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Abstract

Background

We developed a simple tool to estimate the probability of dying from acute COVID-19 illness

only with readily available assessments at initial admission.

Methods

This retrospective study included 13,190 racially and ethnically diverse adults admitted to

one of the New York City Health + Hospitals (NYC H+H) system for COVID-19 illness

between March 1 and June 30, 2020. Demographic characteristics, simple vital signs and

routine clinical laboratory tests were collected from the electronic medical records. A clinical

prediction model to estimate the risk of dying during the hospitalization were developed.

Results

Mean age (interquartile range) was 58 (45–72) years; 5421 (41%) were women, 5258 were

Latinx (40%), 3805 Black (29%), 1168 White (9%), and 2959 Other (22%). During hospitali-

zation, 2,875 were (22%) died. Using separate test and validation samples, machine learn-

ing (Gradient Boosted Decision Trees) identified eight variables—oxygen saturation,

respiratory rate, systolic and diastolic blood pressures, pulse rate, blood urea nitrogen level,

age and creatinine—that predicted mortality, with an area under the ROC curve (AUC) of

94%. A score based on these variables classified 5,677 (46%) as low risk (a score of 0) who

had 0.8% (95% confidence interval, 0.5–1.0%) risk of dying, and 674 (5.4%) as high-risk

(score� 12 points) who had a 97.6% (96.5–98.8%) risk of dying; the remainder had inter-

mediate risks. A risk calculator is available online at https://danielevanslab.shinyapps.io/

Covid_mortality/.
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Conclusions

In a diverse population of hospitalized patients with COVID-19 illness, a clinical prediction

model using a few readily available vital signs reflecting the severity of disease may pre-

cisely predict in-hospital mortality in diverse populations and can rapidly assist decisions to

prioritize admissions and intensive care.

Introduction

Hospitals in many countries have been overwhelmed again by admissions of patients with

COVID-19 illness in the second wave of delta variant infections or other types of variants.

Accurate prediction of the probability of death using rapidly available vital signs on arrival or

immediately after admission to hospital without further testing of laboratory parameters or

chest x-ray, might help prioritize patients for hospitalization, intensive care and intubation, or

to receive limited treatments in places that have very limited resources.

Several prediction models about dying from COVID-19 disease has been proposed [1], but

they have several limitations when immediate applying at initial admission of patients. Previ-

ous prediction algorithms have been derived from small numbers of deaths [2–10], used

comorbid conditions, diagnoses, and severity indices from electronic medical records assessed

after the patient is admitted [5, 11–18], or included tests—such as levels of C-reactive protein,

troponin, D-dimers—that may not be readily available for urgent triage of patients for hospital

admission or intensive care [18, 19]. Some studies were done in ethnically homogenous popu-

lations such as Wuhan [20], China [2], or Italy [21], or specific populations such as nursing

home residents [22] or community based registry [23]. Some studies have been done in

patients already admitted to the hospital with clinical or laboratory results after admission, or

patients already in an intensive care unit (ICU) [7, 11, 12] or after admission to the hospital

[19] and, therefore, not applicable to features of the infection when first presenting to emer-

gency care. Some imposed arbitrary durations of follow-up, such as 7 or 30 days. Some studies

applied machine learning methods to develop predictive models [2, 6, 24, 25].

No previous model has been based on measurements immediately available at the time of

triage in a large racially diverse population. No model has been translated into a calculator that

can be used on mobile devices in clinical settings. The model and online calculator are likely to

apply to all variants of COVID-19 infection because, although the delta variant has greater

viral loads and risk of transmission, there is no evidence that the physiologic manifestations,

such as hypoxia differ or that the clinical manifestations that predict mortality would differ

between the variants [26] (https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.htm).

We developed a predictive algorithm based on readily data from initial evaluation before

admission to a hospital, in a diverse patient population, and mortality at any time after admis-

sion. We studied the large and diverse population of patients admitted to New York City

Health + Hospitals (NYC H+H) public hospital system. We used machine learning to select

strong predictors of mortality, developed and validated a multivariable model and score to esti-

mate the risk of dying, and translated the model into an online calculator to estimate the risk

of in-hospital mortality.

Methods

Setting and data sources

We used data extracted from the electronic medical records of all patients at least 18 years old

who were admitted to any of the 11 hospitals of the New York City Health + Hospitals (NYC
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H+H) system with a diagnosis of Covid 19 infection verified with a positive polymerase chain

reaction (PCR) test between March 1 and June 30, 2020. NYC H+H is the largest public health

system in the United States, providing health services to more than one million New Yorkers

across the city’s five boroughs. These hospitals account for approximately one-fifth of all gen-

eral hospital discharges and more than one-third of emergency department and hospital-based

clinic visits in New York City.

Variables

We abstracted demographic characteristics (sex, age, race and ethnicity), weight, body mass

index, vital signs, oxygen saturation (SpO2) from peripheral monitors, and routine clinical lab-

oratory tests (serum chemistry panel, complete blood counts) and D-dimer levels from elec-

tronic medical records. When there was more than one value, we selected the first. Missing

values were not imputed. Non-transformed values were used. Sex and race/ethnicity were

coded as categorical variables; all others were recorded as continuous variables. (Results did

not change when continuous features were centered to their mean and scaled to a standard

deviation of one.) The outcome was death from any cause during hospitalization with

COVID19 infection; length of hospitalization was also noted.

Statistical analysis

The assumptions of normality for collected variables were tested Kolmogrov-Smirnov test,

which is known to be sensitive in two samples. Baseline characteristics are presented median

(IQR) for non-normally distributed continuous variables or N (%) for categorical variables.

Because most of predictors were not distributed normally, the descriptive statistics for baseline

characteristics were compared by in-hospital mortality using Mann-Whitney U test for contin-

uous variables and Chi-squared test for categorical variables.

To develop a clinical prediction model to estimate the risk of dying in the hospital, we

adopted a multistep approach that included variable selection using Extreme Gradient Boosted

Decision Trees (XGBoost), followed by the identification of cut points of the selected variables

using classification and regression trees (CART), then followed by the development of a score

that was used to predict in-hospital mortality within Covid-19 positive patients in the study

population. Train and test data partitions were created using an 80%/20% random split strati-

fied by death status to ensure an even proportion of mortality in the train and test partitions.

Gradient Boosted Decision Trees implemented in the XGBoost R package v 1.2.0.1 with R v

4.0.2. were used to generate an ensemble of multiple decision trees to minimize errors in the

classification of mortality in patients. The XGBoost model was developed in the train partition,

using four boosting rounds, a maximum depth of three for each decision tree, a learning rate

of 0.3, a binary: logistic learning objective with error rate used as the evaluation metric, and a

minimum child weight of 75. Variable importance was evaluated using the information gain

metric of a split on a variable. XGBoost model performance was evaluated in the test partition

using accuracy and area under the curve (AUC) from a receiver operating characteristic

(ROC) curve. Selected features and model performance did not change with 10-fold cross-

validation.

To develop a clinical prediction score, we used Classification and Regression Tree (CART)

analyses in the original training set to identify optimum cut-points for each variable selected

by XGBoost (S1 Fig). There was no clear cut-point for creatinine level and it had low impor-

tance in the XGBoost model, therefore it was not included in the final calculation of clinical

risk score. We entered the selected variables and cut-points into a logistic regression model to

estimate the multivariable odds ratios. To assign risk scores, the odds ratio for each of these
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categorical variables were divided by 2.6 (the lowest odds ratio), rounded, and then summed

for each patient to calculate a risk score. The risk score calculation was not changed after

including categories for missing values for all selected variables. The predicted probability of

mortality from the risk score was also compared with the observed mortality in the test set.

After excluding 703 patients with missing values for one or more variables, the proportions

of patients who died were calculated for each 1-point interval in risk score; the highest-risk cat-

egories, which had similar scores and small numbers of patients, were combined. Because the

predicted mortality by risk score categories were very similar in the training and test sets

(AUC = 0.94 for both), these sets were combined to estimate the probabilities and 95% confi-

dence intervals for the entire population. An online calculator reports the probability of in-

hospital mortality from the risk score (danielevanslab.shinyapps.io/Covid_mortality). To

report the probability of dying, all variables must have non-missing values except for the blood

urea nitrogen (BUN) test which includes a term for missing results.

All statistical analysis was performed using R Statistical Software (version 4.0.3 and version

4.0.2; R Foundation for Statistical Computing, Vienna, Austria).

Patient and public involvement

Patients or members of the public were not included in the analysis owing to restriction on the

use of the data included in the study and a lack of training in the use of these data.

Results

Between March 1 and June 30, 2020, 13,190 patients who confirmed with COVID-19 infection,

were admitted to a NYC H+H hospital. Among them, 2,227 (16.9%) patients were cared in

ICU during hospitalization. The cohort included 5421 [41.1%] women, mean age 58 years

[interquartile range 45–72 years]; 5258 were Hispanic [39.9%], 3805 Black [28.8%], 1168

White [8.9%], 716 Asian [5.4%] and 2243 individuals of other races/ethnicities [17.0%]

(Table 1). During hospitalization, 2,875 (21.8%) died a mean of 10.6 days after admission

(interquartile range: 3 to 13 days) and 2279 (17.3) were treated with mechanical ventilation.

There were statistically significant differences between those who died and those who sur-

vived for almost all variables (Table 1). The XGBoost algorithm identified eight variables (Fig

1) that, together, generated predictions of mortality with an AUC of 94% and an accuracy of

91% (Fig 2). Of the variables that the XGBoost model selected, SpO2 was the strongest predic-

tor; respiratory rate and blood pressure were also major contributors; body temperature was

not. Although race and ethnicity were associated with mortality in univariable analyses, they

were not selected in the predictive model.

CART analysis identified cut-points for each of the XGBoost-selected variables. A multivar-

iable logistic model showed that the selected cut-points were all significant predictors of mor-

tality (Table 2). The risk score based on the odds ratios for these variables ranged from 0 to 22

points and had an AUC of 0.94 for predicting mortality, the same as the XGBoost algorithm

(Fig 2). The calibration curve of the risk score on the test set also showed excellence predict-

ability over the full range probabilities of mortality (slope = 1, Brier score 0.061, Fig 3).

Among the total study subjects, there were 5,677 (45.5%) patients with a score of 0, and 674

(5.4%) with a score� 12 points (Table 3). In-hospital mortality increased continuously with

higher risk scores, ranging from ranged from 0.8% (95% confidence interval, 0.5–1.0%) for

those with a score of 0 to 97.6% (96.5–98.8%) for patients with a score� 12 points (Table 3).

The mean times between admission and death was 18 days (IOR 6–27 days) for those with a

risk score of 0, compared with 9 days (IQR 3–11 days) for those with a risk score of 12 or

greater. We translated the models into an online calculator to report the probability of
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Table 1. Baseline characteristics of the patient population and of those who survived and died.

Total Survived Died p-value

N = 13,190 N = 10,315 N = 2,875

Demographics and diagnoses

Age (years) 59.0 (45.0, 72.0) 55.0 (42.0, 67.0) 72.0 (61.0, 81.0) <0.001

BMI (kg/m2) 28.1 (24.4, 32.60 28.1 (24.4, 32.5) 28.4 (24.5, 33.0) 0.032

Female (%) 5421 (41.1) 4320 (41.9) 1101 (38.3) 0.001

Hypertension (%) 6552 (49.7) 4804 (46.6) 1748 (60.8) <0.001

Diabetes (%) 4635 (35.1) 3339 (32.4) 1296 (45.1) <0.001

Race/Ethnicity (%) <0.001

American Indian or Alaskan 22 (0.2) 17 (0.2) 5 (0.2)

Asian 716 (5.4) 547 (5.3) 169 (5.9)

Black 3805 (28.8) 2962 (28.7) 843 (29.3)

White 1168 (8.9) 808 (7.8) 360 (12.5)

Pacific Islander 8 (0.1) 6 (0.1) 2 (0.1)

Hispanic 5258 (39.9) 4289 (41.6) 969 (33.7)

Other 1601 (12.1) 1246 (12.1) 355 (12.3)

Declined/Unknown 612 (4.6) 440 (4.3) 172 (6.0)

Vital signs

O2 Saturation (%) 97.0 (95.0, 98.0) 97.0 (95.0, 99.0) 91.5 (80.0, 96.0) <0.001

Body temperature (℉) 98.5 (97.9, 99.0) 98,4 (98.0, 98.9) 91.5 (80.0, 96.0) 0.015

Pulse rate (/min) 85.0 (74.0, 97.0) 85.0 (75.0, 94.0) 89.0 (60.0, 109.0) <0.001

Respiratory rate (/min) 18.0 (18.0, 20.0) 18.0 (18.0, 20.0) 20.0 (18.0, 26.3) <0.001

Systolic BP (mmHg) 121.0 (108.0, 134.0) 124.0 (112.0, 136.0) 102.0 (76.0, 126.0) <0.001

Diastolic BP (mmHg) 72.0 (63.0, 80.0) 74.0 (67.0, 81.0) 56.0 (41.0, 70.0) <0.001

Laboratory parameters

Calcium (mg/dL) 8.4 (4.9, 9.0) 8.5 (5.2, 9.1) 8.1 (4.7, 8.7) <0.001

Glucose (mg/dL) 125.0 (104.0, 178.0) 119.0 (101.0, 159.8) 153.0 (118.0, 232.0) <0.001

BUN (mg/dL) 16.0 (11.0, 29.0) 14.0 (10.0, 22.5) 29.0 (17.0, 53.0) <0.001

Creatinine (mg/dL) 1..0 (0.8, 1.5) 1.0 (0.8, 1.3) 1.4 (1.0, 2.5) <0.001

Albumin (mg/dL) 3.7 (3.1, 4.1) 3.8 (3.2, 4.2) 3.4 (2.7, 3.8) <0.001

Magnesium (mg/dL) 2.1 (1.9, 2.4) 2.1 (1.8, 2.3) 2.2 (1.9, 2.5) <0.001

Sodium (mg/dL) 137.0 (134.0, 140.0) 137.0 (134.0, 140.0) 137.0 (133.0, 142.0) <0.001

Potassium (mg/dL) 4.2 (3.8, 4.6) 4.2 (3.8, 4.6) 4.3 (3.9, 4.9) <0.001

Chloride (mg/dL) 100.0 (96.0, 104.0) 100.0 (96.0, 103.0) 100.0 (95.0, 106.0) <0.001

CO2 (mg/dL) 23.0 (20.0, 25.0) 23.0 (21.0, 25.7) 21.0 (18.0, 24.0) <0.001

Anion Gap 15.6 (13.0, 18.0) 15.0 (13.0, 17.0) 18.0 (15.0, 21.0) <0.001

White blood cells (x 109/L) 7.6 (5.6, 10.5) 7.2 (5.4, 9.9) 8.9 (6.4, 12.3) <0.001

Red cell distribution width (%) 13.6 (12.8, 14.8) 13.4 (12.7, 14.6) 14.2 (13.2, 15.7) <0.001

Red blood cell count (x 109/L) 4.6 (4.1, 5.0) 4.6 (4.1, 5.0) 4.4 (3.9, 5.0) <0.001

Hemoglobin (g/L) 13.0 (11.5, 14.3) 13.1 (11.7, 14.4) 12.7 (10.8, 14.2) <0.001

Hematocrit (L/L) 39.9 (35.8, 43.6) 40.10 (36.0, 43.0) 39.30 (34.0, 43.0) <0.001

Mean corpuscular volume (fL) 88.2 (84.3, 92.0) 87.90 (84.2, 91.5) 89.20 (84.9, 93.4) <0.001

Mean corpuscular hemoglobin (pg) 28.90 (27.2, 30.2) 28.90 (27.3, 30.2) 28.80 (27.1, 30.2) 0.226

MCHC (g/L) 32.50 (31.5, 33.5) 32.70 (31.7, 33.60) 32.10 (30.9, 33.2) <0.001

Platelets (x 109/L) 216.0 (167.0, 278.0) 218.00 (171.0, 279.0) 207.0 (153.0, 274.0) <0.001

Mean platelet volume (fL) 10.7 (10.0, 11.5) 10.6 (9.9, 11.4) 10.9 (10.2, 11.7) <0.001

Basophil (%) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) <0.001

Immature granulocyte (%) 0.19 (0.04, 0.50) 0.15 (0.03, 0.50) 0.30 (0.06, 0.73) <0.001

(Continued)
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Table 1. (Continued)

Total Survived Died p-value

N = 13,190 N = 10,315 N = 2,875

Neutrophils (x 109/L) 5.65 (3.82, 8.41) 5.24 (3.62, 7.73) 7.10 (4.87, 10.33) <0.001

Lymphocytes (x 109/L) 1.05 (0.74, 1.48) 1.12 (0.80, 1.55) 0.87 (0.61, 1.23) 0.003

Monocytes (x 109/L) 0.50 (0.35, 0.71) 0.51 (0.36, 0.72) 0.47 (0.31, 0.70) 0.445

Eosinophils (x 109/L) 0.01 (0.00, 0.04) 0.01 (0.00, 0.05) 0.00 (0.00, 0.02) <0.001

Nucleated red blood cell (/uL)) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.02) <0.001

International normalized ratio (INR) 1.2 (1.1, 1.3) 1.1 (1.1, 1.2) 1.2 (1.1, 1.4) <0.001

D-Dimer (ng/mL) 594 (324, 1,644) 500 (287, 1,062) 925 (463, 3,224) <0.001

https://doi.org/10.1371/journal.pone.0269813.t001

Fig 1. Features, or variables, identified by the XGBoost model and ranked by importance, based on the gain in the accuracy of classification when

the variable was used in decision trees that generated the model.

https://doi.org/10.1371/journal.pone.0269813.g001
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mortality and the corresponding 95% confidence interval: danielevanslab.shinyapps.io/COV-

ID_mortality/.

Discussion

A few clinical observations readily available in the initial assessment of patients with COVID-

19 infection can estimate the probability of dying during hospitalization across a full spectrum

of outcomes. The model is available online for convenient use in acute care settings.

Not surprisingly, physiologic variables, such as SpO2, respiratory rate, and low blood pres-

sures were important predictors, indicating that the pulmonary and systemic effects of the

infection are its most important prognostic features. Both slow and rapid respiratory rates and

slow and fast pulse rates indicated an increased risk of in-hospital mortality. As expected, mor-

tality also increased with age and with higher BUN levels [6, 27, 28]. Notably, after considering

other variables, race and ethnicity were not significant predictors of mortality, as has been seen

in other studies [9, 14, 29].

Previous studies have had important limitations, particularly studying patients who were

already admitted and including assessments that are generally not available at the time the

decision is made whether to admit a patient to the hospital [5, 11–18]. Most studies have devel-

oped models for predicting mortality from COVID-19 infections that are less accurate than

the one presented here. For example, one study, applied XG boost to select variables from hos-

pital admission in UK hospitals to from which a validated 4C Mortality model generated an

AUC = 0.74 that was better than 17 other models with which it was compared, but not as accu-

rate as the model we developed [30]. It included laboratory tests (c-reactive protein and urea)

and number of comorbidities and Glasgow coma score that may require the medical record

and neurological exam [30]. Other studies have identified other laboratory values, such as red

Fig 2. Receiver Operating Characteristics (ROC) Curves of mortality predicted by the machine learning XGBoost model and the clinical

prediction model based on total point score in the test set of data. A. ROC for In-hospital Mortality Predicted by the Machine Learning XGBoost

Model. B. ROC Curve for the Clinical Prediction Model Point Score.

https://doi.org/10.1371/journal.pone.0269813.g002
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cell distribution width and D-dimer levels, as significant predictors, but they did not contrib-

ute to this algorithm [4, 31]. BUN was the only laboratory value in our algorithm and a missing

value did not influence the score and it is optional for estimating the risk using the website.

This suggests that clinicians do not need to order or wait for laboratory test results to estimate

a patient’s probability of dying.

These data were collected before effective treatments, such as corticosteroids, which were

used commonly in the treatment of COVID-19 disease [30]. Improvements in care of patients

have reduced inpatient mortality from the infection [32]. Although our risk model and algo-

rithm is not calibrated to the current mortality risk, it does reflect the probability of dying

without current in-hospital treatments and, thus may be useful to identify patients who are

most—or least—likely to benefit from hospital care. However, infection in people who have

been fully vaccinated may be less severe and our model may therefore overestimate mortality

in those uncommon cases. Studies suggest that the delta variant carries a greater risk of hospi-

talization [33]. However, there is no evidence that the physiologic or clinical manifestations

that would relate to the risk of mortality would differ between the variants and wild type.

Therefore, our model of risk of in hospital mortality is likely to apply to all variants. Ideally,

prognostic models developed for the alpha variant would be recalibrated for the delta variant.

Table 2. Predictors from the multivariable model and points indicating an increased risk of death.

Odds ratio (95% CI) Points

Age
Age < 70 years old Reference 0

70 � Age < 85 years old 2.6 (2.2–3.1) 1

Age � 85 years old 5.4 (4.2–7.0) 2

O2 Saturation (SpO2)
SpO2� 91% Reference 0

SpO2 < 91% 10.7 (8.3–19.9) 4

Respiratory Rate (RR)
14 � RR<22/min Reference 0

RR � 22/min 7.8 (4.2–14.4) 3

RR < 14/min 9.2 (7.6–11.1) 4

Pulse Rate (PR)
51 � PR < 109/min Reference 0

PR < 51/min 3.5 (2.6–4.7) 1

109� PR < 119/min 9.7 (4.8–20.0) 4

PR� 119/min 12.5 (9.1–17.3) 5

Systolic BP (SBP)
SBP� 95 mmHg Reference 0

SBP < 95 mmHg 7.9 (5.8–10.7) 3

Diastolic BP (DBP)
DBP� 54 mmHg Reference 0

DBP < 54 mmHg 4.7 (3.6–6.1) 2

BUN
BUN < 20 mmHg Reference 0

20 � BUN < 44 mmHg 2.6 (2.1–3.2) 1

BUN� 44 mmHg 5.9 (4.8–7.4) 2

Range of risk score 0–22

BP, blood pressure; BUN, blood urea nitrogen.

https://doi.org/10.1371/journal.pone.0269813.t002
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The estimates from the model may have the most value when triage decisions need to be

made about which of patients to admit to a hospital or ICU bed, especially when the number

of patients exceeds capacity. The model may be most useful for prioritizing patients at the

extremes of prognosis. Notably, the 41% of patients in this cohort had scores of 0 had a very

low probability of dying, and likely could have been cared for in outpatient settings, especially

if periodic assessments of SpO2 and vital signs could be obtained. At the other extreme, over

90% of those with scores of 10 or more died, indicating a need to decide whether to implement

or withhold aggressive treatment.

Our model may be currently useful in places outside of the US. The pandemic COVID-19

disease, hospitalization and death still continues to burden health systems in many countries,

while abating in the U.S. Although our model was derived from the first wave of the pandemic

Fig 3. Calibration curve comparing the probability of mortality predicted by the score and the probability of mortality observed in the patient

population in the test set of data (slope = 1 and Brier score = 0.061).

https://doi.org/10.1371/journal.pone.0269813.g003
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in New York City, the results and the model are likely to apply to other populations around

the world. Our patient population is very racially diverse- Hispanic, Asian, Black and Cauca-

sian, many of whom are recent immigrants and largely low income. We found that physiologic

measurements of COVID-19 infection, such as low pSO2 and vital signs were very strong pre-

dictors of mortality while race, ethnicity did not influence outcome. New variants of the virus

influence its transmission; they might cause more severe infection but are less likely to change

the relationship between physiologic severity of the infection and risk of death. Any influence

might mean that the model might underestimate the probability of death.

This analysis has several strengths. The algorithm was derived from a very diverse popula-

tion of patients in New York City using data from 11 hospitals. The study population and

number of deaths were large enough to produce estimates of mortality with narrow confidence

intervals and high AUC values; it is unlikely that adding additional variables to the model

would substantially improve its already high accuracy. Multivariable regression analysis of the

variables selected by machine learning confirmed that they were strong and independent pre-

dictors of mortality. An easy-to-use version of the model is also universally available online for

use in acute care settings danielevanslab.shinyapps.io/Covid_mortality/).

The analysis also has limitations. The model represents the natural history of COVID-19

disease before hospital care improved—and mortality rates declined—so it could not be cali-

brated to predict mortality with current standards of care. A large proportion of the patients

who were admitted had low risk scores which reflects admission practices in NYC hospitals

during the first wave of the pandemic. Although the study subjects included diverse races and

ethnicities, we did not test the performance of this model in other study population. Further

studies testing the performance of our model in other countries would be warranted. By

design, the data did not include measurements, such as markers of inflammation and coagula-

tion, or indices of comorbidity and severity of illness including presence of patients’ symp-

toms, that predict mortality but that may not be readily available in the initial assessment of a

patient. Thus, we did not calculate PSI, NEWS or CURB65 scores for comparison because our

model used only data immediately available without referring to medical records.

Conclusions

Mortality from COVID-19 illness can be rapidly and accurately predicted from a few vital

signs that are readily available in acute care settings. When resources, such as hospital beds,

Table 3. Total point score and risk of in-hospital death.

Total Score Risk of Death % (95% C.I.) N (%)

0 0.8 (0.5–1.0) 5677 (45.5)

1 4.5 (3.5–5.5) 1636 (13.1)

3 9.7 (8.0–11.4) 1137 (9.1)

4 20.7 (17.6–23.8) 936 (7.5)

5 39.4 (34.6–44.1) 404 (3.2)

6 57.8 (51.9–63.8) 268 (2.1)

7 64.3 (58.6–69.9) 277 (2.2)

8 74.4 (69.2–79.7) 266 (2.1)

9 87.6 (82.8–92.4) 185 (1.5)

10 92.3 (88.6–95.9) 207 (1.7)

11 92.4 (88.2–96.6) 157 (1.3)

�12 97.6 (96.5–98.8) 674 (5.4)

https://doi.org/10.1371/journal.pone.0269813.t003
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are scarce, estimates of the probability of dying might aid decisions about prioritizing patients

to receive intensive care or other scarce resources. The prediction model, based on racially and

ethnically diverse patients, is available online for use in clinical settings around the world.

Supporting information

S1 Fig. The sequence of boosted decision trees. The first (top) figure (Tree 0) is the first

boosted decision tree from the XGBoost model. The next (Tree 1) is the second boosted deci-

sion tree from the XGBoost model. The next tree (Tree 2) is the third boosted decision tree

from the XGBoost model. The bottom tree (Tree 3) is the fourth boosted decision tree from

the XGBoost model.

(TIF)
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