighted

Multiple Graph Learning (AMGL) [49], One-step Multi-view Spectral Clustering (OMSC)

[34], Multi-view Concept Clustering (MVCC) [59], Multi-View Clustering via Deep Matrix

Factorization (MVC-DMF) [60], Deep Matrix Factorization based Solution (DMFClusts) [61],

Binary Multi-view Clustering (BMVC) [62], Multi-graph Fusion for Multi-view Spectral Clus-

tering (GFSC) [41], Multi-View Clustering in Latent Embedding Space (MCLES) [63], Multi-

view clustering via deep concept factorization (MCDCF) [64].

Table 1. The specific details of the five datasets ORL, MSRC, HW, Yale, Wikipedia Article.

d1 d2 d3 d4 d5 d6 n c

ORL 512 59 864 254 - - 400 40

MSRC 1302 48 512 100 256 210 210 7

HW 216 76 64 6 240 47 2000 10

Yale 4096 3304 6750 - - - 165 15

Wikipedia Article 128 10 - - - - 693 10

https://doi.org/10.1371/journal.pone.0269878.t001
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In order to verify the clustering performance of each algorithm, the evaluation criteria we

adopt in this paper are Accuracy (Acc), Normalized Mutual Information (NMI), Purity

[65]. The calculation methods of these performance metrics are as follows:

Acc is used to verify whether the obtained label is consistent with the real label provided by

the data:

Acc ¼

Xn

i¼1

tðzi;mapðoiÞÞ

N

where zi is the label after clustering, oi is the true label, n is the total number of data points, τ is

the indicator function.

NMI: First define A and B as two random variables, H(A) and H(B) are their corresponding

entropy respectively, then use the following formula to calculate NMI:

NMIðA;BÞ ¼
IðA;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðAÞHðBÞ

p

where I(A, B) represents the mutual information between A and B. The larger the value, the

better the performance.

Purity: Purity is defined as the proportion of documents that are correctly clustered to the

total documents. The formula is as follows:

purity ¼
1

N

Xk

i¼1

maxjbi \ gjj

bi represents the i-th cluster and gj represents the classification that has the maximum count

for cluster bi.

4.3 Evaluation of experimental results

We conduct experiments on five datasets ORL, MSRC, HW, Yale and Wikipedia Article, and

the compared algorithms are SC, CF, AMGL, OMSC, MVCC, MVC-DMF, DMFClusts,

BMVC, GFSC, MCLES, MCDCF. Tables 2–4 respectively shows the comparison of the Acc,

NMI, and Purity results of the RMVCP algorithm and other algorithms on the five data sets.

The best results are highlighted in bold and the second-best results are underlined. Figs 4–6

shows the histogram comparison of the Acc, NMI, and Purity results of all algorithms on the

five data sets.

• It can be seen from the experimental results that compared to multi-view clustering, the clus-

tering performance of single-view clustering is worse than that of multi-view clustering. In

these five data sets, the clustering performance of the spectral clustering algorithm for each

view is not very satisfactory. From the Acc results, for ORL, MSRC, HW, Yale, Wikipedia

Article data sets, the best spectral clustering results are 25.87%, 22.66%, 7.26%, 24.02%,

2.78% lower than RMVCP, respectively. This fully shows that the RMVCP algorithm is bet-

ter than the single-view spectral clustering algorithm.

• For the feature connection method, all the features are connected together and single-view

spectral clustering is performed on them. This method simply superimposes the features

together, and the Acc results on the five data sets are 26,3%, 36.85%, 20.33%, 38.62%, 1.24%

lower than the RMVCP algorithm respectively. This fully illustrates the importance of

assigning weights to views.
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• Compared with these multi-view clustering algorithms, in general, the RMVCP algorithm is

better than other multi-view clustering algorithms. From the Acc results, the MVCC algo-

rithm is second only to the RMVCP algorithm, which shows that the multi-view conceptual

clustering method has good clustering performance in the multi-view clustering, and the

RMVCP algorithm is superior to the conceptual clustering method.

Table 2. Comparison of algorithms on five datasets for Acc.

ORL MSRC HW Yale Wikipedia Article

SC (1) 53.28 33.00 73.44 24.14 17.36

SC (2) 44.93 56.00 71.23 37.80 52.63

SC (3) 54.63 50.00 63.49 25.25 -

SC (4) 39.60 57.86 10.84 - -

SC (5) - 28.33 63.44 - -

SC (6) - 60.67 75.49 - -

CF 54.20 46.48 62.42 23.20 54.17

AMGL 54.00 72.86 71.13 41.98 38.23

OMSC 39.00 31.43 12.35 16.15 22.08

MVCC 67.75 75.71 84.11 21.77 58.66

MVC-DMF 41.16 36.27 42.07 47.23 43.72

DMFClusts 41.75 46.71 50.93 15.37 23.13

BMVC 56.93 39.90 27.18 29.25 19.29

GFSC 63.68 56.43 70.48 55.88 49.61

MCLES 76.25 74.29 � 1 6.67 54.11

MCDCF 70.25 82.76 � 1 59.94 45.80

RMVCP 80.50 83.33 82.75 61.82 55.41

1‘�’ indicates that the running time of the algorithm exceeds one hour, and the following is the same.

https://doi.org/10.1371/journal.pone.0269878.t002

Table 3. Comparison of algorithms on five datasets for NMI.

ORL MSRC HW Yale Wikipedia Article

SC (1) 74.14 21.46 77.62 18.12 5.33

SC (2) 67.28 46.17 72.12 37.62 49.81

SC (3) 74.31 43.45 63.05 20.64 -

SC (4) 57.15 58.23 1.06 - -

SC (5) - 15.14 67.03 - -

SC (6) - 52.19 80.67 - -

CF 74.57 41.26 64.92 17.61 51.09

AMGL 75.91 73.20 78.69 43.61 26.60

OMSC 53.93 20.74 22.32 6.87 35.78

MVCC 84.35 65.25 78.81 11.92 51.49

MVC-DMF 60.81 19.55 46.48 45.51 44.75

DMFClusts 63.66 32.81 46.20 3.41 17.32

BMVC 73.91 21.23 13.96 21.75 7.84

GFSC 81.83 51.05 74.19 60.67 43.15

MCLES 88.58 70.40 � 0 46.90

MCDCF 85.30 76.06 � 64.22 34.82

RMVCP 89.07 84.25 87.62 64.42 51.58

https://doi.org/10.1371/journal.pone.0269878.t003
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• The GFSC algorithm uses a self-representation method to generate the similarity matrix of

each view, without performing the second fusion, and finally uses an additional spectral clus-

tering step to generate the final clustering result. It can be seen from the results that the clus-

tering performance of the GFSC algorithm is worse than that of the RMVCP algorithm,

which indicates that the secondary fusion can allocate the weight of views more reasonably

and reduce the influence of noise information. At the same time, in terms of accuracy, the

performance of directly generating clustering results is better than using additional cluster-

ing steps.

• AMGL is a self-weighted graph learning method with good clustering performance, but only

one weight assignment is performed in the clustering process. It can be seen from the results

Table 4. Comparison of algorithms on five datasets for Purity.

ORL MSRC HW Yale Wikipedia Article

SC (1) 61.63 35.95 77.93 25.08 19.51

SC (2) 50.55 58.00 72.51 41.35 56.46

SC (3) 60.80 54.14 66.15 26.88 -

SC (4) 44.15 63.57 11.13 - -

SC (5) - 30.76 66.73 - -

SC (6) - 64.19 78.99 - -

CF 61.03 48.48 65.74 24.68 58.86

AMGL 62.50 78.57 74.88 44.08 41.00

OMSC 49.00 34.29 29.75 16.92 44.16

MVCC 72.25 75.71 85.00 23.09 61.31

MVC-DMF 43.38 39.51 52.88 50.99 51.00

DMFClusts 47.20 50.71 55.58 19.12 28.24

BMVC 59.40 40.10 28.46 29.95 21.31

GFSC 78.38 74.71 82.27 69.70 62.29

MCLES 81.25 79.52 � 6.67 56.13

MCDCF 75.73 82.76 � 61.39 48.60

RMVCP 85.00 83.81 86.90 61.82 59.88

https://doi.org/10.1371/journal.pone.0269878.t004

Fig 4. A histogram comparison of the Acc results of all algorithms on the five datasets.

https://doi.org/10.1371/journal.pone.0269878.g004
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that the RMVCP algorithm is superior to the AMGL algorithm in all aspects, which illus-

trates the importance of the secondary distribution of weights.

• MCLES searches for the potential embedding space of data to explore the global information

of data. Concept decomposition and deep learning are applied to multi-view clustering by

MCDCF. The experimental results reveal that the running time of MCLES and MCDCF on

the HW dataset with 2000 data points is more than an hour, which indicates that the two

algorithms cannot deal with a slightly larger dataset, and RMVCP can deal with this kind of

dataset.

4.4 Weight distribution analysis and convergence speed in the process of

RMVCP-2

The weight distribution of each view plays a vital role in the clustering performance of multi-

view clustering. The RMVCP algorithm will assign the weight of each view twice, which will

Fig 6. A histogram comparison of the Purity results of all algorithms on the five datasets.

https://doi.org/10.1371/journal.pone.0269878.g006

Fig 5. A histogram comparison of the NMI results of all algorithms on the five datasets.

https://doi.org/10.1371/journal.pone.0269878.g005
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make up for the defect of unreasonable weight assignment that may be caused by assigning the

weight once. Fig 7 shows the change of the weight w of each view on the five datasets in the

RMVCP-1 process. Fig 8 demonstrates the change of the weight α(v) of each view on the five

datasets in the RMVCP-2 process.

In the RMVCP-1 process, most of the views of the four datasets ORL, MSRC, HW, and

Wikipedia Article are assigned weights with higher discrimination. In the RMVCP-2 process,

MSRC, HW, and Wikipedia Article also assign a higher discrimination weight to each view,

which indicates that on these three data sets, it is not enough to assign weights once to them. A

second weight assignment process is needed to achieve a more reasonable weight assignment.

In Yale’s two weight assignment processes, the weights of the three views are not much differ-

ent, which shows that the quality of the three views may be similar. For the ORL data set, the

weight distribution in the RMVCP-2 process is not much different, indicating that the data set

may be easier to distinguish without the need for two weight distribution processes.

Fig 9 shows the change of the objective function value of RMVCP-2 on five data sets of

ORL, MSRC, HW, Yale, and Wikipedia Article. Obviously, the convergence speed of the

objective function on the five data sets is very fast. The four data sets of ORL, HW, Yale, and

Wikipedia Article all converged within five iterations. The MSRC data set has a relatively slow

convergence rate, converging around 15 iterations.

4.5 Visual analysis of unified matrices U1 and U2

To verify the effectiveness of double fusion for weight assignment, we visualize the U1 pro-

duced by the RMVCP-1 process and the U2 produced by the RMVCP-2 process, respectively.

Since both U1 and U2 are subjected to the Constrained Laplacian Rank operation, the better

the clustering performance, the clearer the block structure of U1 and U2. Figs 10 and 11 shows

Fig 7. The change of the weight w of each view on the five datasets in the RMVCP-1 process.

https://doi.org/10.1371/journal.pone.0269878.g007
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Fig 8. The change of the weight α(v) of each view on the five datasets in the RMVCP-2 process.

https://doi.org/10.1371/journal.pone.0269878.g008

Fig 9. The change of the objective function value of RMVCP-2 on five data sets of ORL, MSRC, HW, Yale, and

Wikipedia Article.

https://doi.org/10.1371/journal.pone.0269878.g009
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the block structure of U1 and U2 on HW and ORL. It is obvious from Figs 10 and 11 that U2

has a clearer block structure and less noisy data than U1. This shows that RMVCP-2 is a neces-

sary and effective step to improve clustering performance due to its better weight assignment

of views and reduction of noisy data.

4.6 Parameter analysis

There are three hyperparameters in the RMVCP algorithm, namely α, β, and γ, all of which

need to be set in advance before the experiment. The value of γ will not change the clustering

results in the actual experiment. We set γ to 0.01 in the experiment. Fig 12 shows the influence

of the changes of hyperparameters α, β, and γ on the results of Acc on the five datasets. After

doing a lot of experiments, we found that the best hyperparameters α, β, and γ on ORL are set

Fig 10. Visual analysis of unified matrices U1 and U2 on HW.

https://doi.org/10.1371/journal.pone.0269878.g010

Fig 11. Visual analysis of unified matrices U1 and U2 on ORL.

https://doi.org/10.1371/journal.pone.0269878.g011
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to 100, 1000, and 0.01. On MSRC, the parameters are set to 0.1, 0.1, 0.1. The parameter setting

on HW is 1,100,0.01. The parameter is set to 1, 10, 0.01 on Yale. The parameters on Wikipedia

Article are set to 1, 1, 0.01.

5. Discussion

Extensive experiments have verified that the clustering performance of RMVCP algorithm is

better than that of other state-of-the-art algorithms, indicating the effectiveness of twice weight

allocation for each view and combination with tissue-like P system. The quality of each view is

irregularity, and RMVCP performs two weight assignment operations on each view. The

results and effects are revealed in the experiment to verify its effectiveness. In addition to the

better accuracy of the RMVCP algorithm, RMVCP can also handle a slightly larger dataset

rather than MCLES and MCDCF. However, three parameters need to be set in advance in

RMVCP algorithm. It can be seen from parameter sensitivity experiment that RMVCP algo-

rithm is sensitive to α and β on some datasets, which is the deficiency of RMVCP algorithm.

Therefore, we will focus on the parameter problem of the algorithm in the future, and strive to

reduce the number of parameters and weaken the influence of different parameter values on

clustering performance.

6. Conclusion and future research

In this paper, in order to solve the problem of view weight distribution and noise reduction in

multi-view clustering, Reweighted multi-view clustering with tissue-like P system (RMVCP)

are proposed. Inspired by multi-view subspace clustering and graph-based multi-view cluster-

ing, RMVCP performs a two-step operation. In the first step (RMVCP-1), the self-representa-

tion method is used to construct the similarity matrix of each view, and then the fusion

Fig 12. The influence of the changes of hyperparameters α, β, and γ on the results of Acc on the five datasets.

https://doi.org/10.1371/journal.pone.0269878.g012
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operation is performed. In the second step (RMVCP-2), the updated similarity matrix of each

view generated in the process of RMVCP-1 is used as input for the second fusion operation.

Correspondingly, the weight of each view has been allocated more reasonably. At the same

time, we combine the RMVCP algorithm with the tissue-like P system, and use the computa-

tional parallelism of the tissue-like P system to improve the computational efficiency of the

RMVCP algorithm. In the future, we can use the idea of secondary fusion in some other state-

of-the-art multi-view clustering algorithms, and at the same time, we can combine multiple

models in membrane computing with clustering algorithms.
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