PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Gonnella G (2022) TextFormats:
Simplifying the definition and parsing of text
formats in bioinformatics. PLoS ONE 17(5):
€0268910. https://doi.org/10.1371/journal.
pone.0268910

Editor: M. Sohel Rahman, Bangladesh University of
Engineering and Technology, BANGLADESH

Received: October 25, 2021
Accepted: May 10, 2022
Published: May 26, 2022

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pone.0268910

Copyright: © 2022 Giorgio Gonnella. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: The TextFormats
source code is available at the GitHub repository
https://github.com/ggonnella/textformats.

Funding: Giorgio Gonnella has been supported by
the DFG Grant GO 3192/1-1 “Automated

RESEARCH ARTICLE
TextFormats: Simplifying the definition and
parsing of text formats in bioinformatics

Giorgio Gonnella® *

Department of Bioinformatics, Institute of Microbiology and Genetics (IMG), University of Gottingen,
Gottingen, Germany

* giorgio.gonnella@uni-goettingen.de

Abstract

Text formats are common in bioinformatics, as they allow for editing and filtering using stan-
dard tools, as well as, since text formats are often human readable, manual inspection and
evaluation of the data. Bioinformatics is a rapidly evolving field, hence, new techniques, new
software tools, new kinds of data often require the definition of new formats. Often new for-
mats are not formally described in a standard or specification document. Although software
libraries are available for accessing the most common formats, writing parsers for text for-
mats, for which no library is currently available, is a very common though tedious task, uti-
lized by many researchers in the field. This manuscript presents the open source software
library and toolset TextFormats (available at https://github.com/ggonnella/textformats),
which aims at simplifying the definition and parsing of text formats. Formats specifications
are written in a simple data description format using an interactive wizard. Automatic gener-
ation of data examples and automatic testing of specifications allow for checking for correct-
ness. Given the specification for a text format, TextFormats allows parsing and writing data
in that format, using several programming languages (Nim, Python, C/C++) or the provided
command line and graphical user interface tools. Although designed as a general purpose
software, the main target application field, for the above mentioned reasons, is expected to
be in bioinformatics: Thus, the specifications of several common existing bioinformatics for-
mats are included.

Introduction

Bioinformatics employs a multiplicity of data and file formats [1-3]. In many cases, these are
text formats, or binary formats which can be easily converted to text representations for visual-
ization and editing.

In a text format, information is represented by letters, numbers and symbols, each coded by
a single byte or a small number of bytes using a general-purpose convention. Text representa-
tion codes are defined in standards, such as ASCII [4] and Unicode [5]. Conversely, binary
representations use data sizes, order of the information and coding conventions, which are all
specific to the type of data, to the application and often to technical details, such as the operat-
ing system and processor architecture [6].

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 1/17

https://orcid.org/0000-0003-3900-5397
https://github.com/ggonnella/textformats
https://doi.org/10.1371/journal.pone.0268910
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
https://doi.org/10.1371/journal.pone.0268910
https://doi.org/10.1371/journal.pone.0268910
https://doi.org/10.1371/journal.pone.0268910
http://creativecommons.org/licenses/by/4.0/
https://github.com/ggonnella/textformats

PLOS ONE

TextFormats: Simple definition and parsing of text formats

characterization of microbial genomes and
metagenomes by collection and verification of
association rules”. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Binary formats have some advantages: Since they are often similar to, or even directly
reflect, the content of the working memory of the program, they are more efficient in terms of
data access speed. Furthermore, binary formats require often less space than uncompressed
text formats, since the information can be efficiently packed using representations tailored to
the type of data.

Nevertheless, text formats remain very common and new formats are often defined in this
form. Some features explain their popularity. First, the information in text formats can be
accessed and often manually read or edited, without the need for the original software which
produced the file. Text formats are accessible on different computer systems regardless of reg-
ister size (e.g. 32 bit vs 64 bit) and byte order convention (little or big endianness); sometimes
minor differences do exist, such as different newline conventions in different operating sys-
tems, but these are easily resolved, since they are often automatically handled by standard tools
and functions. Finally, the data in text formats can often be examined, filtered and modified
using a large number of standard command line tools (such as the Posix tools sort, unig,
head, tail, cut) or short scripts.

General purpose standards exist for representing information as text, such as XML, YAML
and JSON. However, their adoption in bioinformatics is limited, likely because formats based
on these standards are rather verbose and less human readable, due to their complex format-
ting and nested structure. Since they are not line-oriented, command line tools such as the one
mentioned above, cannot be generally applied to these formats.

In recent years, community efforts have been made to define standard text formats for com-
mon types of data, such as GFA [7]. A goal of these is to avoid a further proliferation of formats.
However, this is not easy to achieve in an open community of researchers. In the case of GFA,
four variants currently exist (GFA1 [8], GFAL.1 [8], GFA2 [9], rGFA [10]) as a result of dis-
agreements among researchers and the need to make the format particularly suitable to different
applications. This case exemplifies the mechanisms by which new formats are often defined.

When a new software tool defines a new output format, the developer does not always pro-
vide a parser for the format, but often only a written documentation text. Formal grammars
could be a solution to this problem by allowing the automatic generation of a parser with tools
such as yacc or bison. However, they are challenging to write and rarely used in bioinfor-
matics. Software libraries eventually become available for accessing new formats once they
become popular. However, this process can take time, and parsers for less common formats
are never or only partially implemented. Thus, whenever a researcher desires to programmati-
cally access the data, he must write a parser based on the available specification or free text
description. This often involves writing complex regular expressions, an error-prone and
tedious task. The development of parsers is often repeated multiple times when switching lan-
guages, e.g., if a software project moves from rapid prototyping phase in Python to a more effi-
cient implementation in C or C++.

Hereby, we present an open source free software project, named TextFormats, consisting of
a software library and a collection of software tools. Its goal is to simplify the formal definition
of new text formats, as well as provide easy and convenient access to the data represented in
text formats, for which a parsing library does not yet exist. Given a format specification, Text-
Formats can be used for reading, validating and writing data in the format, from code in multi-
ple programming and scripting languages (Nim, C, C++, Python, shell) as well as from the
command line or using a graphical user interface. The library is versatile, allowing for sharing
common sub-definitions among different formats, and provides a set of tools including an
interactive format definition wizard, a specification format validator and an automatic exam-
ple generator. Furthermore, examples applications (written in different programming lan-
guages) and specifications for common bioinformatics formats are included.

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 2/17

https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

TextFormats: Implementation and features

The core of TextFormats 1.0 is a software library implemented in the programming language
Nim (v.1.6). It is accompanied by a suite of command line and graphical user interface tools,
as well as modules for importing and using TextFormats in Python and in C or C++ programs.

TextFormats can be used for accessing information stored in a text format, provided that
the format has been described in a specification written in TFSL (Text Formats Specification
Language). A specification describes the representations of each single piece of information in
the format, and expresses validation and transformation rules, if necessary. TFSL is a simple
language for data description, described below.

Once a specification for a text format is available, TextFormats allows parsing of data in that
format. Each piece of information in the text representation is thereby extracted, validated and
transformed (if necessary) as described in the specification, and finally represented using an
appropriate binary data type (e.g., numeric, string, array or dictionary). The opposite opera-
tion is also available, i.e., suitable data can be written in the format, using the representation
described in the specification.

The Text Formats Specification Language

The Text Formats Specification Language, briefly TFSL, is a declarative data format description
language, developed as mean of describing a text format, in a concise and human readable
manner. Typically a specification involves defining the format of each single piece of informa-
tion in the representation, and combining simple data type descriptions into increasingly com-
plex compound data types, until the entire data of a file or object has been described.

The valid syntax of a TFSL specification is described in the provided documentation,
including the TFSL syntax manual, a how to manual with several examples, and a quick refer-
ence sheet. From here on, some of the main features of the language are summarized.
Although the language is relatively simple, it is worth noting that the user does not necessarily
have to learn the TFSL language, since a command line wizard tool t£ genspec can be used
to generate interactively a TFSL file.

The information in a TFSL specification can be represented as a tree, where internal nodes
have a string label (from a set of keys applicable in a given context) and the leaves of the tree
contain scalar or compound data (strings, numeric values, boolean values, undefined values,
lists or dictionaries). An example of a specification tree and the corresponding specification is
given in Fig 1. The tree can be constructed programmatically, using a hierarchy of appropriate
data structures, such as Python dict or Nim fable objects, or can be written as a file in YAML
1.2 or JSON format.

The outermost level, under the tree root, defines a number of sections of the specification.
Specifications usually define a number of datatypes, describing any piece of the information in
the format and combined hierarchically in compound datatypes: These definitions are located
in the section datatypes of the specification. The optional testdata section may contain
examples of valid and invalid data in each of the defined datatypes, allowing for automatic test-
ing of the specification (see next section).

Sometimes a definition requires one or multiple subordinate definitions, such as the format
of elements of a list. In such cases, those definitions can be given inline or as a reference, to the
name of another datatype, defined elsewhere. Thereby circular references are not allowed.
Since a format often re-uses parts of other formats, it is possible to import definitions from a
specification into another. Thereby, the include section allows to import single datatypes or
entire specifications from one or multiple external files. Some components of imported defini-
tions can be rewritten. In order to avoid naming conflicts, it is possible to use the namespace

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 3/17

https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

namespace: somespec
include: spec2.yaml
- spec2.yaml filename, include whole
include
- spec3.yaml: [foo, bar] P e
datatypes : F datatype to include

dtl: spec3::foo

dt2: {constant:{"one": 1}}
dt3:
composed_of:
- el: dt2
- e2: {integer: {min: 1}} 7
e
one_of:
- dtil
- {regex: "a{2,3}b?"}}
- {list_of: dt2}
testdata:
dt2:

valid: {"one": 1}

) . map: inline def map: inline def.

invalid: valid: ... (F ing) a
encoded: ["zero", "two"] Testdata Examples of valid data {listof: ...} dt2
decoded: [0, 2] (optional) map: inline def. string:

r pace pec
(optional) string: datatypes prefix

spec3.yaml

filename bar

datatype to include

spec3::foo
string: alias of existing def.

constant:
{"one":1}

map: inline def

dt2

string: ref. to existing def.

(scalar)
integer:
{min:1}

map: inline def

composed_of:
map: inline def

dt1
string: ref. to existing def.

(compound)

one_of:

{regex:"a{2,3}pb?"}

ref. to existing def.

invalid: ...
Examples of invalid data

Fig 1. View of a TFSL specification as a tree. An example of TextFormats specification in YAML format (left) and the the information contained in the
specification viewed as a tree (right).

https://doi.org/10.1371/journal.pone.0268910.9001

section, to specify a namespace prefix used when datatypes are exported to another
specification.

Multiple types of datatype definitions have been implemented, including scalar and com-
pound values. A brief description of each kind of definition is provided in Table 1. Further-
more, definitions can contain different kinds of rules. Validation rules determine conditions
which must be met by the represented data. Formatting rules define details of the text

Table 1. Kinds of datatype definitions in the Text Formats Specification Language.

Structure Group Definition key Description
Scalar Discrete values constant only one value is valid
values value must be the element of a set
Regular regex string matching a regular expression
cexpressions regexes string matching one of a set of regular expressions (optionally associated to different data
transformation rules)
Numeric intervals | integer Signed base-10 integer, in a specified interval.
unsigned integer | Unsigned base-2, -8, -10 or -16 integer, in a specified interval.
float Floating point number in a specified open or closed interval.
Compound Unordered list_of list of elements, each with the same datatype or one of a set of datatypes, not depending on the
sequences element position in the list
labeled list list of elements, each associated to a string label (in a given set), defining the semantics and datatype
of the element
tagged list list of elements, each associated to two string labels, defining, respectively, semantics and a datatype
of the element
Ordered sequences | composed of ordered sets of elements, each with a possibly different datatype
Scalar/ Alternatives one of multiple alternative valid representations
compound

https://doi.org/10.1371/journal.pone.0268910.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022

4/17

https://doi.org/10.1371/journal.pone.0268910.g001
https://doi.org/10.1371/journal.pone.0268910.t001
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

representation, such as constant prefixes/suffixes or field delimiters. Transformation rules
allow to map text representations to the value they represent: e.g., the symbol D to the string
deletion, the roman value III to the integer 3, or strings such as T and F to boolean values.

Tools for the validation and testing of specifications

Once a format has been defined using TFSL, it is possible to check if the definitions are correct
and indeed define the format as intended. Two tools are available for this task: t£ spec
infoand tf cerberus.py. The commandlinetool tf spec info checks thata spec-
ification is correct (and outputs a list of datatypes in that case). In case a specification has a
mistake, an extensive help message is displayed, with a summary of the valid syntax in the con-
text of the error. In some cases, however (for example when the structure of the YAML/JSON
file is invalid), the tool t £ cerberus.py (based on the Python validation library Cerberus)
is more useful for localizing the error.

Even if the syntax of a specification is correct, it is still possible that it does not accurately
describe the target format. Two tools can be combined to avoid this. First, examples of valid
and invalid data for each of the datatypes defined in a specification can be added to the specifi-
cation file (or to a separate test file). By using the command line tool t £ spec test (or the
corresponding API functions), these validity expectations can be automatically tested. Further-
more, examples of valid and invalid data (formatted as test data) for each of the datatypes can
be automatically generated using the command line tool t £ spec gentest. The user can
inspect the generated examples, to check if they reflect the intended format representation.
Those examples can also be modified to generate more expected valid and invalid data to
include in the specification tests.

Compilation of TFSL specifications

When a specification is provided to the TextFormats library, first the YAML or JSON structure
is parsed, then the TFSL syntax is validated. Any included specification is then parsed; This
operation is done recursively, as included specification may include other files themselves.

Next, all datatype definitions are parsed from the specification being processed, as well as
included specification. Datatype definitions can refer to other definitions, on which they
depend: e.g., a list depends on the definitions of its elements, which can be given as a reference
in the specification. Thus, a directed acyclic graph of the dependencies of the datatype defini-
tions is created. The graph is employed to check for the absence of circular dependencies,
using a depth-first cycle detection algorithm, and to solve all references. A hash table of data-
type names to datatype definitions is then created.

For each of the datatype definitions, a regular expression is computed and compiled using
the Nim regex library. Among the available Nim libraries for regular expressions, this library
was chosen since it offered better performance, pre-compilation of the regular expressions and
better handling of capturing groups (S2 Appendix). The regular expressions are employed for
validation and parsing of compound data in the text representation, except in some cases
where other strategies are used, such as splitting by a fixed exclusive text delimiter.

The compilation steps summarized above are done, by default, just-in-time when the
YAML or JSON file is loaded. Examples of running time of the compilation phase are given in
Table 2. Although compilation is very fast for all provided example specifications, the overhead
introduced by the compilation steps may be reduced, by saving the compiled specification to
file. This operation is performed using the command line tool t £ spec compile or equiv-
alent API functions. Pre-compiled specifications can be used instead of a YAML or JSON spec-
ification in all TextFormats tools and functions. However, since parsing the compiled

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 5/17

https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

Table 2. Time for compilation of TFSL specifications from YAML files and loading of pre-compiled
specifications.

Format Compile only Compile and save pre-compiled Load pre-compiled
Accessions 0.02s 0.02s 0.02s
NCBI ID 0.03s 0.03s 0.02's
Fasta <0.01s 0.01s 0.01s
FastQ 0.01s 0.01s < 0.01s
SAM 0.25s 0.21s 0.27 s
EGC 0.23s 0.24s 0.08s
GFA1l 0.26 s 0.31s 0.45 s
GFA2 1.28's 1.40 s 1.19s
GFF3 1.79 s 1.79 s 1.25s

bold font indicates the fastest time for obtaining the specification: loading a pre-compiled specification or compiling
the YAML specification.;

The operations were performed using the TextFormats command line tool t £ spec, with the sub-commands
compile (compile and save to file) and info (compile YAML or load pre-compiled).

The reported times are the average over 3 runs of the real time measured by GNU time, on a Linux OpenSuse 15.3
workstation (CPU i5-4570 3.2 Ghz, RAM 16 Gb), using TextFormats 1.2.2.

https://doi.org/10.1371/journal.pone.0268910.t002

specification from file and reconstructing the objects in memory also requires time, pre-com-
piling is only meaningful for particularly complex specifications, when these are loaded multi-
ple times (e.g., when decoding multiple strings with the TextFormats command line tools).

Table 2 shows the time necessary for parsing and compiling the YAML specification and
output a list of datatypes, save the compiled specification to file and listing the datatypes from
the pre-compiled specification.

Operations on text formats

Provided a TFSL specification of a text format, TextFormats implements a number of opera-
tions for handling data in that format. Table 3 summarizes the available operations.

The core operations are decoding, i.e., converting the text representation into the data it rep-
resents, and encoding, i.e., writing a text representation, given some suitable data. A validation
operation is also available, which can be applied to the text representation to check if it follows
the specification, or to the decoded data to check if they can be represented in the specified for-
mat. In some cases this operation can be done without requiring full decoding or encoding,
e.g., simply applying the regular expression for the given datatype.

The input for the decoding operation can be a string in the text format or a file. When a file
is given as input, the decoder must know the definition scope, i.e., to which part of the file the
datatype definition shall be applied. In particular, this can be: a single line (line scope); a fixed
number of lines of the file (unit scope); all following lines which were not yet processed lines to
which it applies (section scope); the entire file (file scope). Definition with section and file
scope are useful for validating the structure of the entire data: e.g., in a SAM format file [11],
there must be a header section followed by an alignment section. This validation is not possible
if single lines are parsed independently. However, processing the parsing results all at once
would require a large amount of memory e.g., if a large file is parsed. In such cases, it is possi-
ble to instruct the decoding function to process only one line at a time (or one element of a
compound definition at a time), but still validate the entire data. For example, for a SAM file,

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 6/17

https://doi.org/10.1371/journal.pone.0268910.t002
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

Table 3. Operations implemented by TextFormats and corresponding API functions and CLI commands.

Input Operation Interface Function/Command
Specification Compile TFSL specification Nim filename.compile specification()
C tf compile specification()
Python Specification.compile ()
CLI tf spec compile
Load TFSL/compiled specification Nim filename.specification from file ()
C tf specification from file()
Python Specification ()
CLI -s/--spec option of all commands
Run tests Nim run specification testfile()
C tf run specification testfile()
Python Specification.test ()
CLI tf spec test
Text representation Validate Nim string.is valid()
C tf is valid encoded()
Python DatatypeDefinition.is valid encoded ()
CLI tf validate encoded
Decode (input: string) Nim string.decode ()
C tf decode ()
Python DatatypeDefinition.decode ()
CLI tf decode string
Decode (input: file) Nim filename.decode file()
C tf decode file()
Python DatatypeDefinition.decode file ()
CLI tf decode file
Data Check if suitable for representation Nim jsonnode.is valid()
C tf is valid decoded()
Python DatatypeDefinition.is valid decoded ()
CLI tf validate decoded
Encode into text representation Nim jsonnode.encode ()
C tf encode ()
Python DatatypeDefinition.encode ()
CLI tf encode json

https://doi.org/10.1371/journal.pone.0268910.t003

the decoder would still validate the correctness of the global structure of the file, but it would
process only one header line or alignment at a time.

Supported programming languages

The TextFormats library has been implemented in the Nim programming language (version
1.4.8). This language offers a number of advantages over alternatives (it is compiled, but faster
to code than C/C++) and has recently aroused interest [12] and some limited adoption [13,

14] in the bioinformatics community. A reason why this language was chosen for this project
is the ease of interfacing Nim code to other programming languages. Thus, besides using the
library in Nim, also C/C++, Python and command line scripts are supported (see S1 Appendix
for code examples in Nim, Python, C and Bash). The following sections briefly describe the
implementation challenges, design choices and peculiarities of these interfaces.

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 7117

https://doi.org/10.1371/journal.pone.0268910.t003
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

The C API to TextFormats. For using TextFormatsin C and C++ the library and the C
API modules are compiled and linked to the Nim runtime library, and the resulting header file
is included into the C or C++ program. The C/C++ API modules functionality is documented
in a manual, as well as in a quick reference sheet. The core module is a wrapper to the Nim
API functions for use in C (implemented using the exportc Nim pragma). However, additional
module had to be implemented, to cope with the differences between C and Nim.

Nim is a statically typed language, like C. However, the datatype of data obtained by decod-
ing a text representation is not know at compile time. In Nim this problem has been solved by
employing a variant type from the standard library (JsonNode), which can represent differ-
ent kinds of data and provides multiple functions for accessing and modifying the data. In
order to use the same strategy in C and to provide a consistent interface, a wrapper to the Nim
json library was developed and included in the TextFormats C API.

A further challenge is represented by exceptions, since in C there is no exception handling,
equivalent to that in Nim. Thus a mechanism similar to the errno of the C standard library has
been adopted. In particular, if a TextFormats function results in an exception, a variable
describing the error is set. The user can decide to handle the exception or print an error mes-
sage and quit the program. Alternatively, to avoid code redundancy, it is also possible to spec-
ify, with a single line of code, that all errors must result in printing the error message and
quitting.

The Python API to TextFormats. Python is a very popular choice for developing bioin-
formatics pipelines. It is easy to import Nim code into Python using the Nim library NimPy
v.0.1 (available at https://github.com/yglukhov/nimpy), and the Python library nimporter
(available at https://github.com/Pebaz/nimporter) v.1.0.4.

However, a simple wrapper to the Nim functions results in a functional but inelegant inter-
face. Therefore a Python API module has been developed on top of it, which defines classes
representing TextFormats specifications and datatypes. The module allows adoption of a more
idiomatic coding style, with greater reflection of the dynamic typing and object orientation of
Python. A manual and a quick reference sheet describe the use of this API.

The command line interface to TextFormats. Bioinformatics analyses often involve exe-
cuting multiple programs, which can be combined using command line scripts. To enable the
use of TextFormats in this context, a suite of command line interface (CLI) tools has been
developed. Their usage is documented in a manual, in man pages for each of the tools, and in a
quick reference sheet. The tools support the use of standard input and output, in order to facil-
itate their inclusion in pipes.

The decode, encode and validate operations of TextFormats are provided, respectively, by
the tf decode, tf encodeand tf validate tools. The tf spec provides opera-
tions on specifications, such as analysis of their content, testing, automatic generation of exam-
ple data, and pre-compilation of TFSL.

Results
Case study 1: Parsing a complex format

In order to test the TextFormats library on real world data, we implemented a SAM format [11]
TFSL specification, based on the format specification document [15]. We implemented several
versions of a program for counting the alignments by target sequence, by read group, by flag
value, and the occurrences of each optional tag found in the file.

First, we compared the performance of TextFormats when using it from Nim, or from
other languages. Thus we implemented the parser, based on TextFormats, in Nim, Python and
C. Furthermore, we implemented the same functionality without TextFormats and used

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 8/17

https://github.com/yglukhov/nimpy
https://github.com/Pebaz/nimporter
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

Table 4. Running times of equivalent programs based on TextFormats or other libraries, implemented in Nim, Python, and C.

N. input lines Library Nim Python (vs Nim) C (vs Nim)
(SAM) Case study 1 100 000 TextFormats 545s 570s (+ 4.6%) 5.61s (+2.9%)
500 000 TextFormats 26.89 s 28.14s (+ 4.6%) 27.76s (+3.2%)
1 000 000 TextFormats 53.70 s 5591s (+4.1%) 55.46's (+3.3%)
100 000 htslib 0.35s 244s 0.09 s
500 000 htslib 1.66 s 12.16 s 0.42s
1 000 000 htslib 3.37s 24.33 s 0.83s
(EGC) Case study 3 100 000 TextFormats 538s 5.87s (+9.1%) 531s (- 1.3%)
500 000 TextFormats 25.78 s 28.33s (+9.9%) 25.40s (- 1.4%)
1 000 000 TextFormats 52.74's 55.70' s (+ 5.6%) 51.62s (-2.3%)
100 000 ad hoc n.a. 2.19s n.a.
500 000 ad hoc n.a. 11.37 s n.a.
1000 000 ad hoc n.a. 22.69s n.a.
(GFA2) (Case study 4) 363 613 TextFormats 93.55s 96.83 s (+3.5%) n.a.
363 613 GfaPy n.a. 191.83 s n.a.

(SAM) Case study 1: program for collecting information from a SAM file, based on the TextFormats or the htslib library;

(EGC) Case study 3: program for parsing the EGC format (defined in the text) writing the information to JSON and then back to EGC, based on the TextFormats
library, or as a ad hoc Python parser;

(GFA2) Case study 4: Python program for validating a GFA2 file and collecting basic statistics on the file, based on TextFormats library or on the GfaPy library;

(vs Nim) Running time difference of the Python or C version (when implemented) of the TextFormats-based programs to the Nim version;

The reported times are the average over 3 runs of the real time measured by GNU time, on a Linux OpenSuse 15.3 workstation (CPU i5-4570 3.2 Ghz, RAM 16 Gb),

using TextFormats 1.2.2.

https://doi.org/10.1371/journal.pone.0268910.t004

instead the state-of-the art library htslib [16] v.1.13. Also in this case, we compared the native
implementation in C, with the use of the Python wrapper Pysam [17] v.0.17.0 and of the Nim
wrapper hts-nim v.0.3.18 [13].

As test data, we used a SAM file from the 1000 Genomes Project [18], the Mosaik alignment
of the 454 sequencing of sample NA06984 (file NA06984.454. MOSAIK.SRP000033.2009_11.
bam obtained from http://ftp.1000genomes.ebi.ac.uk/voll/ftp/pilot_data/data/NA06984/
alignment/ and converted to SAM using samtools [11]).

We measured the running time of each of the implementations as real time measured by
GNU time [19] v.1.9 (average of 3 runs, run on a Linux workstation with CPU Intel i5-4570
3.20GHz, 16 Gb RAM, Linux OpenSuse 15.3). The results are summarized in Table 4. The
same counts were output by each version of the program, based on TextFormats or htslib, in
Nim, Python and C.

Case study 2: Parsing sequence identifiers

The sequences contained in sequence databases are identified by accessions, which remain sta-
ble when corrections or new versions of the same sequence or sequence annotation are pub-
lished. Accessions are strings consisting of sequences of letters and numbers. The valid
formats of accessions are described in the documentation of the databases. Besides a number
identifying the entry, accessions often include more information, such as the section of the
database, or the type of molecule or annotation.

In contrast to file formats such as SAM (discussed in Case study 1), there is no available
parser or validator for accession strings. Thus we implemented the TFSL specifications spec/

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 9/17

http://NA06984.454.MOSAIK.SRP000033.2009_11.bam
http://NA06984.454.MOSAIK.SRP000033.2009_11.bam
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA06984/alignment/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA06984/alignment/
https://doi.org/10.1371/journal.pone.0268910.t004
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

Table 5. Accession identifiers of NCBI, DDB]J, ENA/EBI and UniProt sequence databases defined in the spec/
accessions.yaml TextFormats specification.

Database Data coded in accession

INSD read archives (SRA, DRA, ERA) Institution (NCBI, DDBJ, ENA/EBI), Type of data (study, run, sample,
experiment, analysis), Entry

UniProtKB Database name, Entry

Trace Archive Database name, Entry

INSD assembled sequence (Nucleotide, | Database name, Entry
Protein, Bulk, MGA)

INSD metadata (BioProject, BioSample) | Institution (NCBI, DDBJ, ENA/EBI), Type of Record (BioProject,
BioSample), Entry

RefSeq Type of molecule (Genomic, RNA, protein), Type of assembly
(reference, alternate), Type of annotation (curated, predicted model),
Entry

Ensembl Species, Feature type (exon, protein, gene, transcript etc), Entry

The definitions on which the specification is based were obtained from the following documentation pages: https://
www.ncbi.nlm.nih.gov/Sequin/acc.html, https://www.ddbj.nig.ac.jp/acc_def-e.html, https://www.ddbj.nig.ac.jp/
prefix-e. html#dra, https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_accession_numbers_and_
mole/, https://www.uniprot.org/help/accession_numbers and https://www.ensembl.org/info/genome/stable_ids/

prefixes.html.

https://doi.org/10.1371/journal.pone.0268910.t005

accessions.yaml, describing the format of the accessions of multiple sequence databases
(Table 5), and spec/ncbi id.yaml, describing the sequence identifiers used by NCBI for
sequences in Fasta format (Table 6). They allow for effortless validation of the identifiers and
access to the information contained therein, from the command line or any of the supported
programming languages (Nim, Python, C, C++).

Case study 3: Defining a new format

New text formats are often defined to represent kinds of data for which no existing suitable
format yet exists. One of the goals of the TextFormats library is to simplify the definition of
new formats in those circumstances. To simulate this kind of application, we defined a new file
format and implemented its specification in TFSL (egc . yaml). The format, called EGC
(expected genomic content) has the goal of representing a set of rules, describing the expected
content of a microbial genome, under a given condition, such as phenotype, lifestyle, or mem-
bership in a taxonomic group.

The general structure of the format was organized on the example of the GFA format [9].
Each line not starting with a comment symbol (#) is a record, containing multiple fields, sepa-
rated by tabulator characters. Tabulators or newline characters never occur in these fields. The
first field is a single letter determining the record type. The number and semantics of the fol-
lowing positional fields are determined by the record type. The positional fields cannot be
empty and a point (.) is used to represent missing information in a field (whenever allowed).

Four types of record lines have been have defined in EGC: records of type A define attributes
which can be measured in a genome sequence or annotation, such as sequence statistics or fea-
ture counts; records of type T (taxon) and P (phenotype group) define measurement subjects,
i.e., groups of organisms for which an expected value of the attributes can be defined; finally
records of type E define the expectation, i.e. the association of a subject to expected values of
an attribute.

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 10/17

https://www.ncbi.nlm.nih.gov/Sequin/acc.html
https://www.ncbi.nlm.nih.gov/Sequin/acc.html
https://www.ddbj.nig.ac.jp/acc_def-e.html
https://www.ddbj.nig.ac.jp/prefix-e.html#dra
https://www.ddbj.nig.ac.jp/prefix-e.html#dra
https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_accession_numbers_and_mole/
https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_accession_numbers_and_mole/
https://www.uniprot.org/help/accession_numbers
https://www.ensembl.org/info/genome/stable_ids/prefixes.html
https://www.ensembl.org/info/genome/stable_ids/prefixes.html
https://doi.org/10.1371/journal.pone.0268910.t005
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

Table 6. Fasta sequence identifiers used by NCBI, defined in the spec/ncbi_id.yaml TextFormats specification.

Type of sequence Accession prefix Example

NCBI RefSeq database ref ref|NM 010450.1
NCBI GenBank database gb gb|M73307 | AGMA13GT
NCBI GenBank (third-party annotation) tpg tpg | BKO03456 |

EMBL sequence database emb emb |CAM43271.1|
EMBL sequence (third-party annotation) tpe tpe |BN000123|

DDBJ sequence database dbj dbj | BAC85684.1

DDBJ sequence (third-party annotation) tpd tpd | FAAQ0017 |
SWISS-Prot database sp sp|P01013|OVAX CHICK
TrEMBL database tr tr|Q90RT2|Q90RT2 9HIV1
PIR database pir pir| |G36364

PDB database pdb pdb|1I4L|D

PRF database prf prf|10806162C

patent sequence pat pat|US|RE33188 |1
pre-grant patent sequence PIp pop |EP[0238993 |7
general database reference gnl gnl|taxon]| 9606

local sequence 1lcl lcl|hnm271

GenlInfo backbone sequence ID bbs bbs 316342

Genlnfo backbone molecule type bbm bbm| 464147

GenlInfo import ID gim gim|442187

Genlnfo integrated database gi gil21434723

NCBI internal, genome pipeline gpp gpp |GPC 123456789
NCBI internal, named annotation track nat nat|AT 123456789.1

The format of each type of identifier is described in the documentation of the NCBI Toolkit, at https://ncbi.github.io/cxx-toolkit/pages/ch_demo#ch_demo.id1_fetch.

html_ref_fasta.

https://doi.org/10.1371/journal.pone.0268910.t006

We developed a parser for the EGC format using TextFormats. In order to quantify the pos-
sible overhead when implementing TextFormats-based programs in different programming
languages, we implemented the program in Nim, C and Python.

Furthermore, to compare the use of TextFormats with existing solution, we developed a
Python parser for the format, which does not rely on TextFormats. We could not find any suit-
able Python library for easily creating such a parser. For example, GfaPy [20], which allows to
read GFA2 files, can be extended to new datatypes and custom line types. However, this func-
tionality is meant for adding further structured information to the graph, and does not fit the
need to implement a format not aimed at representing a graph (e.g., the standar GFA2 record
types cannot be overwritten). Thus, we created an ad hoc EGC parser in Python from scratch
(egc_ad hoc.py).

The results obtained with the ad hoc parser were identical to those obtained using the pro-
grams based on TextFormats. We compared the performance of the different implementations
on example files, containing a variable number of lines. The results are reported in Table 4.

Case study 4: Development of a Python software tool

Using the Python API of TextFormats, it is possible to rapidly develop software tools address-
ing complex formats, such as GFA2. To demonstrate this, we created a Python script
gfa2 info.py based on the library, which collects basic statistics and summarizes the

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 11/17

https://ncbi.github.io/cxx-toolkit/pages/ch_demo#ch_demo.id1_fetch.html_ref_fasta
https://ncbi.github.io/cxx-toolkit/pages/ch_demo#ch_demo.id1_fetch.html_ref_fasta
https://doi.org/10.1371/journal.pone.0268910.t006
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

contents of a GFA2 file. To compare this solution with the state-of-the-art and verify the
results, we developed a tool with the same functionality using another software library. Among
the existing GFA libraries, only GfaPy [20] allows parsing of a GFA2 file using Python. Thus
we developed a script (named gfa2 info gfapy based.py) based onit.

In the current implementation of TextFormats, constraints which involve non-consecutive
elements cannot be directly specified in the specification, but must be implemented in the call-
ing code. In GFA2, all record identifiers must be unique, references to segments in other lines
must be identifiers of segments defined elsewhere in the same file, and the coordinates in
edges must be in the range of the length of the sequences to which they refer and correctly use
the final coordinate marker. To exemplify the implementation of such constraint validations
when using TextFormats and ensure a fair comparison with GfaPy, we developed a module
gfa2 cross_validator.py. The module verified the constraints when running the
TextFormats version of gfa2 info.py: it was able to correctly identify and report multiple
issues in an example GFA2 file.

Furthermore, in order to quantify the possible overhead when implementing the programs
based on TextFormats in Python, we implemented an equivalent TextFormats-based program
also in Nim, including a Nim implementation of the cross validator module.

We tested the Gfapy- and TextFormats-based programs on large real data, using the the
Minigraph [10] pre-built human genome pangenome graph GRCh38-0.1-14.gfa.gz
(downloaded from ftp.dfci.harvard.edu/pub/hli) converted to GFA2 by GfaPy. The file consists
of about 363 thousand lines. All programs produced the same results. The running times are
reported in Table 4.

Case study 5: Data format standardization

Sometimes data is available in a custom format and requires conversion into a standard for-
mat, in order to be processed with existing software tools. To test the suitability of TextFormats
for this kind of task, we created a file containing the annotation of a gene in a custom tabular
format.

A TextFormats specification was then written to read the custom file (ftab.yaml). We
then created a Python script (ftab_to gff3.py), which parses the custom tabular format
using TextFormats and re-organizes the information, so that it can be written in GFF3 format,
using the provided GFF3 TextFormats specification. The resulting file was correctly validated
by the online GFF3 validation tool http://genometools.org/cgi-bin/gff3validator.cgi of the
GenomeTools suite [21].

Case study 6: Repairing an invalid file

Sometimes, due to some issues, a software tool outputs a file, which is invalid according to its
format specification. When it is not possible to fix the software tool, the output file must be
edited and corrected, so that it can be further processed with other tools, which assume a cor-
rect format. In the case of a complex format the correction can be very cumbersome, since it is
necessary to edit the invalid formatted pieces of information but existing library often inter-
rupt parsing due to the format error, and thus they can not be employed to edit the file content
and fix the issue.

For example, when extracting a sub-graph from a large GFAL1 file, Bandage v.0.8.1 [22] out-
puts an invalid GFAL1 file, which could not be loaded in standard-compliant GFA tools, such
as GfaPy [20]. Using a TextFormats-based Python script, the invalid file was further investi-
gated (gfal show_invalid lines.py). This showed that the invalid tag type code ‘z’
was included in some tags (instead of the correct type code ‘Z’ for string types), and segment

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 12/17

http://ftp.dfci.harvard.edu/pub/hli
http://genometools.org/cgi-bin/gff3validator.cgi
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

lines without sequences did not include the necessary * symbol instead of the sequence. An
example of GFAL1 file which causes such an issue when a subgraph is extracted is included in
the TextFormats package (complete graph.gfa).

Here we show, how it is possible to use TextFormats for solving this problem. In particular,
TextFormats allows import of an existing specification and changes to some parts of it. Thus,
we created a new specification which describes the format of the corrupted file (inva-
1lid gfa.yaml). Init, the original GFALI specification was imported, the definition of tags
was modified to include the incorrect tag code, and the definition of sequences was modified,
so to accept empty strings instead of the * symbol.

We then created a short Python script based on TextFormats (gfal fix.py) which
parsed the output of Bandage using the invalid gfa.yaml specification and output the
graph using the GFA1 specification. The resulting file was valid GFA1, which could be cor-
rectly parsed by GfaPy.

Discussion and conclusion

TextFormats is a software library and toolset which aims at providing an easy system for the
definition and access to text formats, which are very common in Bioinformatics. In particular,
it provides a rapid prototyping solution to the tedious task of parsing formats for which a pars-
ing library is not yet available. We tested the software by providing definitions of complex for-
mats such as SAM (Case study 1). We compared the resulting SAM parser to the state-of-the
art parsers based on the HTSib library [16]. HTSIib resulted in much more efficient parsing
and provides additional functionality, compared to the TextFormats-based application. How-
ever, the difference in the efforts required for implementing such a library is apparent when
comparing the number of codes: HTSIib (as of version 1.13) consists of 84000 lines of code
(and, of course, offers additional functionality). The SAM specification in the Text Formats
Specification Language consists of a mere 132 lines. In another example, Case study 4, we
implemented Python scripts for collecting statistics from GFA2 files. The script based on Text-
Formats and a TESL specification for GFA2 (224 lines) and a Python cross-validation module
(127 lines) had a better performance than a script based on the Python library GfaPy which (as
of version 1.2.3) consists of over 10000 lines of code. Thus, we think that TextFormats repre-
sents a useful tool, a tradeoff between computational performance and development effort,
when implementing bioinformatics scripts and pipelines, in which file formats must be
accessed for which no software is yet available.

In many cases, bioinformatics formats are only defined in text documents. This is for exam-
ple the case for accession numbers of sequence databases (Case study 2). TextFormats does not
require the user to write the formal grammar for describing a format, a task which can be chal-
lenging and is rarely used in bioinformatics. It relies on a simpler, human readable, definition
language TFSL. This hopefully will encourage authors of tools and databases to provide a speci-
fication to their data formats, instead of a mere description text. Such a specification could
directly be used for working with the data in the format.

In Case study 3, we made an example of design and definition of a format from scratch,
using TextFormats and compared this to the development of an ad hoc Python parser. While
the ad hoc parser was faster in handling an example input file, the development effort was also
much higher. TextFormats specification consisted of a 150 lines YAML file. The ad hoc parser
code is much more complex and difficult to maintain: it consists of about 700 lines of Python
code, for a total of 73 methods, aimed at parsing and writing all elements of the defined format.
It necessarily mixes the format definition with code for parsing and writing data based on
those definition. In contrast, using TextFormats the structure of the format is immediately

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 13/17

https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

apparent from the format specification file. Thus it is very easy to change any element of the
format, and even the whole structure of the file, which is very useful during the development
of a new format. Also, TextFormats provides further functionality, such as testing and auto-
matic examples generation from the format specification.

Also when adopted for reading or writing existing formats, TextFormats can be useful. In
Case study 5, for example, we demonstrate the use of TextFormats for converting annotation
data in a table to the standard GGF3 format. In another example (Case study 6), we demon-
strated the correction of an invalid GFAL file output by another tool, which was rejected by
standard-compliant parsers. The TextFormats specification for GFA1 could be used for identi-
fying invalid elements of the file. Without TextFormats, correcting these elements requires to
correctly fetch them among the rest of the file content. For a complex format such as GFAL,
performing this operation correctly requires parsing at least the relevant parts of the format.
Thus, it would require to either write a parser from scratch or patch the source code of an
existing parsing library for the format. In TextFormats the file correction much easier, as it
allows overwriting definitions of imported specifications. Thus, a patched specification for
GFA1 was easily constructed just overwriting the parts of the format defining the invalid ele-
ments (15 lines of TFSL specification).

Although we think that TextFormats can be very useful in applied bioinformatics, it is also
has some limitations, which could be addressed in future versions of the software. First, its
lower performance compared to ad hoc format parsers is partly inherent in the dynamic
nature of the software, as TextFormats must employ flexible data structures for the representa-
tion of data, whose type is not known when compiling the library. In this context, an interest-
ing feature of Nim, not used in the current implementation, is the ability to execute a subset of
the language at compile time; A growing number of Nim libraries support this feature. It is
conceivable to exploit this functionality by giving the Nim compiler further information about
the types of data to be represented, given a TFSL specification. This would allow it to create
versions of the software addressed at single formats only, but with higher performance.

Although TextFormats is written in Nim, a programming language which is rather unusual
for bioinformatics software, the user of the library does not need to employ the same language.
Instead, API for Python and C are provided. A major goal of the library is rapid development,
and Python is a very popular rapid development language in the bioinformatics community.
Thus, it is foreseeable that most user will employ the library through the Python API. An
example of development of Python tools using TextFormats is given in Case study 4. It is
worth noting that installing the Python library is very easy: The documentation includes details
of the procedure, which in many cases do not even require a Nim compiler, but just to run the
command pip install textformats.

It could be argued that a package mainly intended to be used from Python should be imple-
mented in Python itself. To analyse the overhead represented by the use of the library in a dif-
ferent language than the implementation language Nim, we implemented equivalent
TextFormats-based programs (Case study 1 and Case study 4) in Nim, Python and C. Since
Nim is compiled to C, the overhead of using C instead of Nim itself is very limited: for the pro-
gram described in Case study 1, it was 2.9% to 3.3% (Table 4), while the program described in
Case study 3 runs slightly faster when written in C (1.3% to 2.3% faster). The overhead in
Python was measured comparing the running times to Nim implementations of the programs
described in Case study 1, Case study 3 and Case study 4. It was higher than in C, with values
ranging from 3.5% to 9.9%. The additional time is required for the initialization of the Python
interpreter (which would be required also if the library would be implemented in Python) and
for the data exchange, which requires Python object initializations handled under the hood by
the Nimpy library (for example for strings, which are in Python stored as immutable objects).

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 14/17

https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

However, when using a compiled language, such as Nim, instead of Python, for developing
Python libraries, the higher performance of compiled code compensates this additional time.
For this reason several popular Python packages in science, such as Numpy and Scipy, are
implemented as C extensions. Nim is compiled to C, and its Python interface is based on the
same Python C extension API used by those packages.

One of the central features is the generation of regular expressions for the datatypes defined
in the specification, from the description of the datatypes in TFSL. These regular expressions,
in most cases, are used to parse the input and capture its components. As a consequence, a lim-
itation of the library is that the formats that can be specified must be, in general, regular lan-
guages [23]. Another parsing strategy, not based on regular expressions, would be required to
overcome this limitation. Fortunately, most bioinformatics text formats are regular languages.
Still, some formats allow any degree of nesting of elements, e.g. the Newick format for phyloge-
netic trees [24], and thus cannot be currently described in the current version of TFSL. There
is an exception to this limitation: JSON, including any level of recursion, can be embedded in
any format supported by TextFormats. This is achieved by delegating the parsing of the
embedded JSON to the Nim JSON library; this functionality could also be extended by inter-
facing additional external libraries.

A further current limitation of TextFormats is in the validation of data, whenever the com-
parison of non-adjacent pieces of information is necessary. For example, in a format represent-
ing a graph (e.g. GFA [8]), it is not possible to model in the specification the constraints that
all edges must refer to valid nodes, since the nodes are defined elsewhere in the file. Currently,
such additional validations can be implemented as an additional layer on the data parsed by
TextFormats, as exemplified for the GFA2 format in Case study 4. In future versions of Text-
Formats, this validation layer could be generalized and integrated in the library. This will
require a system for addressing each single part of a format definition and a temporary storage
of information which must be used as comparison reference (e.g. sets valid of identifiers).

To conclude, we think that TextFormats, alongside current alternatives (such as writing
parser scripts) and despite some limitations described above, is an useful and powerful system
for rapidly supporting access to information in new bioinformatics text formats, as well as for
the definition of new formats, by providing a simple but effective format definition language.

Supporting information

S1 Appendix. Example code based on TextFormats. Examples of Python, Nim, Bash and C
code using the TextFormats library for parsing a text format.
(PDF)

S$2 Appendix. Comparison of the available regular expression libraries for Nim. Compari-
sons of the performance and features of the currently available regular expression libraries for
the Nim programming language: re, nre, regex and nregex.

(PDF)

Acknowledgments

Many thanks to Burkhard Morgenstern (Department of Bioinformatics, University of Got-
tingen), Marco Matthies and Stefan Kurtz (Center for Bioinformatics, University of Hamburg)
for helpful discussions; to Serena Lam (Department of Bioinformatics, University of Got-
tingen) for language style suggestions and grammar corrections.

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 15/17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268910.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268910.s002
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

Author Contributions

Conceptualization: Giorgio Gonnella.

Funding acquisition: Giorgio Gonnella.

Investigation: Giorgio Gonnella.

Project administration: Giorgio Gonnella.

Software: Giorgio Gonnella.

Supervision: Giorgio Gonnella.

Writing - original draft: Giorgio Gonnella.

References

1. Leonard SA, Littlejohn TG, Baxevanis AD. Common File Formats. Current Protocols in Bioinformatics.
2006; 16(1):A.1B.1-A.1B.9. https://doi.org/10.1002/0471250953.bia01bs16

2. Mills L. Common File Formats. Current Protocols in Bioinformatics. 2014; 45(1):A.1B.1-A.1B.18.
https://doi.org/10.1002/0471250953.bia01bs45 PMID: 26270173

3. HungJH, Weng Z. Data formats in bioinformatics. Cold Spring Harbor Protocols. 2016; 2016(8):669—
671. https://doi.org/10.1101/pdb.top093211 PMID: 27480726

4. American Standards Association. American Standard Code for Information Interchange, ASA X3.4-
1963; 1963.

5. The Unicode Consortium. The Unicode Standard, Version 1.0, Volume 1. Reading, MA: Addison-Wes-
ley Developers Press; 1991.

6. The Linux Information Project. Binary File Definition; 2006. Available from: http://linfo.org/binary_file.
html.

7. LiH. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformat-
ics. 2016; 32(14):2103-2110. https://doi.org/10.1093/bioinformatics/btw152 PMID: 27153593

8. GFA Format Specification Working Group. The GFA Format Specification; 2020. Available from: http://
gfa-spec.github.io/GFA-spec/GFA1.html.

9. GFA Format Specification Working Group. Graphical Fragment Assembly (GFA) 2.0 Format Specifica-
tion; 2020. Available from: http://gfa-spec.github.io/GFA-spec/GFA2.html.

10. LiH, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph.
Genome Biology. 2020; 21(1):265. https://doi.org/10.1186/s13059-020-02168-z PMID: 33066802

11. LiH, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format
and SAMtools. Bioinformatics. 2009; 25(16):2078-2079. https://doi.org/10.1093/bioinformatics/btp352
PMID: 19505943

12. LiH. Fast high-level programming languages; 2020. Available from: http://Ih3.github.io/2020/05/17/fast-
high-level-programming-languages.

13. Pedersen BS, Quinlan AR. hts-nim: scripting high-performance genomic analyses. Bioinformatics.
2018; 34(19):3387-3389. https://doi.org/10.1093/bioinformatics/bty358 PMID: 29718142

14. Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinfor-
matics. 2017; 34(5):867—-868. https://doi.org/10.1093/bioinformatics/btx699

15. The SAM/BAM Format Specification Working Group. Sequence Alignment/Map Format Specification;
2021. Available from: https://samtools.github.io/hts-specs/SAMv1.pdf.

16. Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, et al. HTSlib: C library for reading/writ-
ing high-throughput sequencing data. GigaScience. 2021; 10(2). https://doi.org/10.1093/gigascience/
giab007

17. Heger A, Jacobs K, contributors. Pysam: htslib interface for python; 2021. Available from: https://
pysam.readthedocs.io.

18. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference
for human genetic variation. Nature. 2015; 526(7571):68—74. https://doi.org/10.1038/nature15393
PMID: 26432245

19. Free Software Foundation. GNU Time; 2018. Available from: https://www.gnu.org/software/time/.

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 16/17

https://doi.org/10.1002/0471250953.bia01bs16
https://doi.org/10.1002/0471250953.bia01bs45
http://www.ncbi.nlm.nih.gov/pubmed/26270173
https://doi.org/10.1101/pdb.top093211
http://www.ncbi.nlm.nih.gov/pubmed/27480726
http://linfo.org/binary_file.html
http://linfo.org/binary_file.html
https://doi.org/10.1093/bioinformatics/btw152
http://www.ncbi.nlm.nih.gov/pubmed/27153593
http://gfa-spec.github.io/GFA-spec/GFA1.html
http://gfa-spec.github.io/GFA-spec/GFA1.html
http://gfa-spec.github.io/GFA-spec/GFA2.html
https://doi.org/10.1186/s13059-020-02168-z
http://www.ncbi.nlm.nih.gov/pubmed/33066802
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://lh3.github.io/2020/05/17/fast-high-level-programming-languages
http://lh3.github.io/2020/05/17/fast-high-level-programming-languages
https://doi.org/10.1093/bioinformatics/bty358
http://www.ncbi.nlm.nih.gov/pubmed/29718142
https://doi.org/10.1093/bioinformatics/btx699
https://samtools.github.io/hts-specs/SAMv1.pdf
https://doi.org/10.1093/gigascience/giab007
https://doi.org/10.1093/gigascience/giab007
https://pysam.readthedocs.io
https://pysam.readthedocs.io
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://www.gnu.org/software/time/
https://doi.org/10.1371/journal.pone.0268910

PLOS ONE

TextFormats: Simple definition and parsing of text formats

20.

21,

22,

23.

24,

Gonnella G, Kurtz S. GfaPy: a flexible and extensible software library for handling sequence graphs in
Python. Bioinformatics. 2017; 33(19):3094—3095. https://doi.org/10.1093/bioinformatics/btx398 PMID:
28645150

Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library for efficient process-
ing of structured genome annotations. IEEE/ACM transactions on computational biology and bioinfor-
matics. 2013; 10(3):645-656. https://doi.org/10.1109/TCBB.2013.68 PMID: 24091398

Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: Interactive visualization of de novo genome assem-
blies. Bioinformatics. 2015;. https://doi.org/10.1093/bicinformatics/btv383 PMID: 26099265

Chomsky N. Three models for the description of language. IRE Transactions on Information Theory.
1956; 2(3):113-124. https://doi.org/10.1109/TIT.1956.1056813

Cardona G, Rossell6 F, Valiente G. Extended Newick: it is time for a standard representation of phylo-
genetic networks. BMC bioinformatics. 2008; 9:532-532. https://doi.org/10.1186/1471-2105-9-532
PMID: 19077301

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 17/17

https://doi.org/10.1093/bioinformatics/btx398
http://www.ncbi.nlm.nih.gov/pubmed/28645150
https://doi.org/10.1109/TCBB.2013.68
http://www.ncbi.nlm.nih.gov/pubmed/24091398
https://doi.org/10.1093/bioinformatics/btv383
http://www.ncbi.nlm.nih.gov/pubmed/26099265
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1186/1471-2105-9-532
http://www.ncbi.nlm.nih.gov/pubmed/19077301
https://doi.org/10.1371/journal.pone.0268910

