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1, Renato Leal-Moreno1, Brenda

Aracely Espinoza-RomoID
1, A. Alonso Aguirre5, César P. Ley-QuiñónezID
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Abstract

The concentrations of trace elements including As, Zn, Cu, Se, Pb, Hg and Cd, were deter-

mined in the blood of nesting Kemp’s ridley turtles (Lepidochelys kempii) at Rancho Nuevo

sanctuary, Tamaulipas, Mexico during 2018–2020. The sequential concentrations analyzed

were Zn> Se> Cu> As> Pb; while Cd and Hg concentrations were below the limits of detec-

tion (0.01 μg g-1). No significant differences were observed between the concentrations of

trace elements (p> 0.05) by year, except Se levels, possibly resulting from recorded sea-

sonal differences in turtle size. No relationships among turtle size vs elements concentration

were observed. In conclusion, essential and toxic trace elements concentrations in the

blood of nesting Kemp’s ridley turtles may be a reflex of the ecosystem in which the turtles

develop, that is, with low bioavailability of elements observed in the trophic webs in the Gulf

of Mexico.

Introduction

Coastal habitats are negatively impacted by waste produced through agriculture, mining,

urbanization, fisheries, and the oil industry. These waste products are released into the envi-

ronment increasing contamination levels [1–4] which affect the health of species and ecosys-

tems [5,6]. Semi-enclosed seas are particularly affected where anthropogenic activities increase

the bioavailability of trace elements. Due to their speciation capacity, trace elements are persis-

tent in the environment [7]. Therefore, organisms are under continuous stress due to contami-

nation [8–10]. Pollution levels increase through bioconcentration, bioaccumulation and

biomagnification along the trophic web, affecting organisms such as sea turtles further up
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these networks altering their metabolic pathways and increasing the potential for disease and

death [11–16].

Kemp’s ridley turtles (Lepidochelys kempii) are considered the most critically endangered of

all sea turtle species by the IUCN [17,18]. It is endemic to the Gulf of Mexico with 90% of the

population nesting in Rancho Nuevo Sanctuary, Tamaulipas, Mexico [19,20]. Kemp’s ridleys

face multiple threats induced by environmental contamination present in the Gulf of Mexico

caused by hydrocarbons, organochlorine compounds, carbamates, solid waste, pharmaceuti-

cals, macro and microplastics and toxic trace elements [21–25]. The latter is of particular con-

cern due to the dominant anthropogenic activities in the region [26,27]. These include

fertilizer production, mining, and oil refining.

The oil industry is the principal contributor due to the large amounts of crude oil and waste

products that have spilled into coastal areas over the years, apporting certain elements like Cd,

Zn, Cu, Pb, As, Hg, etc. [28–30]. In 2010, the Gulf of Mexico was affected by the Deepwater

Horizon oil spill [31], affecting Kemp’s ridley foraging areas [32]. The incident impacted over

61,000 Kemp’s ridley turtles that stranded directly or indirectly linked to this event and repre-

senting approximately 35% of a total estimated population of almost 178,000 in 2013. Current

trends demonstrate that the species is recovering with recruits arriving to nesting beaches

annually [33]. In addition, toxic elements remain a potential threat to Kemp’s ridley turtles

[31,34–36]. The present study aimed to quantify the concentrations of trace elements in blood

of nesting Kemp’s ridley turtles at Rancho Nuevo Sanctuary, Tamaulipas, Mexico. This infor-

mation may be useful to provide a better understanding of bioaccumulation process and possi-

ble population health impacts on this endangered species.

Materials and methods

Sample collection

Blood samples were collected from nesting Kemp’s ridley turtles at the Rancho Nuevo Sanctu-

ary, Tamaulipas, Mexico (23˚10’54” N, - 97˚46’05” W) during the mass nesting arribada sea-

sons occurring April to July 2018 to 2020. Blood was collected from the dorsal cervical sinus

according to previous studies [37]. Briefly, once the turtle had finished ovipositing, the blood

sample was collected by tilting the individual at a minimum angle of 30˚, supported by a

mound of sand, and the neck was slightly stretched to increase blood flow to the anatomical

region [38]. A total of 5 mL of blood was collected with 21Gx½ gauge double-ended syringe

and needle and stored in 10 mL tubes with ethylenediaminetetraacetic acid (EDTA) as antico-

agulant (Beckton-Dickinson, Franklin Lakes, NJ). The samples were refrigerated at 4˚C until

laboratory processing [37].

Female biometrics and tagging

For each turtle, curved carapace length (CCL) notch to tip, straight carapace length (SCL) and

curved carapace width (CCW) [39] were using calipers and a flexible measuring tape [45].

Each turtle was tagged on the second scale of their left flipper with one Inconel tag, and one

intradermal passive integrated transponder (PIT) tag when available, in order. To record

recaptures, each turtle underwent a visual examination and was assigned to the category best

describing its general physical condition as: healthy or injured [40]. Body condition was estab-

lished based on the concavity of the plastron [41] where a concave plastron indicated poor

health, a flat plastron denoted a fair condition, and a convex shape reflected good health. The

quantity and size of fibropapillomas were evaluated following the method by Work and Balazs

[42] and epibiont load was categorized using a scale of 1 to 3 with 1 = mild: <20 epibionts;

2 = moderate: 20–50 epibionts; and 3 = high:> 50 epibionts [43].
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Trace elements analysis

Trace elements analyzed included Zn, Cu, Se, Hg, Pb, Cd and As. Acid digestions of the blood

samples obtained were performed for their determination using methodology previously

described [14]. An acid mixture of 5 mL of HNO3 and HCl in a 4:1 ratio was added to 0.5 g of

whole blood from each sample, using a microwave digestion system (MARS Xpress CEM).

Each digestion was measured with deionized water in 25 mL volumetric polypropylene flask

and refrigerated until analysis, which occurred in a period not exceeding 48 h after digestion

to avoid volatilization or adsorption by the flask walls. Toxic and essential trace elements con-

centration analysis was performed using Inductively Coupled Plasma Optical Emission Spec-

troscopy (ICP-OES, VARIAN 730-ES). The detection limits of the equipment were 0.5 mg kg-1

for Hg and 0.02 μg g-1 for all other elements analyzed.

Reference materials certified by the National Research Council of Canada (TORT-3) were

used as quality controls and to determine the percentage of evaporation and recovery of the

analyzed trace elements. Analyzes were performed in duplicate fortified with standards of ref-

erence (Perkin Elmer GFAAS Mixed Standard). Blanks (deionized water) were placed every

eight samples and underwent the same digestion process to detect possible contamination

[34,44]. The final digestions were clear and transparent; likewise, the recovery percentage of

the analyzed trace elements was between 89–106%.

Statistical analysis

Data normality was assessed by the Kolmogorov Smirnov normality test. Statistical data were

reported as arithmetic means ± standard error (mean ± SE) and range (minimum-maximum).

Trace elements concentrations were presented in micrograms per gram wet weight (μg g-1).

The one-way analysis of variance (ANOVA) parametric test (α = 0.05) and Tukey’s multiple

comparison test were used to assess differences regarding elements concentrations and indi-

vidual biometry data. The Kruskal-Wallis test was used to analyze non-parametric data. A sim-

ple regression model (R2> 50%) was performed to find the statistical relationship between the

trace elements concentrations and the biometrics.

Ethics statement

Permits were granted in Mexico by Dirección General de Vida Silvestre/Secretarı́a para el

Medio Ambiente y los Recursos Naturales (SEMARNAT) to study and manage wildlife sam-

ples or species. Permit numbers: SGPA/DGVS/04674/10 and SGPA/DGVS/003769/18.

Results and discussion

During the 2018 to 2020 nesting seasons, 83 blood samples were collected from nesting

Kemp’s ridley turtles at Rancho Nuevo beach, Tamaulipas, Mexico. All turtles captured were

in good health, without wounds or external fibropapillomas and presented low or no epibiotic

load. The average nesting female size was SCL of 60.66 ± 0.28 cm and a CCL of 65.315 ± 0.34

cm (Table 1). Turtles measured in 2020 were significantly smaller (SCL: 59.46 ± 0.33) than in

Table 1. Morphometric data (cm) of L. kempii turtles from Rancho Nuevo, Tamaulipas, Mexico, 2018–2020.

Mean±SE (min-max)

SCL 60.66±0.28 (55.74–65.88)

CCL 65.315±0.34 (59.20–71.80)

CCW 64.57±0.46 (56.60–72.60)

SCL = Straight Carapace Length. CCL = Curved Carapace Length. CCW = Curved Carapace Width.

https://doi.org/10.1371/journal.pone.0269346.t001
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2018 (SCL: 62.77 cm ± 0.52) and 2019 (SCL: 61.88 cm ± 0.33) (p<0.05). The turtles in this

study were young females possibly laying their first clutch [45]. Kemp’s ridley turtles become

sexually mature between 8 and 12 years of age with a first clutch laid at an average size of SCL

61.8 ± 1.8 cm [19,20,45,46]. This is encouraging as new nesting females recruiting to this

important rookery are contributing to the species recovery [45]. This coincides with Caillouet

Jr [33] who found Kemp’s ridley recruits in neritic areas and nesting beaches, corresponding

to the age of maturation and nesting of turtles hatching after 2010. As previously stated, the

Deepwater Horizon oil spill in the northeast of the Gulf of Mexico occurred during 2010 and

directly or indirectly impacting 34.5% of the Kemp’s ridleys population [32], this suggests that

there are young adults in the nesting population that have not bioaccumulated high concentra-

tions of toxic elements. The blood analysis documented that essential elements were more

abundant compared to toxic ones, with a distribution Zn> Se> Cu> As> Pb. The concentra-

tions of Hg and Cd were below detection limits (Table 2). No significant differences were

observed between the concentrations of trace elements (p> 0.05) by year, except for Se, where

concentrations were higher in 2018 than those found in 2020, p = 0.035 (Table 3). Similarly,

Pb and Cu concentrations of 2020 samples were below detection limits.

Currently, work is underway to establish basal values of trace elements concentrations in

nesting Kemp’s ridley blood. Their bioavailability and bioaccumulation in sea turtles are influ-

enced by multiple factors including species, life stage, diet, individual condition, climatic fac-

tors, and region [14,47–51]. Perhaps, feeding represent the main source of trace elements

found in sea turtles [52]. The trophic position of the species plays a key role in bioaccumula-

tion and biomagnification processes [14,53–55].

Table 2. Heavy metal concentrations reported in different areas (mean ± standar deviation, μg g-1 wet weight) in blood of Kemp´s ridley turtles.

Area Nesting

(This study)

Nesting

(Wang, 2005)

Foraging (Orvik, 1997) Foraging (Wang, 2005) Foraging (Wang, 2005) Foraging� (Perrault et al., 2017)

As 0.08±0.03 NA NA NA NA 6.84±1.98d

Hg ND 0.06±0.04 0.018 (0.0005–0.06) 0.01±0.009 0.01±0.01 0.04±0.04d

Cd ND 0.01±0.01 NA 0.007±.005 0.01±0.005 0.02±0.01d

Cu 0.09±0.01 0.40±0.09 0.52 (0.21–1.3) 0.47±0.06 0.41±0.11 NA

Pb 0.06±0.02 0.05±0.02 0.001 (0.00–0.03) 0.02±0.03 0.03±0.03 0.01±0.004d

Se 0.14±0.05 NA NA NA NA 4.11±1.83d

Zn 0.79±0.79 22.70±12.6 7.5(3.28–18.9) 3.9±1.47 6.71±4.46 NA

� = Analysis performed in red blood cells. NA = Not analyzed. ND = Not detected. In parentheses min-max when no standar deviation is reported.

https://doi.org/10.1371/journal.pone.0269346.t002

Table 3. Heavy metal concentrations (mean ± standar deviation, μg g-1 wet weight) in blood of nesting Kemp´s ridleys (Lepidochelys kempii) from Rancho Nuevo,

Mexico, 2018–2020.

Metal 2018 2019 2020 Statistical test

Zn 1.02±0.17 (0.09–2.37) 0.70±0.14 (0.10–2.14) 0.67±0.13 (0.10–2.27) p = 0.207

Cu 0.09±0.002 (26) (0.07–0.11) 0.09±0.002 (28) (0.06–0.11) ND p = 0.523

Pb 0.06±0.005 (21) (0.02–0.11) 0.06±0.003 (26) (0.03–0.10) ND p = 0.339

As 0.09±0.007 (24) (0.04–0.16) 0.08±0.003 (23) (0.05–0.11) 0.07±0.004 (24) (0.04–0.12) p = 0.193

Se 0.17±0.02a (8) (0.08–0.25) 0.15±0.01ab (11) (0.06–0.21) 0.12±0.005b (18) (0.08–0.16) p = 0.035

Cd ND ND ND NA

Hg ND ND ND NA

ND = Not detected; NA = Not analyzed

na = Number of samples above the detection limit. Letters indicate significant difference between groups. Statistical test: ANOVA.

https://doi.org/10.1371/journal.pone.0269346.t003
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The diet of Kemp’s ridley turtles varies depending on their life stage. Blue crabs (Callinectes
sapidus) are the principal food of adult kemps ridleys, while juveniles feed mainly on tunicates

around nearshore islands. During the post hatchling pelagic stage little is known about their

diet [56–58]. These changes in diet, may result in varying levels of trace elements in Kemp’s

ridleys throughout their life.

Zn was the most common element in organisms of the essential elements analyzed, plays a

vital function in the growth and development and acts as a detoxifier [59], by induction metal-

lothioneins [52,60]. However, high Zn levels can be toxic [7] and deficiencies in nesting turtles

can decrease the number of eggs laid, and result in hatchling deformities [55]. This element

occurs in higher levels in green turtles (Chelonia mydas), due to their herbivorous diet as

adults, which includes algae that bioaccumulate Zn [44].

The Zn concentrations found in this study were lower (0.79 ± 0.08 μg g-1) than those previ-

ously reported for this population [61,62]. It has been mentioned that Zn concentrations are

also dependent on age and size, with larger turtles accumulating higher concentrations of this

element [62]. Cu is essential for growth and development even at low concentrations

[48,59,63]. During vitellogenesis, both Cu and Zn concentrations decrease in nesting turtles

due to the vertical transfer from the female to her eggs [63]. In addition, turtles present little or

no feeding during nesting, reducing potential bioaccumulation during this period [48,51].

However, turtles nest two to three times per season [20,64], so essential elements concentra-

tions may decrease over the nesting season [48].

Se is another essential element for sea turtles [48,65], which has antioxidant, immunological

and thyroid functions [66]. Previously, a positive relationship between Hg and Se has been

identified, as Se participates in the Hg detoxification processes in organisms. This correlation

has not been previously reported in Kemp’s ridley turtles, possibly as a result of the low levels

of Hg in the population documented herein [57]. Although high concentrations can be toxic

and cause neurological and dermal damage and decreased sea turtle hatching success

[14,66,67]. The concentrations identified in this study were lower than those reported in other

species of sea turtles worldwide [14,34,68,69].

Previous studies have shown that the distribution of essential and toxic elements in sea tur-

tle blood presents higher levels of essential elements than toxic ones [62,69,70]. This distribu-

tion may be affected when intoxication or pathological responses occur; for example, a study

in Brazil reported higher concentrations of Pb compared to Zn and Cu in C. mydas when

these turtles presented fibropapillomatosis [50].

This study identified similar Pb levels to those previously reported (0.05 μg g-1) in Kemp’s

ridley turtles [62]. Despite the occurrence of the largest oil disaster in the Gulf of Mexico in

2010 [71], there has been no variation in blood Pb levels (Table 2) in the Kemp’s ridley nesting

turtles analyzed. However, Pb contamination has been present in the marine environment as a

result of leaded gasoline, which through combustion, releases Pb into the environment and

transported through biogeochemical cycles to the oceans. Most likely, Pb levels have decreased

since policy change to unleaded gasoline [52,72,73]. However, it is important to continue

monitoring Pb levels as this highly toxic metal can affect the nervous system and fetus develop-

ment, cause infertility, immunosuppression, and osteoporosis due to its mimicry to Ca

[7,35,72,74]. It has been considered that a low concentration of Pb in sea turtles should be less

than 0.5 μg g-1 [75], therefore, the levels of Pb found in the nesting Kemp’s ridley turtles in this

study can be considered normal for the species. These acceptable levels are consistent with

those reported in nesting olive ridley turtles (Lepidochelys olivacea) at 0.19 ± 0.03 μg g-1 in the

Mexican Pacific [72].

Cd is considered one of the toxic metals with the highest impact and importance in ecotoxi-

cology [7]. Cd can cause kidney, neurological and bone damage, is carcinogenic and
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teratogenic even at low levels in sea turtles [15,76]. Furthermore, maternal transfer of Cd to

turtle eggs occurs through vitellogenin and proteins similar to Se (selenoproteins), a process

that happens in competition with other essential elements [48,59,60,76]. Species such as log-

gerhead (Caretta caretta), green, and olive turtles present higher loads of Cd due to their diet.

For example, green turtles feed on algae that bioaccumulate Cd, while other turtle diets include

cephalopods which introduce Cd to their diet [34,52,77]. Blood Cd levels in Kemp’s ridleys

were below detection limits due to the low bioavailability; consistent with those reported by

previous studies (0.007 to 0.02 μg g-1) for both juveniles and adults [35,61,62].

As is a toxic element that frequently occurs in low concentrations in sea turtles [2].

Although it occurs mainly in organic form, which is less toxic, the inorganic fraction of this

element (2–10%) can be toxic to sea turtles [2,77] and may generate immune responses such as

oxidative stress [35] and possible liver and kidney damage [78]. As has only been reported in

one previous study in juvenile Kemp’s ridleys foraging in Florida, USA [35]. The study

reported higher levels of As than those found in this present study (Table 2). This is possibly

related to the diet of the juvenile turtles which consists principally of tunicates which are bioa-

cummulators of As [79] as compared to adult Kemp’s ridley diet based on crustaceans

[35,56,80].

Hg concentrations obtained in the present study were below detection limits (<0.5 mg kg-

1). Previous studies [57] reported a Hg concentration of 0.024 μg g-1 in juvenile Kemp’s ridley

turtles highlighting that Hg vertical transmission has not been observed during vitellogenesis

in this species. Most likely, exposure to this toxic element may occur during the pelagic stages,

and during growth, Hg levels decrease through excretion. Hg can present pathologies in sea

turtles, even in low concentrations of 0.009 μg g-1, may cause immunosuppression [53,54,78],

and be a cofactor in the development of fibropapillomas [35].

Trace elements levels in water and organisms such as fish, red crabs (Chaceon quinquedens)
and blue crabs (Callinectes sapidus), are low, particularly Cd and Hg, since these are not bio-

available in the water column or sea turtle prey in the Gulf of Mexico [81,82]. Sediments their

present low concentrations of Cd and Hg, whereas Zn and Pb may be found at higher levels.

Interestingly, these elements remain trapped in the sediments and are not bioavailable for

organisms, including benthivorous species [81].

Statistically significant relationships have been observed among Cd, Pb and As vs Zn and

Cu, since these two essential elements can act as detoxifiers of toxic elements [59], through the

induction of metallothioneins in sea turtles [52,60]. In addition, Se plays an important role as

an antagonist and detoxifier of toxic elements such as Hg [6,34,66]. A positive relationship

between trace elements concentrations and turtle life stage has been observed [77,83]. How-

ever, in the present study no relationships were identified, neither between elements analyzed

nor between turtle size vs trace elements concentration (R2<50%). Similar results were

reported previously for juvenile Kemp’s ridley turtles [41]; therefore, bioconcentration is not

associated with age unlike other sea turtle species.

Conclusions

Kemp’s ridley turtles demonstrated low levels for most trace elements analyzed in their blood.

This may be reflective of the ecosystem in which the turtles develop, that is, with low bioavail-

ability of trace elements observed in the trophic webs in the Gulf of Mexico. The low levels of

these contaminants present in the potential prey of Kemp’s ridley turtles, most likely do not

represent a risk to the health of this nesting population. However, some toxic trace elements

such as Hg can present speciations such as methylmercury, that at low concentrations, produce

sublethal toxicity at the cellular level and immunosuppression. Currently, there are no
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maximum permissible limits of trace metals for sea turtles and no published blood reference

values for Kemp’s ridley turtles. Therefore, it is difficult to establish the concentration at which

sea turtle health is at risk, particularly for metals such as Cd and Hg. Further research is needed

on the speciation of some metals like mercury and the possible health impacts on endangered

Kemp’s ridley turtles and should consider using equipment with greater precision to study the

low levels of Cd and Hg found in this study, as these metals are important in ecotoxicology.
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Methodology: Kevin Alan Zavala-Félix, Miguel Angel Reyes-López, Fátima Yedith Camacho-
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44. Ley-Quiñónez CP, Zavala-Norzagaray AA, Rendon-Maldonado JG, Espinosa-Carreon TL, Canizales-

Roman A, Escobedo-Urias DC, et al. Selected heavy metals and selenium in the blood of black sea tur-

tle (Chelonia mydas agasiizzi) from Sonora, Mexico. Bull Environ Contam Toxicol. 2013; 91(6):645–51.

Epub 2013/09/28. https://doi.org/10.1007/s00128-013-1114-4 PMID: 24072261.

45. Caillouet C Jr, Shaver D, Jr A, Owens D, Pritchard P. Kemp’s Ridley Sea Turtle (Lepidochelys kempii)

Age at First Nesting. Chelonian Conservation and Biology. 2011; 10:288–93. https://doi.org/10.2744/

CCB-0836.1

PLOS ONE Trace elements in nesting Kemp’s ridley turtles

PLOS ONE | https://doi.org/10.1371/journal.pone.0269346 November 2, 2022 9 / 12

https://doi.org/10.1007/s00254-001-0522-7
https://doi.org/10.1007/s00254-001-0522-7
http://dx.doi.org/10.2305/IUCN.UK.2019-2.RLTS.T11533A142050590.en
http://dx.doi.org/10.2305/IUCN.UK.2019-2.RLTS.T11533A142050590.en
https://doi.org/10.18785/goms.3302.06
https://doi.org/10.1007/s00128-014-1320-8
https://doi.org/10.1007/s00128-014-1320-8
http://www.ncbi.nlm.nih.gov/pubmed/24957795
https://doi.org/10.1016/j.scitotenv.2017.06.149
http://www.ncbi.nlm.nih.gov/pubmed/28693110
https://doi.org/10.1016/j.chemosphere.2019.01.107
http://www.ncbi.nlm.nih.gov/pubmed/30784740
https://doi.org/10.1016/j.cll.2015.05.014
http://www.ncbi.nlm.nih.gov/pubmed/26297412
https://doi.org/10.2744/ccb-0806.1
https://doi.org/10.2744/ccb-0806.1
https://doi.org/10.1643/CE-07-227
https://doi.org/10.7589/0090-3558-35.4.804
http://www.ncbi.nlm.nih.gov/pubmed/10574546
https://doi.org/10.7589/0090-3558-45.1.41
http://www.ncbi.nlm.nih.gov/pubmed/19204334
https://doi.org/10.1007/s00128-013-1114-4
http://www.ncbi.nlm.nih.gov/pubmed/24072261
https://doi.org/10.2744/CCB-0836.1
https://doi.org/10.2744/CCB-0836.1
https://doi.org/10.1371/journal.pone.0269346


46. Schmid J, Tucker A. Comparing Diets of Kemp’s Ridley Sea Turtles (Lepidochelys kempii) in Mangrove

Estuaries of Southwest Florida. Journal of Herpetology. 2018; 52:252–8. https://doi.org/10.1670/16-164

47. Deem SL, Dierenfeld ES, Sounguet GP, Alleman AR, Cray C, Poppenga RH, et al. Blood values in free-

ranging nesting leatherback sea turtles (Dermochelys coriacea) on the coast of the Republic of Gabon.

J Zoo Wildl Med. 2006; 37(4):464–71. Epub 2007/02/24. https://doi.org/10.1638/05-102.1 PMID:

17315430.

48. Guirlet E, Das K, Girondot M. Maternal transfer of trace elements in leatherback turtles (Dermochelys

coriacea) of French Guiana. Aquat Toxicol. 2008; 88(4):267–76. Epub 2008/06/21. https://doi.org/10.

1016/j.aquatox.2008.05.004 PMID: 18565604.

49. Labrada-Martagon V, Rodriguez PA, Mendez-Rodriguez LC, Zenteno-Savin T. Oxidative stress indica-

tors and chemical contaminants in East Pacific green turtles (Chelonia mydas) inhabiting two foraging

coastal lagoons in the Baja California peninsula. Comp Biochem Physiol C Toxicol Pharmacol. 2011;

154(2):65–75. Epub 2011/03/08. https://doi.org/10.1016/j.cbpc.2011.02.006 PMID: 21377544.

50. da Silva CC, Klein RD, Barcarolli IF, Bianchini A. Metal contamination as a possible etiology of fibropa-

pillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean.

Aquat Toxicol. 2016; 170:42–51. Epub 2015/11/30. https://doi.org/10.1016/j.aquatox.2015.11.007

PMID: 26615366.

51. Sinaei M, Bolouki M. Metals in Blood and Eggs of Green Sea Turtles (Chelonia mydas) from Nesting

Colonies of the Northern Coast of the Sea of Oman. Arch Environ Contam Toxicol. 2017; 73(4):552–61.

Epub 2017/06/21. https://doi.org/10.1007/s00244-017-0421-x PMID: 28631031.
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